ZnO and TiO₂ Nanoparticles as Textile Protecting Agents Against UV Radiation : A review

3 Abstract: The purpose of this review is to highlight the role of ZnO and TiO₂ NPs as textile protective 4 agents against UV radiation. Different synthesis method of ZnO and TiO₂ NPs affecting their nano size 5 and their ability to absorb UV radiation. Resulted ZnO or TiO₂ NPs can be applied on treated or 6 untreated fabrics individually to provide UV protection or in combination with other materials to 7 provide multifunctional finished fabrics. Cons and Pros of each application process besides comparison 8 of synthesis methods of ZnO and TiO₂ NPs are included separately in this review paper.

9 Keywords: ZnO NPs -TiO₂ NPs- UV protection -NPs synthesis-NPs application.

10 Introduction

Protection against ultra violet radiation is one of the most important concerns in textile industry.
UV radiation is a form of energy which represented only one type of invisible radiation and it is
measured on a scientific scale called the electromagnetic spectrum. Incident sunlight consists of (50%
Visible light, 45% infrared and 5% ultra violet radiation) [1].

UV radiation can be subdivided according to their wavelength and effect to: UV- A (320-400_nm),
UV-B (280-320_nm) and UV-C (200-280_nm). UV-C is absorbed by ozone layer and does not reach the
surface of the earth, so UV-A and UV-B represent the danger of UV radiation especially UV – B as
shorter wavelength resulted in higher energy and more damage in (textiles_ -dyestuff_ -human skin)[2].
To block the harmful effect of UV radiation organic and <u>Inorganic inorganic</u> UV blockers are used.
Inorganic UV blockers are better than organic UV blockers because of their non-toxicity and chemical

21 stablility when exposed to higher temperatures and UV radiation. The most common Inorganic_inorganic_UV

22 blockers are semiconductor oxides such as ZnO and TiO₂ [3]. Nano-size of ZnO and TiO₂ particles

23 showed more durable and effective UV protection than their bulk size [4].

24 This review is intended to focus on ZnO and TiO₂ nanoparticles and their advanced applications to

25 block the UV radiation and enhance the protection of textiles and human skin. Fabrics ultraviolet

26 protection factor and properties of (ZnO and TiO_2 NPs) have been briefly explained. Different ZnO 27 and TiO_2 NPs synthesis methods (chemical - green) and applications (individually or in combination 28 with other materials to provide multifunctional finished fabrics) have been discussed in details and 29 compared.

30 Ultra Violet Protection Factor-(UPF):

When textile material is exposed to UV radiation, the action of UV included absorption,
reflection, scattering and direct transmission. Transmission of UV radiation causes fiber, dye and skin
damage. <u>Ultra violet protection factor (UPF)</u> related to reflection and absorbance of UV radiation.
UPF value is considered as a

34 measure of blocking UV radiation by the fabric. The higher (UPF) value the more (UV) protection

35 provided by the textile material [5].

36 ZnO Nanoparticles in Textiles UV Protection:

37 **Zno-ZnO** Properties:

Zinc oxide (ZnO) is an inorganic semiconductor material that has a great interest in textiles UV
protection field due to its properties (wide band-gap, Chemically stable, Environmental friendly,
easily grown and Longer durability) [6,7]. In UV protection finishing, ZnO materials are preferred to
be used in nano size to provide higher durability and more intensive absorption and blocking in the
UV region [1].
ZnO NPs Synthesis

44 Generally ZnO NPs are obtained by chemical or green synthesis as shown in Figure 1 .Using zinc

45 source such as (zinc acetate-zinc, chloride-zinc nitrate) with synthetic or natural materials.

46

Figure1

47 Chemical Synthesis

48 Sol Gel Method

ZnO NPs had been prepared [8] with an average size of (30-60_nm) by simple chemical Sol-Gel method from zinc acetate as a precursor and lithium hydroxide .The resulted ZnO NPs were embedded in a hybrid polymer (GPTMS) network with different ratios and applied to cotton and cotton/ polyester fabrics by Pad-dry-cure method .The results of SEM investigations demonstrated smoother surface of treated fabrics and uniform distribution of ZnO NPs. Finished fabrics with higher

54 concentrations of ZnO NPs indicated higher UPF values (increasing UPF value in cotton fabric from

55 21 to 177 and in cotton/ polyester fabric from 19 to 48).

Another group of researchers [9] prepared ZnO NPs with an average size (58_nnm). The researchers also depended on Sol-Gel method and using Zinc acetate dihydrate as precursor but they used sodium hydroxide as a reducing agent instead of lithium hydroxide. Sodium hydroxide action was investigated by adding it with different flows and different alkaline ratios. It was found that slowly addition of sodium hydroxide with maintaining alkaline ratio at 2 resulted in obtaining ZnO NPs with uniform distribution and good absorption in the UV region (380 nm).

62 Hydrothermal Method

63 ZnO NPs had been prepared [10] by hydrothermal process using water , 1,2-ethanediol as a solvent_[10].

and investigating which is better. Sodium hydroxide was added gradually to (zinc chloride dissolved in water or 1,2-ethanediol). The resulted particles were thermal treated at 250°C then applied to cotton and cotton / Polyester fabrics by Pad -dry-cure method. It was found that using 1-2ethanediol instead of water resulted in smaller size of ZnO NPs (from 20 nm to 9 nm), more uniform distribution and higher UPF values for both UVA and UVB.

Faunk *et al.* [11] aimed to more economical and ecological function in ZnO NPs synthesis by hydrothermal method through using low concentration of (zinc chloride - sodium hydroxide –M tri ethanolamine) and lower thermal treatment temperature. The resulted ZnO NPs had smaller size than previous research (7_nm) and absorption in the UV region (235-407 nm).

The results of all previous researches can be summarized in Table 1. Hydrothermal process provided smaller size of ZnO NPs. The research made by Taunk and his team provided The smallest size of ZnO NPs , lower concentration of hazardous chemicals (for economic and ecological considerations) and Wide range absorption of UV radiation (235-407 nm) .

77

Table 1

78 Green Synthesis

79 Green synthesis is better than chemical synthesis of ZnO NPs as it provides the advantage of 80 clean, nontoxic and environmental friendly finishing. Green synthesis of ZnO NPs depends on using 81 natural materials with zinc source.

82 ZnO NPs had been prepared [11] from the reaction of (CMC)-chemically modified chitosan (CMC) (by

83 alkalization and etherification) with Zinc nitrate. Chitosan is a cheap, environmental friendly, low

84 toxic and high stable material. This research aimed to determine optimum conditions of ZnO NPs

85 synthesis from modified chitosan. Modified chitosan was prepared by dispersion of chitosan in (50-

86 75%) isopropyl alcohol with gradual addition of sodium chloroacetate $(1.5-2_{7}5-3_M)$ -. <u>zine-Zine</u> acetate was

87 added to the mixture and calcined at different temperatures-. It was found that <u>Modified-modified</u> chitosan

showed more affinity to Zinc ions than native chitosan. The optimum reaction conditions (sodium chloroacetate (1.5 M), isopropyl alcohol_(75%) and 450 °C as calcination temperature resulted in more uniform distribution and smaller size of ZnO NPs (19-54 nm).

Ramesh *et al.* [13] prepared ZnO NPs by green method .They used the extract of Citrus
aurantifolia leaves (as a reducing and stabilizing agent) and zinc nitrate. The resulted ZnO NPs
Uniformly uniformly distributed, had a size range from (9-10_nm) and <u>a</u>bsorbed UV radiation at the range (208-

94 400_nm).

Also ZnO NPs had been produced [14] by using green material (Aloe Vera) leaves as stabilizing and reducing agent. Sodium hydroxide was added gradually to mixture of (the extract of Aloe Vera leaves and zinc acetate. It was found that the resulted ZnO NPs had an average size (22.18_nm), showed antibacterial activity against gram positive and gram negative bacteria and absorbed UV radiation within the range (340-400 nm).

The green synthesis methods of ZnO NPs are summarized in Table 2. It is obvious that synthesis of ZnO NPs made by Varghese is better than other methods as it included less chemical materials (only zinc source and the natural material used with no need to another reducing agent), Smaller size of ZnO NPs (9-10_nm) and Wider_wider_range of UV absorption (208-400 nm).

104

107

Table 2

105 ZnO NPs application to provide textiles UV protection

 106
 ZnO NPs can be applied to fabrics after plasma treatment or without treatment individually or in

108 provide multifunctional finished textiles Figure 2.

109

Figure 2

110 Application of ZnO NPs without Treatment:

111 Single Application of ZnO NPs:

ZnO NPs had been applied [1] with (average size <35 nm) as a coating to cotton fabrics. Treated 112 cotton fabrics indicated complete covering by ZnO NPs, Increasing UPF values from (27-22) to 113 (711-44) and Improvement improvement in antimicrobial activity against E. coli and S. aureus bacteria. 114 On the other hand, ZnO NPs had been applied [15] on cotton fabrics to provide durable 115 multifunctional finishing (antibacterial and UV protection) to cotton fabric. ZnO NPs were 116 synthesized in situ. Cotton samples were padded in different concentrations of zinc acetate 117 118 hexahydrate and hexamethyltriethylene tetramine (HMTETA), dried and cured. It was found that optimum concentration of zinc nitrate (2_gm) resulted in producing ZnO NPs with average size 359 119 nm. ZnO NPs leaded to good UPF values after 15 washes (17.6)? and Durable antibacterial activity of 120 cotton fabric after 20 washes. 121

Another team of researchers [16] also synthesized ZnO NPs in situ to provide durable 122 multifunctional finishing to cotton fabrics. The difference in this research was represented in using 123 124 sodium hydroxide (-instead of HMTETA) as reducing agent which is cheaper and more available 125 material .The precursors (-zinc nitrate and sodium hydroxide-) were applied to cotton samples by spraying and dipping processes. SEM images showed that dipping method was better than spraying 126 method as it resulted in smaller size of ZnO NPs (<100_nm) and 3 times more uptake of NPs that 127 caused finishing to be effective and more durable-. Dipping process included excellent and durable 128 antibacterial activity after 50 washes against both S.aures and K.pneumonia bacteria besides higher 129 UPF values (890) after 50 washes (450). 130

131 Previous researches in single application of ZnO NPs are summarized in Table 3.

132

Table 3

133 It is obvious that the application method of ZnO NPs made by Prasa and his team is better than

134 the other procedures because of using more available and less expensive reducing agent, in situ

135 synthesis of ZnO NPs which saved (time <u>and money</u>), <u>Producing producing smaller size of ZnO NPs</u> and <u>Providingproviding</u>

136 higher UPF values and more durable effect after 50 washes.

137 Application of ZnO NPs in Combination with Other Materials

Formatted: Highlight

Formatted: Highlight

138 ZnO NPs with Natural Materials

- 139 ZnO NPs could be used [17] in combination with carboxy methyl chitosan to provide antibacterial and
- 140 UV protection for cotton fabric. ZnO/-carboxymethyl chitosan composite was made by stirring a
- 141 mixture of (caroxymethyl chitosan and zinc sulfate) at different temperatures. Different
- 142 concentrations of ZnO/-carboxymethyl chitosan composite was applied to cotton fabrics by <u>Paddingpadding</u>
- 143 and cured at different temperatures. It was found that <u>Preparation-preparation</u> of ZnO/-CMCTS bionano composite
- 144 at 50°C resulted in smaller size of NPs (-28 nm for ZnO NPs and 100 nm for CMCTS). Higher
- 145 concentration of ZnO/CMCTS nano-composite leaded to <u>increasing_increase_</u>antibacterial activity against both
- 146 S.aureus and E.coli bacteria-. Increasing curing temperature to 160°C resulted in slight increasing in
- 147 UPF values.
- 148 A simpler and more eco-friendly method [18] could be applied by using only chitosan with ZnO
- 149 nanoparticles to provide multifunctional finishing to cotton fabric. In order to determine optimum
- 150 conditions, different concentrations of ZnO in preparation of chitosan/-ZnO NPs and different
- 151 temperatures were used. The resulted chitosan/-ZnO NPs were applied to cotton fabric by Pad -dry-
- 152 cure method. Treated cotton fabric samples with higher concentrations of chitosan/-ZnO nanoparticles
- 153 Showed_showed_comparatively higher UPF values (8.3) and antibacterial activity.
- 154 The previous two researches provided green application methods by using natural materials with
- 155 ZnO NPs to provide multifunctional finished cotton fabrics-. Cons and pros of each process are shown
- 156 in Table 4.
- 157 Table 4
- 158 Application method made by Abdelhady is better than the other method as it provided simpler,
- 159 more environmental friendly method and higher UPF values.

160 Application of ZnO NPs with Synthetic Materials

- 161 ZnO NPs had been combined [19]-with sodium hypophosphite (SHP) and polycarboxylic acids to
- 162 provide multifunctional finishing to cotton and cotton /polyester (56/35%) fabrics [19]. ZnO NPs were
- 163 prepared by sol-gel method using Zinc acetate as precursor and lithium hydroxide-._To investigate

- 164 finishing effect different (concentrations of ZnO NPs and SHP-, types of polycarboxylic acid Formatted: Highlight
- 165 butantetracarboxylic acid (BTCA) or succinic acid (SA), Curing temperatures-) were used. Cotton and

- 166 cotton/ polyester fabrics were padded in (BTCA) or (SA) and SHP, dried and cured at different
- 167 temperatures then ZnO NPs were applied to fabrics by Pad-dry-cure method. The average size of
- 168 resulted ZnO NPs was 30 nm. It was found that using of BTCA with 160°C as a curing temperature
- 169 leaded to increasing_increase_(CRA values , roughness and yellowness) than using of SA-. Increasing curing
- 170 temperature to 180°C resulted in increasing (CRA values-, roughness and yellowness) in fabrics
- 171 treated with BTCA or SA-.<u>using-Using</u> of BTCA increased flame retardant action for both cotton and
- 172 CO/PET fabric in the presence of 6% SHP after two washes-. Using of BTCA or SA with 6% SHP and
- 173 5% ZnO NPs leaded to higher UPF values (for cotton fabric 60 for cotton-/polyester fabric 57);).
- 174 Improving flame retardant action for both cotton and CO/PET fabrics-. Adding ZnO NPs caused slight
- 175 increasing in roughness and yellowness of treated fabrics especially at higher concentration.
- 176 Another work [20] used Cu₂O NPs in combination with ZnO NPs to improve the UV protection of
- 177 cotton fabrics. They added folic acid during in-situ Synthesis of Cu₂O/-ZnO NPs and investigated its
- 178 effect. It was found that <u>Using-using_Cu₂O/-ZnO NPs</u> resulted in more UV protection for cotton fabrics than
- the single application of each (87.31% protection against UV radiation). Cu₂O/-ZnO NPs caused slight
 increasing in thickness, decreasing CRA values and hydrophilicity of cotton fabric. Adding folic acid
 resulted in smaller size of Cu₂O/-ZnO NPs (48_nm) and increasing UV protection, hydrophilicity,
 thickness, wash fastness, anti-wrinkle property and improving the handle of cotton fabrics
 Cons and Pros of ZnO NPs application with synthetic materials are summarized in Table 5
- 184

Table 5

185 Application of ZnO NPs after Plasma Treatment

A method [21] has been developed to increase the adsorption rate of ZnO NPs at lower concentrations by treating cotton fabrics with tetrafluoromethane and water plasma. The effect of plasma was investigated by treating cotton fabrics with moist CF4 plasma for 10, 20 and 30 s and H₂O plasma for 10 s. ZnO NPs were applied to cotton fabrics (treated and untreated) by Pad-dry-cure method. It was found that the optimum CF4 plasma treatment time (10 S₅) indicated rougher surface of cotton fabrics which resulted in higher adsorption of ZnO NPs and great increasing in hydrophilic activity and UPF values of cotton fabric from 4.12 to 58.89, but UPF values decreased dramatically after 10 washes 7

193 from (58.89 to 4.58).

194	ZnO NPs and carboxymethyl chitosan_(CMCS) have been used [22] to provide multifunctional	
195	finishing for plasma pretreated cotton fabric. Cotton fabrics were treated by O_2 plasma for 2 min at	
196	200 W. Different concentrations of ZnO/CMCS composite were applied to cotton fabric by Pad-dry-	
197	cure method. It was found that plasma treatment provided rougher surface and more deposition of	
198	ZnO/CMCS NPs on cotton fabrics. Plasma treatment with higher concentration of ZnO/CMCS NPs	
199	resulted in more deposition of ZnO/CMCS NPs on the fabric, very good UPF values-, durable	
200	antibacterial activity even after 30 washes and improving thermal properties of cotton fabrics.	
201	Cons and Pros of ZnO NPs application after plasma treatment are summarized in Table 6	
202	Table 6	
203		
204	TiO ₂ Nanoparticles in textiles UV protection	
205	TiO ₂ properties	
206	TiO_2 is an inorganic material which belongs to transition metal oxidesTiO_2 particles in nano form	
207	are used in many fields of textile industry especially in protection against ultra violet radiation [23]	
208	due to their properties (lower cost, chemically stable, non-toxicity-, photocatalytic activity and longer	
209	durability) [24].	
210	TiO ₂ NPs synthesis	
211	There are many methods to prepare TiO_2 NPs [25] by chemical [25] or green precursors [26, 27] as	
212	shown in Figure 3.	
213	Figure 3	
214	Chemical Synthesis	
215	Sol Gel Method	
216	A group of researchers [28] used sol gel method to prepare TiO_2 NPs to produce durable	
217	multifunctional finishing to cotton fabrics. Titanium Tetrachloride was used as a precursor, dissolved	
218	in water with polyvinyl pyrrolidone (as a stabilizing agent) and reduced by gradual addition of	
219	borohybride. The resulted TiO2 NPs were applied with different concentrations to cotton fabrics using	
220	Pad-dry-cure method. It was found that resulted TiO_2 NPs had smaller size (5-10 nm) and higher	
221	purity, stability and dispersion ability. Higher concentrations of TiO2 NPs leaded to higher UPF	

values (40) and increasing antibacterial activity againt against S. aureus and K.pneumoniae bacteria after 20

223 washes.

- $224~{\rm TiO_2}$ NPs had been prepared [29] by sol gel method. A solution of trisodium citrate was added
- 225 gradually to bulk TiO₂ at room temperature with no need to calcination process. The resulted TiO₂ NPs
- 226 had an average size (37 nm), higher absorbance of UV radiation and higher thermal stability (remains
- 227 after 700°C was about 67%).

228 Hydrothermal Method

- TiO₂ NPs had been prepared [27] by both hydrothermal and sol gel method [27]. In hydrothermal method,
 230
- sodium hydroxide was added to titanium tetrachloride and the mixture was stirred dried at 450°C. In
- 231 sol gel method, they used Titanium isopropoxide (TTIP) as a precursor. TTIP was dissolved in
- ethanol and the mixture was stirred and dried. It was found that TiO2 NPs resulted from hydrothermal

233 method had an average size (about 17 nm), higher absorbance of UV radiation at the wavelength of

- 234 362 nm. The TiO_2 NPs resulted from sol gel method had an average size (about 7 nm) and great
- absorbance of UV radiation at the wavelength of 351 nm and higher band-gap value about 3.5 eV.
- 236 TiO₂ NPs had been synthesized [30] by hydrothermal method using ilmenite in the form of synthetic
- rutile as a precursor. Sodium hydroxide was mixed with synthetic rutile at 550° C. The resulted TiO₂
- 238 NPs had smaller size (15.6 nm), higher absorbance of UV radiation and lower band-gap (3.23 <u>eV</u>) than
- 239 commercial TiO₂ NPs .
- 240 The results of all previous researches about chemical synthesis of TiO₂ NPs are summarized in
- 241 Table 7. From the results it is obvious that sol gel method provided more UV protection and smaller
- 242 size of TiO₂ NPs. The experiment made by Gouda and his team <u>et al., [?]</u> produced Smaller size of TiO₂ NPs,
- 243 excellent and durable UV protection, simple and energy saving process.

244

Table 7

- 245 Green Synthesis
- 246 Green synthesis of TiO₂ NPs depends on using natural materials and it is far better than chemical
- synthesis of TiO_2 NPs as it depends on less hazardous chemicals and produces ecofriendly finishes.

Formatted: Highlight
Formatted: Font: Italic

- 248 TiO₂ NPs had been prepared [31]by ecofriendly and low cost method using Aspergillus tubingensis
- soil fungi <u>[31]</u>. Salt solution of TiO_2 was added to the soil fungi to obtain nano TiO_2 . It was found that the

250 size of resulted TiO₂ NPs ranged from (1.5 to 5.9 nm). The resulted TiO₂ NPs showed an absorbance

of UV radiation within the range (300__350 nm).

- 252 TiO₂ NPs had been synthesized $\frac{321}{221}$ by using leaf extracts of medicinal plant Ageratina altissima and
- 253 tested the photocatalytic activity of resulted NPs [32]. The resulted TiO₂ NPs had an average size (60-100
- 254 nm), higher absorbance of UV radiation at 332 nm and caused dyes degradation (86.79 %) of
- 255 methylene blue, (76.32 %) of alizarin red, (77.59 %) of crystal violet, and (69.06 %) of methyl
- 256 orange.
- 257 The results of green synthesis of TiO_2 NPs are summarized in Table 8. From the results,
- 258 method made by Tarafdar and his team <u>et al.</u> [?] provides better green synthesis of TiO₂ NPs as it included
- smaller size of TiO_2 NPs (1.5 5.9) nm and wider range of UV absorbance (300–350 nm)
- 260 Table 8

261 TiO₂ NPs Application to Provide Textiles UV Protection

262 TiO₂ NPs can be applied to different types of treated or untreated fabrics individually or with

Figure 4

- 263 other materials to enhance UV protection and provide multifunctional finishing to fabrics Figure 4.
- 264

265 Application of TiO₂ NPs without treatment

266 Single Application of TiO₂ NPs

- A group of researchers [33] investigated UV protection effect of TiO₂ NPs on five samples (pure
- 268 lyocell, (80/20-60/40-50/50) % lyocell silk blends and pure silk) properties. It was found that TiO₂
- 269 NPs caused durable UV protection especially for pure lyocell fabric even after 25 washes, __Improving
- 270 in anti-wrinkle property and decreasing in air permeability, tensile strength and absorbency of treated
- 271 fabrics.
- Finishing with TiO_2 NPs and dyeing of wool fabric had been applied [34] at the same time by hydrothermal process. Different concentrations of reactive blue 69 and acetic acid were used to
- 274 investigate the optimum concentration. Finished and dyed samples were compared to only dyed ones.
- 275 . It was found that resulted TiO_2 NPs had uniform distribution and size < 10 nm. Increasing the
- 276 concentration of acetic acid with 1% dye caused both exhaustion rate and K/S values to increase. The

Formatted: Font: Italic

- 277 addition of TiO_2 NPs resulted in higher photocatalytic activity (5_h of exposure to UV radiation leaded
- 278 to 93% degradation of methylene blue) and slight decreasing in breaking stress (8.6%), elongation
- 279 rate (7.8%) and thermal stability.
- 280 The antibacterial activity and UV protection effect of TiO2 NPs on cotton fabric [35] had been
- 281 investigated, but used urea nitrate (UN) in $\frac{\text{in}-\text{in}-\text{situ}}{\text{and}}$ synthesis of TiO₂ NPs as a nitric acid source and
- 282 investigate its effect. It was found that higher concentration of (UN) leaded to smaller size of TiO_2
- 283 NPs (<50 nm), very good UPF value (29.69) after 15 washes-, excellent antibacterial activity after 20
- 284 washes against S. aureus and E. coli bacteria besides decreasing in elongation rate and tensile strength
- 285 of treated fabric.
- All previous researches included single application of TiO₂ NPs to provide UV protection for different types of fabrics. Cons and pros of each process are summarized in Table 9.
- 288

polyester fabrics indicated:

Table 9

- 289 Application of TiO₂NPs in Combination with Other Materials
- 290 Sodium hypophosphite (SHP) and citric acid (CA) had been used with TiO2 NPs to provide
- 291 multifunctional finishing for cotton-/polyester fabric [36]. Different concentrations of CA, SHP and
- 292 TiO₂ NPs were used to determine optimum finishing conditions. It was found that using optimum
- 293 concentrations of CA (30_gm/l) with (SHP)(18_gm/l) and TiO2 NPs (0.5_gm/l) resulted in higher flame
- 294 retardancy effect, lower pilling formation, <u>Improving improving</u> antibacterial activity against S.aureus bacteria
- 295 and <u>Increasing increasing hydrophilicity</u>, photocatalytic activity, self-cleaning property and wash fastness of
- 296 treated fabrics. Also, optimum conditions leaded to slight decreasing in tensile strength but after
- 297 exposure to UV radiation there was an improvement in fabrics tensile strength due to the effect of TiO_2
- 298 NPs.

303

- Ag NPs used in combination with TiO₂ NPs to provide multifunctional finishing to Polyester Fabrics_[37]. TiO₂ colloidal solution was applied to polyester fabrics by Pad—dry-cure method, then
- 301 the fabrics were padded in (-alanine silver nitrate methyl alcohol) mixture-, rinsed and dried-.
- 302 FESEM analysis showed uniform distribution of TiO2/-Ag NPs on polyester fabrics. Treated

304 ·	Е	xcellent	antimicrobial	activity	against	both	E.coli	and	S.aureus	bacterium	besides	C.albicans
-------	---	----------	---------------	----------	---------	------	--------	-----	----------	-----------	---------	------------

fungus (reduction rate of the bacteria reached to 99.9% even after 10 washes).

- Higher UPF values (92.35) but after 10 washes UPF values decreased to (53.52).
- 307 . Release of Ag NPs in first 3 washes and in artificial sweat especially alkaline sweat308 conditions.
- 309 Another team of researchers [38] also used Ag NPs with TiO₂ NPs but they produced more
- 310 durable finishing to cotton fabric. TiO₂ NPs were applied to cotton fabrics with two different
- 311 concentrations by hydrothermal treatment. Ag NPs were in-in-situ synthesized in cotton fabrics using
- 312 different concentrations Ag No₃. It was found that higher concentrations of Ag and TiO_2 NPs leaded
- 313 to very good and durable antibacterial activity against both E. coli and S. aureus and Increasing_increasing_in
- 314 UPF values (from 3 to 56.39). Only slight decreasing of UPF values after 50 washes was detected.
- 315 Previous researches included application of combined TiO_2 NPs with other materials on untreated
- 316 fabrics to provide durable multifunctional finishing. The advantages and disadvantages of each
- 317 process are shown in Table 10.
- 318

Table 10

319 Application of TiO₂ NPs after Fabric Treatment

- 320 Application of TiO₂ NPs after different treatment processes on fabrics improved UV protection
- 321 and other functions due to the increasing affinity of treated fabric for finishing agents.
- 322 TiO₂ NPs had been applied [39]_on cellulose acetate fabric (CA) after treatment with H₂O₂ in
- 323 ultrasonic bath. (CA) samples were padded in different concentrations of TiO₂ NPs, dried and cured in
- 324 microwave oven at different conditions .It was found that using optimum conditions (Ultrasonic
- treatment -0.75 % TiO₂ NPs-microwave curing at 90% for 15 seconds) leaded to:
- 326 Increasing whiteness and slight decreasing in Roughness roughness and tensile strength of fabric.
- 327 Higher absorbance of UV radiation and higher self-cleaning effect (87% degradation of coffee
- 328 stain).
- 329 TiO_2 NPs on polyester fabric after oxygen gas plasma treatment had been applied and its effect on
- 330 fabric properties and adsorption rate of TiO₂ NPs had been investigated. It was found that treatment

- with Plasma before TiO₂ NPs application leaded to more uniform distribution of TiO₂ NPs on fabric
 surface, higher self-cleaning property and higher UV protection (decreasing in the percentages of UV
 Reflectance) even after 10 washes.
- Polyester cotton (80:20) blended curtains pretreated with cold plasma before the application of TiO_2 334 335 and SiO₂ NPs [41]. The effect of plasma was investigated by treatment of fabrics with cold plasma for 336 different periods of time before the application of TiO2 and SiO2 NPs. It was found that plasma treatment for 6 minutes before the application of NPs leaded to more deposition of NPs on the fabric 337 338 surface-, increasing UPF value from (8.51 to 40.24), improving antibacterial activity against S. aureus 339 and E. coli bacteria, increasing antistatic property and good adhesion of NPs in the fabric surface after 340 50 washes of the fabric. Also, slight decreasing in elongation, tensile strength and air permeability of 341 treated fabric was detected.
- 342 Polyester (PET) and polypropylene (PP) fabrics pretreated with Dielectric-barrier discharge (DBD)
- 343 plasma before the application of TiO₂, Al₂O₃ and ZnO NPs to provide enhanced finishing to the fabric
- 344 [42]. Different concentrations of Al₂O₃, ZnO and TiO₂ NPs were applied separately to fabrics by Pad-
- 345 dry-cure method for comparing their effect on treated fabrics. It was found that In PET fabric:
- 346 Plasma pretreatment had no significant effect on the fabric.
- 347 The fabric indicated excellent UPF values with higher concentration of TiO_2 NPs (156.90).
- Higher concentration of ZnO NPs also leaded to excellent UPF value (82.98) more than Al₂O₃
 NPs (36.76).
- 350 ZnO NPs showed more antibacterial activity against S. aureus and K. pneumonia bacteria
- 351 TiO₂ NPs had no antibacterial effect against both types of bacteria, while Al₂O₃ NPs had only
- 352 slight effect against K. pneumonia bacteria (reduction percentage 6.5%).
- 353 In PP fabric plasma treatment before the application of NPs leaded to:
- 354 More uniform distribution of NPs on the surface of the fabric.
- Improving UV protection of treated fabric (increasing UPF values from 2.4 to 38.1 with ZnO
 NPs and to 17.9 with TiO₂ NPs)

357 All of the previous researches included fabric pretreatment to provide more absorbance of NPs 358 and improve UV protection effect, but that had slight effect on fabric properties. Advantages and 359 disadvantages are summarized in Table 11.

360

Table 11

361 Conclusions:

This review indicates the great importance of ZnO and TiO₂ NPs as textile protective agents 362 against UV radiation. Different synthesis methods (chemical -green) of ZnO and TiO2 NPs are 363 compared to find out which is better method. In chemical synthesis of ZnO NPs it is found that 364 365 hydrothermal method is better than sol gel method as it provides smaller size of NPs and higher absorbance of UV radiation. On the contrary, in TiO2 NPs synthesis sol gel method include better 366 results than hydrothermal method. Green method in both ZnO and TiO₂ NPs is better than chemical 367 synthesis method as it includes natural precursor which provides more eco-friendly synthesis. 368 Moreover, Advantages and disadvantages of the application of ZnO NPs on treated and untreated 369 fabrics individually or with natural materials (chitosan - carboxymethyl chitosan) or synthetic 370 371 materials (UV absorber - sodium hypophosphite - CU₂O NPs- Ag NPs) are discussed. Also, 372 advantages and disadvantages of TiO2 NPs application on textiles without or with treatment to 373 individually or with other materials are concluded. Main disadvantages in ZnO and TiO2 NPs 374 application concern to insufficient finishing durability tests and negative effects on fabric properties 375 which must be fixed in future researches to meet the functional demands.

376 References

- 377 1. A.Abdel Ghani, W. Qorshi, and E. El-Sayd, Int. Design J., 4, 104 (2015).
- 2. M. Akgun, B.Becerir, and H. Alpay, Int. Scientific Conference, 2, 301 (2010).
- 379 3. N. Ibrahim, E.El-Zairy, W. Abdalla, and H. Khalil, Carbohydr. Polym .,92, 1386 (2013).
- 380 4. Y. Wong, C. Yuen, and M. Leung, Autex .Res. J., 6, 2 (2006).
- 381 5. Y.Wu, Y.Chi, J. Nie, X. Yu, A. Chen, and H.Gu, J. Funct. Polym., 15, 43(2005).
- 382 6. P. Uiky, and K.Vishwakarma, Int. J. Emerging Technol. Comput. Sci., 21, 239 (2016).

- 383 7. D.Osman, and M.Mustafa, J. Nanosci. Nanotechnol., 1, 248 (2015).
- 384 8. A. Farouk, T. Textor, E. Schollmeyer, A. Tarbuk, and A.Grancacic, Autex .Res. J., 10, 58(2010).
- 385 9. M. Conde, K. Dakhsi , H. Zouihri , K. Abdelouahdi , L. Laanab, M. Benaissa , and B. Jaber, J.
- 386 Mater. Sci. Eng., 1 985(2011).
- 387 10. S. Kathirvelu , L.Souza , and B.Dhurai, Indian .J .Fibre. Text, 34, 267(2009).
- 388 11. P. Taunk, R. Das, D. Bisen, and R.Tamrakar, J. Radiat. Res. Appl. Sci., 8, 433(2015).
- 389 12. M. Thirumavalavan, K.Huang, and J.Lee , Mater. J., 6, 4198 (2013).
- 390 13. P. Ramesh, A. Rajendran1, and A. Subramanian, Asian. J. Phytomed. Clin. Res., 2, 189 (2014).
- 391 14. E. Varghese, and M. George , Int. J. Adv. Res. Sci. Eng., 4, 307(2015).
- 15. T. Shaheen, M. El-Naggar, A. Abdelgawad, and A. Hebeish, *Int. J. Biol. Macromol.*, 83, 426(2016).
- 16. V.Prasad, A.Arputharaj, A.Bharimalla, P.Patil, and N.Vigneshwaran, *Appl. Surf. Sci.*, **390**, 936
 (2016).
- 396 17. A.El.Shafei, and A.Abou-Okeil, Carbohydr. Polym., 83, 920 (2011).
- 397 18. M.Abdelhady , Carbohydr. Chem., 2012, 1(2012).
- 398 19. M.Abdelhady, A.Farouk, and S.Sharaf, Carbohydr. Polym., 92, 400(2013).
- 399 20. S. Noorian, N. Hemmatinejad, and A. Bashari, Photochem. Photobiol., 91, 510 (2015).
- 400 21. M. Gorjanc , K. Jazbec , M. Sala , R. Zaplotnik , A. Vesel ,and M. Mozetic, , *Cellulose*, 21 ,
 401 3007(2014)
- 402 22. C.Wang , J.LV, Y.Ren , Q.Zhou , J.Chen , T.Zhi , Z.Lu, D.Gao , Z.Ma , and L.Jin , Carbohydr.
- 403 Polym., 138, 106 (2016).
- 404 23. G. Mital , and T. Manoj , Chinese Sci. Bull., 56, 1640 (2011).

- 405 24. S.Chaudhari , A. Mandot ,and B. Patel, Int. J. Eng. Res. Dev., 56, 24 (2012).
- 406 25. Z. Liu, R. Wang, F. Kan, and F. Jiang, Asian J. Chem., 26, 655(2014).
- 407 26. P.Purkait, S. Maitrab, S. Mandal, S. Bhunia, G. Das, and M. Chaudhuri, *Sci. Voyage*, 1, 28
 408 (2015).
- 409 27. R. Vijayalakshmi, and V. Rajendran, Arch. Appl. Sci. Res. 4, 1183 (2012).
- 410 28. M. Gouda, and A.Aljaafari, Adv. NPs, 1, 29 (2012).
- 411 29. M. Hema, A. Arasi, P. Tamilselvi, and R. Anbarasan, Chem. Sci. Trans., 2, 239 (2013).
- 412 30. E. Mahdi, M. Hamdi, M. Yusoff, and P. Wilfred, J.Nano.R, 2, 71 (2013).
- 413 31. A. Tarafdar, R. Raliya, W.Wang, P. Biswas, and J. Tarafdar, Adv. Sci. Eng. Med., 5, 1 (2013).
- 414 32. S. Ganesan, I. Babu, D. Mahendran, P. Arulselvi, N. Elangovan, N. Geetha, and P.
- 415 Venkatachalam, Ann. Phytomed., 5, 69 (2016).
- 416 33. M.Adnan, and J.Moses, J. Tex. App. Tech. mangmt., 8, 1 (2013).
- 417 34. H. Zhang, H. Yan, and N. Mao, Ind. Eng. Chem. Res., 53, 2030 (2014).
- 35. M. El-Naggar, T. Shaheen, S. Zaghloul, M. El-Rafie, and A. Hebeish, *Ind. Eng. Chem. Res.*, 55, 2661 (2016).
- 420 36. S.Hashemikia, and M. Montazer, Appl. Catal. A., 417-418, 200 (2012).
- 37. M. Milosevic, M. Radoicic, Z. Saponjic, T. Nunney, D. Markovic, J. Nedeljkovic, and M.
 Radetic, J. Mater. Sci., 48, 5447 (2013).
- 423 38. S.Li, T. Zhu, j. Huang , Q.Guo, G.Chen, and Y. Lai, Int. J. Nanomedicine, 12, 2593 (2017).
- 424 39. M. Ramadan, W. Raslan, E. El-Khatib, and A. Hebeish, , Mater. Sci. Appl., 3, 872 (2012).
- 425 40. S. Hashemizad, A. Haji, and S.Mireshghi, J. Biodiv. Env. Sci., 5, 220 (2014).
- 426 41. H. Memon, and N. Kumari, Surf. Rev. Lett., 23, 1 (2016).

42. S. Gawish, A. Ramadan, G. Sayed, and A. Hussien, Int. J. Pharm. Sci. Rev. Res., 42, 239 (2017). 427

428

Tables

429

Table 1. Comparison between chemical methods of ZnO NPs synthesis

Chemical	precursors	Optimum Size	UV Protection effect	Reference
methods		(nm)		
Sol gel	Zinc acetate -	30-60 <u>nm</u>	Higher UPF value for	Farouk et al <mark>.,(2010)</mark>
method	Lithium		cotton (177)	1
	hydroxide		Higher UPF value for	
			CO/ PET (48)	
Sol gel	Zinc acetate -	58 nm	Absorption in UV	Conde et al., (2011)[
method	Sodium		region (380 nm).	
	hydroxide			
Hydrothermal	Zinc chloride -	9 nm	UPF of cotton against	Kathirvelu et al.,
method	1-2ethanediol		UVA (8.45)	(2009)[1
	Sodium		UPF against	
	hydroxide		UVB(10.29)	
			UPF of CO/ PET	
			against UVA (11.80)	
			UPF against	
			UVB(16.20)	
Hydrothermal	Zinc chloride -	7 nm	Absorption in the UV	Taunk et al., (2015)
method	Tri		region (235-407 nm)	
	ethanolamine -			
	Sodium			
	hydroxide			
				430

Precursors	Optimum Size	UV Protection effect	Reference
	(nm)		
Zinc nitrate -	19-54 nm N	lo tests for UV protection	Thirumavalavan et al.,
Modified chitosan		effect.	(2013)
Zinc nitrate -	9-10 nm	absorption in UV region	Ramesh et al., (2014)
Extract of Citrus		(208-400 nm).	
aurantifolia leaves			
Zinc acetate -	22.18 mm	absorption in UV region	Varghese et al., (2015)
Sodium		(340-400_nm).	
hydroxide-			
extract of Aloe Vera			
leaves			
leaves			432
	parison between single a	pplications of ZnO NPs on	
	barison between single a	pplications of ZnO NPs on UV Protection effe	cotton fabric. 433
Table 3. Com		UV Protection effe	cotton fabric. 433 ct Reference
Table 3. Comp Precursors	Size (nm)	UV Protection effe	cotton fabric. 433 ct Reference
Table 3. Comp Precursors	Size (nm) The used ZnO NPs s	UV Protection effe	cotton fabric. 433 ct Reference es Abdel Ghani et al.,
Table 3. Comp Precursors	Size (nm) The used ZnO NPs s	UV Protection effe size Increasing UPF value from (27.22) to (711.44)	cotton fabric. 433 ct Reference rs Abdel Ghani et al., (2015)[_]
Table 3. Comp Precursors -	Size (nm) The used ZnO NPs of < 35 nm	UV Protection effe size Increasing UPF value from (27.22) to (711.44)	cotton fabric. 433 ct Reference rs Abdel Ghani et al., (2015)[_]
Table 3. Comp Precursors - Zinc nitrate +	Size (nm) The used ZnO NPs s < 35 nm Resulted ZnO NPs s	UV Protection effe size Increasing UPF value from (27.22) to (711.44) size UPF value (22.8) afte 15 washes (17.6)	cotton fabric. 433 ct Reference rs Abdel Ghani et al., (2015)[_] er Shaheen et al ., (2015)[_] er Shaheen et al ., (2015)[_] 50 Prasa et al ., (2016)
Table 3. Comp Precursors - - Zinc nitrate + (HMTETA)	Size (nm) The used ZnO NPs s < 35 nm Resulted ZnO NPs s =359 nm	UV Protection effe size Increasing UPF value from (27.22) to (711.44) size UPF value (22.8) afte 15 washes (17.6)	cotton fabric. 433 ct Reference rs Abdel Ghani et al., (2015)[_] er Shaheen et al ., (2015)[_]]

Table 4. Cons and Pros of ZnO NPs application with natural materials.
 435

Natural material	Advantages	Disadvantages	Reference
Carboxymethyl	-Smaller size of nano	-More chemical content for	El.Shafei and Abou-
chitosan	particles.	carboxymethylation of	Okeil, (2011) [_].
	- Higher antibacterial	chitosan.	
	activity against both gram	-No tests for finishing	
	positive and gram	durability.	
	negative bacteria.		
	-Improving UV protection		
	(7.6).		
Chitosan	-Ecofriendly method only	-Comparatively larger size of	Abdelhady, (2012).[
	included chitosan in its	chitosan/ ZnO NPs (300_nm).	
	simplest form.	-No tests for finishing	
	- Higher UPF values	durability.	
	(8.3).		
	- Moderate antibacterial		
	activity against both gram		
	positive and gram		
	negative bacteria.		
			437

 Table 5. Cons and Pros of ZnO NPs application with synthetic materials
 438

Synthetic material	Advantages	Disadvantages	Reference
Sodium hypophosphite-	- Polycarboxylic acids are	-Iincluding durability	Abdelhady et al.,
Polycarboxylic acids	environmental friendly materials.	tests for only 2 washes.	(2013) [_]
	- Smaller size of resulted ZnO	-Using BTCA leaded to	
	NPs.	increase flame retardant	
	- Producing multifunctional	action but it caused	

	finishing to cotton and CO/PET	increasing roughness	
	fabric.	and yellowness of	
	- Discussing the effect of ZnO	treated fabric .	
	NPs, SHP and Curing temp .	- Increasing	
	-Improving flame retardancy of	concentration of ZnO	
	cotton and CO/PET fabric.	NPs resulted in higher	
	-Higher UPF values for cotton and	UPF values but it caused	
	CO /PET fabric.	increasing in yellowness	
	-Increasing CRA values of treated	and roughness	
	fabrics.	of treated fabric.	
CU ₂ O NPs	-Synthesis of CU ₂ O/ ZnO NPs in-	- Durability tests were	Noorian et al.,
	situ provided more durable	carried out after only	(2015) [_]
	finishing.	5 washing cycles.	
	-Adding folic acid as a bio	- Slight increase in	
	template during in-situ synthesis	cotton fabric thickness.	
	of CU ₂ O/ ZnO NPs provided		
	greener , more effective method to		
	improve UV protection.		
	-Providing UV protection with		
	improving physical properties of		
	cotton fabric.		

Table 6. Cons and Pros of ZnO NPs application after plasma tr	eatment. 440
Tuble of constant free of End for supplication when plasma a	

Plasma treatment	Advantages	Disadvantages	Reference
CF4 and H ₂ O plasma.	- Using lower concentrations of	- Decreasing in wash	Gorjanc et al.,
	ZnO NPs which provide	fastness (UPF values	(2014) [_]

441

which resulted values . - Increasing hy cotton fabrics. O ₂ plasma -Green method material (carbo chitosan). -Higher adsorp ZnO/CMCS N treatment . - Providing mu finishing (antil protection fini fabric - Including du washes. - Producing du and UV protect 30 washes. - Improvement	and	decrease from 58.89 to	
which resulted values . - Increasing hy cotton fabrics. O ₂ plasma -Green method material (carbo chitosan). -Higher adsorp ZnO/CMCS N treatment . - Providing mu finishing (antil protection fini fabric - Including du washes. - Producing du and UV protect 30 washes. - Improvement	nprovement.	4.58 only after 10	
values . - Increasing hy cotton fabrics. O ₂ plasma -Green method material (carbo chitosan). -Higher adsorp ZnO/CMCS N treatment . - Providing mu finishing (antil protection fini fabric - Including du washes. - Producing du and UV protect 30 washes. - Improvement	ption of ZnO NPs	washes).	
 Increasing hy cotton fabrics. O₂ plasma -Green method material (carbo chitosan). -Higher adsorp ZnO/CMCS N treatment . Providing mu finishing (antil protection fini fabric Including du washes. Producing du and UV protection 30 washes. Improvement 	l in higher UPF		
cotton fabrics. O ₂ plasma -Green method material (carbo chitosan). -Higher adsorp ZnO/CMCS N treatment . - Providing mu finishing (antil protection fini fabric - Including du washes. - Producing du and UV protect 30 washes. - Improvement			
O2 plasma -Green method material (carbo chitosan). -Higher adsorp ZnO/CMCS N Treatment . - Providing method finishing (antil protection fini fabric - Including du washes. - Producing du and UV protection 30 washes. - Improvement - Improvement	ydrophilicity of		
material (carbo chitosan). -Higher adsorp ZnO/CMCS N treatment . - Providing mu finishing (antil protection fini fabric - Including du washes. - Producing du and UV protec 30 washes. - Improvement			
chitosan). -Higher adsorp ZnO/CMCS N treatment . - Providing mu finishing (antil protection fini fabric - Including du washes. - Producing du and UV protect 30 washes. - Improvement	d using natural	-	Wang et al.,
-Higher adsorp ZnO/CMCS N treatment . - Providing mu finishing (antil protection fini fabric - Including du washes. - Producing du and UV protec 30 washes. - Improvement	oxymethyl		(2016) [
ZnO/CMCS N treatment . - Providing mu finishing (antil protection fini fabric - Including du washes. - Producing du and UV protect 30 washes. - Improvement			1
treatment . - Providing mu finishing (antil protection fini fabric - Including du washes. - Producing du and UV protect 30 washes. - Improvement	ption of		
 Providing mu finishing (antil protection fini fabric Including du washes. Producing du and UV protection 30 washes. Improvement 	IPs due to plasma		
finishing (antil protection fini fabric - Including du washes. - Producing du and UV protec 30 washes. - Improvement			
protection fini fabric - Including du washes. - Producing du and UV protec 30 washes. - Improvement	ultifunctional		
fabric - Including du washes. - Producing du and UV protec 30 washes. - Improvement	bacterial and UV		
 Including du washes. Producing du and UV protect 30 washes. Improvement 	shing)to cotton		
washes. - Producing du and UV protec 30 washes. - Improvement			
- Producing du and UV protec 30 washes. - Improvement	rable test after 30		
and UV protect 30 washes. - Improvement			
30 washes. - Improvement	urable antibacterial		
- Improvement	ction finishing after		
-			
	t in thermal		
properties of c	cotton fabric.		

Table 7. Comparison between chemical methods of TiO_2 NPs.

Chemical	Precursors	Optimum Size	UV Protection	Reference
methods		(nm)	effect	
Sol gel method	Titanium	5-10 nm	Higher UPF value	Gouda and
	tetrachloride – Poly		for cotton fabric	Aljaafari ,
	vinyl pyrrolidone-		after 20 washes	(2012) [_]
	Borohybride.		(40).	
Sol gel method	Bulk TiO2 -	37 nm	Absorption in UV	Hema et al.,
	trisodium citrate .		region at (408	(2013) [_]
			nm).	
Hydrothermal	Titanium	17 nm	Absorption of	Vijayalakshmi
Method	tetrachloride-		UV radiation at	and Rajendran
	Sodium		the wavelength	(2012) [_] .
	hydroxide		of 362 nm .	
Sol gel method	Titanium	7 nm	Absorption of	
	isopropoxide –		UV radiation at	
	Ethanol		the wavelength	
			of 351 nm.	
Hydrothermal	Synthetic rutile -	15.6 nm	Absorption of	Mahdi et al.,
method	Sodium		UV radiation at	(2013) [_]
	hydroxide		the wavelength	
			of 400 nm.	

Targeted fabric	Advantages	Disadvantages	Reference
Pure lyocell - (80/20-	-Investigating the effect of	- TiO ₂ NPs finishing	Adnan and
50/40-50/50)% lyocell	TiO_2 NPs on both pure and blend	caused negative	Moses, (2013) [
silk blends - Pure silk	fabrics.	effects on physical	T
fabrics	- Including durability tests for 25	properties of all treated	
	washes.	fabrics (decreasing in	
	Providing durable UV	air permeability, tensile	
	protection after 25 washes.	strength and absorbency)	
	-Improving in anti wrinkle		
	property of all treated fabrics.		
Wool fabrics	-Providing dyeing and finishing	- No tests for dyeing and	Zhang et al.,
	process at the same time which	finishing durability.	(2014)[_] .
	save money, time and effort.	- Negative effects on	
	- Investigating the optimum	physical properties of	
	concentrations of reactive dye	wool fabric (decreasing	
	and acetic acid.	in breaking stress,	
	- Producing smaller size of TiO_2	elongation rate and	
	NPs < 10 nm.	thermal stability).	
	- Improving photocatalytic		
	activity.		
Cotton fabrics	- In situ synthesis of TiO ₂ NPs	- Also, there was	El-Naggar et al.,
	which saved (time -effort-	negative effect	(2016) []
	money).	on physical properties of	
	- Investigating the effect of (UN)	cotton fabrics (Slight	
	as a peptizing agent used in TiO_2	decrease in elongation	
	NPs synthesis.	rate and tensile strength).	

Table 8. Cons and pros of TiO_2 NPs single application on different fabric types 447

Providing durable multifunctional
finishing to cotton fabrics.
- Producing Moderate size of TiO_2
NPs < 50nm.
- Including durability tests for 20
washes.
-Very good UPF values and
antibacterial activity after 20
washes.
- Increasing antibacterial activity
against both S.aureus and E. coli
bacteria.

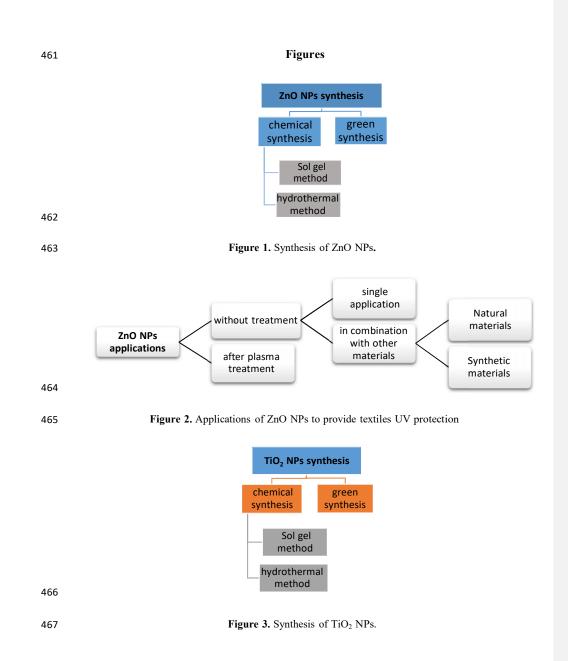
Table 9 comparison between green methods of TiO₂ NPs synthesis

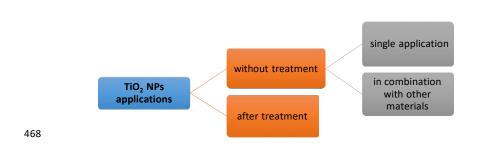
Precursors	Optimum Size	UV Protection effect	Reference	
	(nm)			
TiO ₂ salt-	1.5 - 5.9 -nm .	Absorbance of UV radiation	Tarafdar et al., (2013)	
Extract of Aspergillus		at the range (300–350 nm).		
tubingensis fungi .				
TiO(OH) ₄ - leaf	60-100 nm	Higher absorption of UV	Ganesan et al., (2016)	
extracts of		radiation at the wavelength		
Ageratina altissima		332_nm.		
plant .				

453

Table 10. Cons and Pros of TiO_2 NPs application with other materials.454

Applied material	Advantages	Disadvantages	Reference
Sodium hypophosphite -	-Providing multifunctional	- Antibacterial tests	Hashemikia and
Citric acid- TiO ₂ NPs .	finishing to fabric.	included only one type	Montazer,
	- Investigating The optimum	of bacteria.	(2012) [_].
	concentrations of CA, SHP	- Decreasing in fabric	
	and TiO_2 NPs .	tensile strength.	
	- Increasing flame retardancy and	- Including durability	
	anti pilling effect .	tests for only 10 washes.	
	- Improving antibacterial activity		
	against S.aureus bacteria .		
	- Increasing hydrophilicity and		
	self cleaning property .		
	- Improving tensile strength		
	- Including durability tests for 10		
	washes.		
Ag NPs - TiO ₂ NPs .	- Providing multifunctional	- Including durability	Milosevic et al.
	finishing to Polyester fabrics	tests for only 10 washes.	(2013) [_].
	- Higher antimicrobial activity	-Decreasing UPF values	
	aginst E.coli, S.aureus	after 10 washes.	
	bacteria and C.albicans fungus -	-Low fastness (for	
	Increasing UV protection of	washing and	
	treated fabrics .	perspiration) due to Ag	
	- Including durability tests for 10	NPs release.	
	washes.		


	- Durable antibacterial activity	
	after 10 washes.	
Ag NPs - TiO ₂ NPs.	- Providing multifunctional	Li et al., (2017) .
	finishing to cotton fabric.	
	- Investigating the effect of Ag	
	and TiO_2 NPs.	
	- Including hydrothermal	
	treatment for higher crosslinking.	
	- In situ synthesis of Ag NPs	
	which provided more durability.	
	- Providing excellent UV	
	protection and antibacterial	
	- Including durability tests for 50	
	washes.	
	- Durable UV protection and	
	antibacterial activity after 50	
	washes.	


Table 11. Cons and Pros of TiO_2 NPs application on treated fabrics.456

Treatment process	Advantages	Disadvantages	Reference
Treatment with H ₂ O ₂ in	- Using microwave curing after	- Decreasing in	Ramadan et al.,
ultrasonic bath.	the application of TiO ₂ NPs.	Roughness and tensile	(2012) [_].
	-Including investigation of the	strength of treated	
	optimum conditions (TiO ₂ NPs	fabrics.	
	concentration -microwave curing	- No tests for finishing	
	conditions).	durability were	

	-Providing multifunctional	included.	
	finishing to CA fabric .		
	- Improving UV protection		
	and self cleaning property of CA		
	fabric.		
	- Increasing the whiteness of		
	treated fabric.		
	- Decreasing in of CA fabric.		
Plasma and oxygen gas.	- Plasma pretreatment provided	- Including durability	Hashemizad et
	more uniform distribution of TiO_2	tests for only 10	al., (2014) [
	NPs on PET fabric.	washes.].
	- Providing enhanced		
	multifunctional finishing to PET		
	fabric.		
	- Including durability test .		
	- Providing higher UV absorbance		
	even after 10 washes.		
	- Improving self cleaning of		
	treated fabric.		
Cold plasma treatment	- Including investigation of the	- Negative effects on	Memon and
	optimum conditions of plasma	physical properties of	Kumari, (2016) [
	treatment.	polyester/ cotton blends	1.
	- Plasma treatment provided	fabric (decreasing in	
	higher deposition of NPs on the	elongation, tensile	
	fabric surface.	strength and air	
	- Providing improved	permeability).	
	multifunctional finishing to	- No tests for UPF	

	polyester cotton blended fabric.	values, antibacterial	
	- Improving UV protection,	and antistatic property	
	antistatic and antibacterial	after 50 washes.	
	property of treated fabric.		
	- Including durability tests for 50		
	washes.		
(DBD) plasma	-Including comparison of Al ₂ O ₃	- Antibacterial activity	Gawish et al.,
treatment.	, ZnO and TiO $_2$ NPs effect on	of PP fabric was not	(2017) [_].
	PET and PP fabrics.	tested.	
	-Investigating the effect of	- TiO ₂ NPs showed no	
	plasma treatment on PP and	antibacterial effect on	
	PET fabrics.	polyester fabric.	
	- Providing more uniform	- No tests for finishing	
	distribution of NPs on PP	durability were	
	fabric due to plasma treatment.	included.	
	- Improving UV protection of		
	PP fabric. Zno NPs> TiO ₂ NPs		
	> Al ₂ O ₃ NPs.		
	- Providing excellent UV		
	protection for PET fabric		
	TiO ₂ NPs> ZnO NPs>		
	Al ₂ O ₃ NPs.		

469

Figure 4. Application of TiO_2 NPs to provide textiles UV protection.