2

¹ ZnO and TiO₂ Nanoparticles as Textile Protecting Agents

Against UV Radiation : A review

Abstract: The purpose of this review is to highlight the role of ZnO and TiO_2 NPs as textile protective 3 agents against UV radiation. Different synthesis method of ZnO and TiO₂ NPs affecting their nano size 4 and their ability to absorb UV radiation. Resulted ZnO or TiO₂ NPs can be applied on treated or 5 untreated fabrics individually to provide UV protection or in combination with other materials to 6 7 provide multifunctional finished fabrics. Cons and Pros of each application process besides comparison of synthesis methods of ZnO and TiO₂ NPs are included separately in this review paper. 8 Keywords: ZnO NPs -TiO₂ NPs- UV protection -NPs synthesis-NPs application. 9 Introduction 10 11 Protection against ultra violet radiation is one of the most important concerns in textile industry. UV radiation is a form of energy which represented only one type of invisible radiation and it is 12 measured on a scientific scale called the electromagnetic spectrum. Incident sunlight consists of (50% 13 14 Visible light, 45% infrared and 5% ultra violet radiation) [1]. UV radiation can be subdivided according to their wavelength and effect to: UV- A (320-400nm), 15

UV-B (280-320nm) and UV-C (200-280nm). UV-C is absorbed by ozone layer and does not reach the
surface of the earth, so UV-A and UV-B represent the danger of UV radiation especially UV – B as
shorter wavelength resulted in higher energy and more damage in (textiles - dyestuff - human skin)[2].

To block the harmful effect of UV radiation organic and Inorganic UV blockers are used. Inorganic UV blockers are better than organic UV blockers because of their non-toxicity and chemical stability when exposed to higher temperatures and UV radiation. The most common Inorganic UV blockers are semiconductor oxides such as ZnO and TiO₂ [3]. Nano-size of ZnO and TiO₂ particles showed more durable and effective UV protection than their bulk size [4].

This review is intended to focus on ZnO and TiO₂ nanoparticles and their advanced applications to
block the UV radiation and enhance the protection of textiles and human skin. Fabrics ultraviolet

protection factor and properties of (ZnO and TiO₂ NPs) have been briefly explained. Different ZnO and TiO₂ NPs synthesis methods (chemical - green) and applications (individually or in combination with other materials to provide multifunctional finished fabrics) have been discussed in details and compared.

30 Ultra Violet Protection Factor (UPF):

When textile material is exposed to UV radiation, the action of UV included absorption, reflection, scattering and direct transmission. Transmission of UV radiation causes fiber, dye and skin damage. UPF related to reflection and absorbance of UV radiation .UPF value is considered as a measure of blocking UV radiation by the fabric. The higher (UPF) value the more (UV) protection provided by the textile material [5].

36 ZnO Nanoparticles in Textiles UV Protection:

37 Zno Properties:

Zinc oxide (ZnO) is an inorganic semiconductor material that has a great interest in textiles UV protection field due to its properties (wide band gap, Chemically stable, Environmental friendly, easily grown and Longer durability) [6,7]. In UV protection finishing, ZnO materials are preferred to be used in nano size to provide higher durability and more intensive absorption and blocking in the UV region [1].

43 ZnO NPs Synthesis

Generally ZnO NPs are obtained by chemical or green synthesis as shown in Figure 1 .Using zinc
source such as (zinc acetate-zinc chloride-zinc nitrate) with synthetic or natural materials.

46

Figure1

47 Chemical Synthesis

48 Sol Gel Method

ZnO NPs had been prepared [8] with an average size of (30-60nm) by simple chemical Sol-Gel method from zinc acetate as a precursor and lithium hydroxide .The resulted ZnO NPs were embedded in a hybrid polymer (GPTMS) network with different ratios and applied to cotton and cotton/ polyester fabrics by Pad-dry-cure method .The results of SEM investigations demonstrated smoother surface of treated fabrics and uniform distribution of ZnO NPs. Finished fabrics with higher concentrations of ZnO NPs indicated higher UPF values (increasing UPF value in cotton fabric from
21 to 177 and in cotton/ polyester fabric from 19 to 48).

Another group of researchers [9] prepared ZnO NPs with an average size (58nm). The researchers also depended on Sol-Gel method and using Zinc acetate dihydrate as precursor but they used sodium hydroxide as a reducing agent instead of lithium hydroxide. Sodium hydroxide action was investigated by adding it with different flows and different alkaline ratios. It was found that slowly addition of sodium hydroxide with maintaining alkaline ratio at 2 resulted in obtaining ZnO NPs with uniform distribution and good absorption in the UV region (380 nm).

62 Hydrothermal Method

ZnO NPs had been prepared [10] by hydrothermal process using water , 1,2-ethanediol as a solvent and investigating which is better. Sodium hydroxide was added gradually to (zinc chloride dissolved in water or 1,2-ethanediol). The resulted particles were thermal treated at 250°C then applied to cotton and cotton / Polyester fabrics by Pad -dry-cure method. It was found that using 1-2ethanediol instead of water resulted in smaller size of ZnO NPs (from 20 nm to 9 nm), more uniform distribution and higher UPF values for both UVA and UVB.

Faunk *et al.* [11] aimed to more economical and ecological function in ZnO NPs synthesis by hydrothermal method through using low concentration of (zinc chloride - sodium hydroxide –M tri ethanolamine) and lower thermal treatment temperature. The resulted ZnO NPs had smaller size than previous research (7nm) and absorption in the UV region (235-407 nm).

The results of all previous researches can be summarized in Table 1. Hydrothermal process provided smaller size of ZnO NPs. The research made by Taunk and his team provided The smallest size of ZnO NPs , lower concentration of hazardous chemicals (for economic and ecological considerations) and Wide range absorption of UV radiation (235-407nm).

77

Table 1

78 Green Synthesis

Green synthesis is better than chemical synthesis of ZnO NPs as it provides the advantage of
clean, nontoxic and environmental friendly finishing. Green synthesis of ZnO NPs depends on using
natural materials with zinc source.

82 ZnO NPs had been prepared [11] from the reaction of (CMC) chemically modified chitosan (by 83 alkalization and etherification) with Zinc nitrate. Chitosan is a cheap, environmental friendly, low 84 toxic and high stable material. This research aimed to determine optimum conditions of ZnO NPs 85 synthesis from modified chitosan. Modified chitosan was prepared by dispersion of chitosan in (50-86 75%) isopropyl alcohol with gradual addition of sodium chloroacetate (1.5-2.5-3M) . zinc acetate was 87 added to the mixture and calcined at different temperatures . It was found that Modified chitosan 88 showed more affinity to Zinc ions than native chitosan. The optimum reaction conditions (sodium 89 chloroacetate (1.5 M), isopropyl alcohol(75%) and 450 °C as calcination temperature resulted in more 90 uniform distribution and smaller size of ZnO NPs (19-54nm).

Ramesh *et al.* [13] prepared ZnO NPs by green method .They used the extract of Citrus
aurantifolia leaves (as a reducing and stabilizing agent) and zinc nitrate. The resulted ZnO NPs
Uniformly distributed, had a size range from (9-10nm) and bsorbed UV radiation at the range (208-400nm).

Also ZnO NPs had been produced [14] by using green material (Aloe Vera) leaves as stabilizing and reducing agent. Sodium hydroxide was added gradually to mixture of (the extract of Aloe Vera leaves and zinc acetate. It was found that the resulted ZnO NPs had an average size (22.18nm), showed antibacterial activity against gram positive and gram negative bacteria and absorbed UV radiation within the range (340-400nm).

The green synthesis methods of ZnO NPs are summarized in Table 2 .It is obvious that synthesis of ZnO NPs made by Varghese is better than other methods as it included less chemical materials (only zinc source and the natural material used with no need to another reducing agent), Smaller size of ZnO NPs (9-10nm) and Wider range of UV absorption (208-400 nm).

104

Table 2

105 ZnO NPs application to provide textiles UV protection

ZnO NPs can be applied to fabrics after plasma treatment or without treatment individually or in
 combination with other materials synthetic or natural to improve protection against UV radiation and
 provide multifunctional finished textiles Figure 2.

109

Figure 2

110 Application of ZnO NPs without Treatment:

111 Single Application of ZnO NPs:

In ZnO NPs had been applied [1] with (average size <35nm) as a coating to cotton fabrics. Treated
cotton fabrics indicated complete covering by ZnO NPs, Increasing UPF values from (27.22) to
(711.44) and Improvement in antimicrobial activity against E. coli and S. aureus bacteria.

On the other hand, ZnO NPs had been applied [15] on cotton fabrics to provide durable multifunctional finishing (antibacterial and UV protection) to cotton fabric. ZnO NPs were synthesized in situ. Cotton samples were padded in different concentrations of zinc acetate hexahydrate and hexamethyltriethylene tetramine (HMTETA), dried and cured. It was found that optimum concentration of zinc nitrate (2gm) resulted in producing ZnO NPs with average size 359 nm. ZnO NPs leaded to good UPF values after 15 washes (17.6) and Durable antibacterial activity of cotton fabric after 20 washes.

122 Another team of researchers [16] also synthesized ZnO NPs in situ to provide durable 123 multifunctional finishing to cotton fabrics. The difference in this research was represented in using 124 sodium hydroxide (instead of HMTETA) as reducing agent which is cheaper and more available 125 material .The precursors (zinc nitrate and sodium hydroxide) were applied to cotton samples by 126 spraying and dipping processes. SEM images showed that dipping method was better than spraying 127 method as it resulted in smaller size of ZnO NPs (<100nm) and 3 times more uptake of NPs that 128 caused finishing to be effective and more durable. Dipping process included excellent and durable 129 antibacterial activity after 50 washes against both Saures and K.pneumonia bacteria besides higher 130 UPF values (890) after 50 washes (450).

131 Previous researches in single application of ZnO NPs are summarized in Table 3.

132

Table 3

133 It is obvious that the application method of ZnO NPs made by Prasa and his team is better than 134 the other procedures because of using more available and less expensive reducing agent, in situ 135 synthesis of ZnO NPs which saved (time – money), Producing smaller size of ZnO NPs and Providing 136 higher UPF values and more durable effect after 50 washes.

137 Application of ZnO NPs in Combination with Other Materials

138 ZnO NPs with Natural Materials

139 ZnO NPs could be used [17] in combination with carboxy methyl chitosan to provide antibacterial and 140 UV protection for cotton fabric. ZnO/ carboxymethyl chitosan composite was made by stirring a 141 mixture of (caroxymethyl chitosan and zinc sulfate) at different temperatures. Different 142 concentrations of ZnO/ carboxymethyl chitosan composite was applied to cotton fabrics by Padding 143 and cured at different temperatures. It was found that Preparation of ZnO/ CMCTS bionano composite 144 at 50°C resulted in smaller size of NPs (28 nm for ZnO NPs and 100nm for CMCTS). Higher 145 concentration of ZnO/CMCTS nano composite leaded to increasing antibacterial activity against both 146 S.aureus and E.coli bacteria .Increasing curing temperature to 160°C resulted in slight increasing in 147 UPF values.

A simpler and more eco-friendly method [18] could be applied by using only chitosan with ZnO nanoparticles to provide multifunctional finishing to cotton fabric. In order to determine optimum conditions, different concentrations of ZnO in preparation of chitosan/ ZnO NPs and different temperatures were used. The resulted chitosan/ ZnO NPs were applied to cotton fabric by Pad –drycure method. Treated cotton fabric samples with higher concentrations of chitosan/ ZnO nanoparticles Showed comparatively higher UPF values (8.3) and antibacterial activity.

The previous two researches provided green application methods by using natural materials with ZnO NPs to provide multifunctional finished cotton fabrics .Cons and pros of each process are shown in Table 4.

157

Table 4

Application method made by Abdelhady is better than the other method as it provided simpler,more environmental friendly method and higher UPF values.

160 Application of ZnO NPs with Synthetic Materials

2nO NPs had been combined [19] with sodium hypophosphite (SHP) and polycarboxylic acids to provide multifunctional finishing to cotton and cotton /polyester (56/35%) fabrics. ZnO NPs were prepared by sol-gel method using Zinc acetate as precursor and lithium hydroxide .To investigate finishing effect different (concentrations of ZnO NPs and SHP, types of polycarboxylic acid butantetracarboxylic acid (BTCA) or succinic acid (SA), Curing temperatures) were used. Cotton and

166 cotton/ polyester fabrics were padded in (BTCA) or (SA) and SHP, dried and cured at different 167 temperatures then ZnO NPs were applied to fabrics by Pad-dry-cure method. The average size of 168 resulted ZnO NPs was 30nm. It was found that using of BTCA with 160°C as a curing temperature 169 leaded to increasing (CRA values, roughness and yellowness) than using of SA .Increasing curing 170 temperature to 180°C resulted in increasing (CRA values, roughness and yellowness) in fabrics 171 treated with BTCA or SA using of BTCA increased flame retardant action for both cotton and 172 CO/PET fabric in the presence of 6% SHP after two washes .Using of BTCA or SA with 6% SHP and 173 5% ZnO NPs leaded to higher UPF values (for cotton fabric 60 for cotton /polyester fabric 57), 174 Improving flame retardant action for both cotton and CO/PET fabrics . Adding ZnO NPs caused slight 175 increasing in roughness and yellowness of treated fabrics especially at higher concentration.

176 Another work [20] used Cu_2O NPs in combination with ZnO NPs to improve the UV protection of 177 cotton fabrics. They added folic acid during in-situ Synthesis of Cu₂O/ ZnO NPs and investigated its 178 effect. It was found that Using Cu₂O/ZnO NPs resulted in more UV protection for cotton fabrics than 179 the single application of each (87.31% protection against UV radiation). Cu₂O/ZnO NPs caused slight 180 increasing in thickness, decreasing CRA values and hydrophilicity of cotton fabric. Adding folic acid 181 resulted in smaller size of Cu₂O/ ZnO NPs (48nm) and increasing UV protection, hydrophilicity, 182 thickness, wash fastness, anti-wrinkle property and improving the handle of cotton fabrics 183 Cons and Pros of ZnO NPs application with synthetic materials are summarized in Table 5

184

Table 5

185 Application of ZnO NPs after Plasma Treatment

186 A method [21] has been developed to increase the adsorption rate of ZnO NPs at lower concentrations 187 by treating cotton fabrics with tetrafluoromethane and water plasma. The effect of plasma was 188 investigated by treating cotton fabrics with moist CF4 plasma for 10,20 and 30 s and H₂O plasma for 189 10 s. ZnO NPs were applied to cotton fabrics (treated and untreated) by Pad-dry-cure method. It was 190 found that the optimum CF4 plasma treatment time (10 S) indicated rougher surface of cotton fabrics 191 which resulted in higher adsorption of ZnO NPs and great increasing in hydrophilic activity and UPF 192 values of cotton fabric from 4.12 to 58.89, but UPF values decreased dramatically after 10 washes 193 from (58.89 to 4.58).

194	ZnO NPs and carboxymethyl chitosan(CMCS) have been used [22] to provide multifunctional
195	finishing for plasma pretreated cotton fabric. Cotton fabrics were treated by O ₂ plasma for 2 min at
196	200W. Different concentrations of ZnO/CMCS composite were applied to cotton fabric by Pad-dry-
197	cure method. It was found that plasma treatment provided rougher surface and more deposition of
198	ZnO/CMCS NPs on cotton fabrics. Plasma treatment with higher concentration of ZnO/CMCS NPs
199	resulted in more deposition of ZnO/CMCS NPs on the fabric, very good UPF values , durable
200	antibacterial activity even after 30 washes and improving thermal properties of cotton fabrics.
201	Cons and Pros of ZnO NPs application after plasma treatment are summarized in Table 6
202	Table 6
203	
204	TiO ₂ Nanoparticles in textiles UV protection
205	TiO ₂ properties
206	TiO ₂ is an inorganic material which belongs to transition metal oxides .TiO ₂ particles in nano form
207	are used in many fields of textile industry especially in protection against ultra violet radiation [23]
208	due to their properties (lower cost, chemically stable, non-toxicity, photocatalytic activity and longer
209	durability) [24].
210	TiO ₂ NPs synthesis
211	There are many methods to prepare TiO_2 NPs [25] by chemical or green precursors [26, 27] as
212	shown in Figure 3.
213	Figure 3
214	Chemical Synthesis
215	Sol Gel Method
216	A group of researchers [28] used sol gel method to prepare TiO2 NPs to produce durable
217	multifunctional finishing to cotton fabrics. Titanium Tetrachloride was used as a precursor, dissolved
218	in water with polyvinyl pyrrolidone (as a stabilizing agent) and reduced by gradual addition of
219	borohybride. The resulted TiO ₂ NPs were applied with different concentrations to cotton fabrics using
220	Pad-dry-cure method. It was found that resulted TiO ₂ NPs had smaller size (5-10 nm) and higher
221	purity, stability and dispersion ability. Higher concentrations of TiO2 NPs leaded to higher UPF

values (40) and increasing antibacterial activity againt S. aureus and K.pneumoniae bacteria after 20washes.

TiO₂ NPs had been prepared [29] by sol gel method. A solution of trisodium citrate was added gradually to bulk TiO₂ at room temperature with no need to calcination process The resulted TiO₂ NPs had an average size (37 nm), higher absorbance of UV radiation and higher thermal stability (remains after 700°C was about 67%).

228 Hydrothermal Method

TiO₂ NPs had been prepared [27] by both hydrothermal and sol gel method. In hydrothermal method, sodium hydroxide was added to titanium tetrachloride and the mixture was stirred dried at 450°C. In sol gel method, they used Titanium isopropoxide (TTIP) as a precursor. TTIP was dissolved in ethanol and the mixture was stirred and dried. It was found that TiO_2 NPs resulted from hydrothermal method had an average size (about 17 nm), higher absorbance of UV radiation at the wavelength of 362 nm. The TiO₂ NPs resulted from sol gel method had an average size (about 7 nm) and great absorbance of UV radiation at the wavelength of 351 nm and higher band gap value about 3.5 eV.

TiO₂ NPs had been synthesized [30] by hydrothermal method using ilmenite in the form of synthetic rutile as a precursor. Sodium hydroxide was mixed with synthetic rutile at 550° C. The resulted TiO₂ NPs had smaller size (15.6 nm), higher absorbance of UV radiation and lower band gap (3.23) than commercial TiO₂ NPs.

The results of all previous researches about chemical synthesis of TiO₂ NPs are summarized in Table 7. From the results it is obvious that sol gel method provided more UV protection and smaller size of TiO₂ NPs. The experiment made by Gouda and his team produced Smaller size of TiO₂ NPs, excellent and durable UV protection, simple and energy saving process.

244

Table 7

245 Green Synthesis

Green synthesis of TiO_2 NPs depends on using natural materials and it is far better than chemical

synthesis of TiO_2 NPs as it depends on less hazardous chemicals and produces ecofriendly finishes.

248 TiO₂ NPs had been prepared [31]by ecofriendly and low cost method using Aspergillus tubingensis

soil fungi. Salt solution of TiO_2 was added to the soil fungi to obtain nano TiO_2 . It was found that the

250	size of resulted TiO_2 NPs ranged from (1.5 to 5.9 nm). The resulted TiO_2 NPs showed an absorbance
251	of UV radiation within the range (300–350 nm).
252	TiO ₂ NPs had been synthesized [32] by using leaf extracts of medicinal plant Ageratina altissima and
253	tested the photocatalytic activity of resulted NPs. The resulted TiO_2 NPs had an average size (60-100
254	nm), higher absorbance of UV radiation at 332 nm and caused dyes degradation (86.79 %) of
255	methylene blue, (76.32 %) of alizarin red, (77.59 %) of crystal violet, and (69.06 %) of methyl
256	orange.
257	The results of green synthesis of TiO_2 NPs are summarized in Table 8. From the results,
258	method made by Tarafdar and his team provides better green synthesis of TiO2 NPs as it included
259	smaller size of TiO ₂ NPs (1.5 - 5.9) nm and wider range of UV absorbance (300–350 nm)
260	Table 8
261	TiO ₂ NPs Application to Provide Textiles UV Protection
262	TiO ₂ NPs can be applied to different types of treated or untreated fabrics individually or with
202	
263	other materials to enhance UV protection and provide multifunctional finishing to fabrics Figure 4.
	other materials to enhance UV protection and provide multifunctional finishing to fabrics Figure 4. Figure 4
263	
263 264	Figure 4
263 264 265	Figure 4 Application of TiO ₂ NPs without treatment
263 264 265 266	Figure 4 Application of TiO ₂ NPs without treatment Single Application of TiO ₂ NPs
263 264 265 266 267	Figure 4 Application of TiO ₂ NPs without treatment Single Application of TiO ₂ NPs A group of researchers [33] investigated UV protection effect of TiO ₂ NPs on five samples (pure
263 264 265 266 267 268	Figure 4 Application of TiO ₂ NPs without treatment <i>Single Application of TiO₂ NPs</i> A group of researchers [33] investigated UV protection effect of TiO ₂ NPs on five samples (pure lyocell, (80/20-60/40-50/50) % lyocell silk blends and pure silk) properties. It was found that TiO ₂
263 264 265 266 267 268 269	Figure 4 Application of TiO ₂ NPs without treatment <i>Single Application of TiO₂ NPs</i> A group of researchers [33] investigated UV protection effect of TiO ₂ NPs on five samples (pure lyocell, (80/20-60/40-50/50) % lyocell silk blends and pure silk) properties. It was found that TiO ₂ NPs caused durable UV protection especially for pure lyocell fabric even after 25 washes, Improving
263 264 265 266 267 268 269 270	Figure 4 Application of TiO ₂ NPs without treatment <i>Single Application of TiO₂ NPs</i> A group of researchers [33] investigated UV protection effect of TiO ₂ NPs on five samples (pure lyocell, (80/20-60/40-50/50) % lyocell silk blends and pure silk) properties. It was found that TiO ₂ NPs caused durable UV protection especially for pure lyocell fabric even after 25 washes, Improving in anti-wrinkle property and decreasing in air permeability, tensile strength and absorbency of treated
263 264 265 266 267 268 269 270 271	Figure 4 Application of TiO ₂ NPs without treatment <i>Single Application of TiO₂ NPs</i> A group of researchers [33] investigated UV protection effect of TiO ₂ NPs on five samples (pure lyocell, (80/20-60/40-50/50) % lyocell silk blends and pure silk) properties. It was found that TiO ₂ NPs caused durable UV protection especially for pure lyocell fabric even after 25 washes, Improving in anti-wrinkle property and decreasing in air permeability, tensile strength and absorbency of treated fabrics.
263 264 265 266 267 268 269 270 271 271	Figure 4 Application of TiO ₂ NPs without treatment <i>Single Application of TiO₂ NPs</i> A group of researchers [33] investigated UV protection effect of TiO ₂ NPs on five samples (pure lyocell, (80/20-60/40-50/50) % lyocell silk blends and pure silk) properties. It was found that TiO ₂ NPs caused durable UV protection especially for pure lyocell fabric even after 25 washes, Improving in anti-wrinkle property and decreasing in air permeability, tensile strength and absorbency of treated fabrics. Finishing with TiO ₂ NPs and dyeing of wool fabric had been applied [34] at the same time by
263 264 265 266 267 268 269 270 271 272 272 273	Figure 4 Application of TiO ₂ NPs without treatment <i>Single Application of TiO₂ NPs</i> A group of researchers [33] investigated UV protection effect of TiO ₂ NPs on five samples (pure lyocell, (80/20-60/40-50/50) % lyocell silk blends and pure silk) properties. It was found that TiO ₂ NPs caused durable UV protection especially for pure lyocell fabric even after 25 washes, Improving in anti-wrinkle property and decreasing in air permeability, tensile strength and absorbency of treated fabrics. Finishing with TiO ₂ NPs and dyeing of wool fabric had been applied [34] at the same time by hydrothermal process. Different concentrations of reactive blue 69 and acetic acid were used to

- 280 The antibacterial activity and UV protection effect of TiO₂ NPs on cotton fabric [35] had been
- investigated, but used urea nitrate (UN) in in situ synthesis of TiO_2 NPs as a nitric acid source and
- investigate its effect. It was found that higher concentration of (UN) leaded to smaller size of TiO_2
- 283 NPs (<50nm), very good UPF value (29.69) after 15 washes , excellent antibacterial activity after 20
- washes against S. aureus and E. coli bacteria besides decreasing in elongation rate and tensile strength
- of treated fabric.
- All previous researches included single application of TiO_2 NPs to provide UV protection for different types of fabrics. Cons and pros of each process are summarized in Table 9.
- 288

Table 9

289 Application of TiO₂ NPs in Combination with Other Materials

290 Sodium hypophosphite (SHP) and citric acid (CA) had been used with TiO_2 NPs to provide 291 multifunctional finishing for cotton /polyester fabric [36]. Different concentrations of CA, SHP and 292 TiO₂ NPs were used to determine optimum finishing conditions. It was found that using optimum 293 concentrations of CA (30gm/l) with (SHP)(18gm/l) and TiO₂ NPs (0.5gm/l) resulted in higher flame 294 retardancy effect, lower pilling formation, Improving antibacterial activity against S.aureus bacteria 295 and Increasing hydrophilicity, photocatalytic activity, self-cleaning property and wash fastness of 296 treated fabrics. Also, optimum conditions leaded to slight decreasing in tensile strength but after 297 exposure to UV radiation there was an improvement in fabrics tensile strength due to the effect of TiO_2 298 NPs

Ag NPs used in combination with TiO_2 NPs to provide multifunctional finishing to Polyester fabrics[37]. TiO_2 colloidal solution was applied to polyester fabrics by Pad -dry-cure method, then the fabrics were padded in (alanine – silver nitrate - methyl alcohol) mixture , rinsed and dried . FESEM analysis showed uniform distribution of TiO_2 / Ag NPs on polyester fabrics. Treated polyester fabrics indicated:

304 Excellent antimicrobial activity against both E.coli and S.aureus bacterium besides C.albicans • 305 fungus (reduction rate of the bacteria reached to 99.9% even after 10 washes). 306 • Higher UPF values (92.35) but after 10 washes UPF values decreased to (53.52). 307 Release of Ag NPs in first 3 washes and in artificial sweat especially alkaline sweat 308 conditions. 309 Another team of researchers [38] also used Ag NPs with TiO_2 NPs but they produced more 310 durable finishing to cotton fabric. TiO₂ NPs were applied to cotton fabrics with two different 311 concentrations by hydrothermal treatment. Ag NPs were in situ synthesized in cotton fabrics using 312 different concentrations Ag No₃. It was found that higher concentrations of Ag and TiO₂ NPs leaded 313 to very good and durable antibacterial activity against both E. coli and S. aureus and Increasing in 314 UPF values (from 3 to 56.39). Only slight decreasing of UPF values after 50 washes was detected. 315 Previous researches included application of combined TiO₂ NPs with other materials on untreated 316 fabrics to provide durable multifunctional finishing. The advantages and disadvantages of each 317 process are shown in Table 10. 318 Table 10 319 **Application of TiO₂ NPs after Fabric Treatment** 320 Application of TiO₂ NPs after different treatment processes on fabrics improved UV protection 321 and other functions due to the increasing affinity of treated fabric for finishing agents. 322 TiO_2 NPs had been applied [39]on cellulose acetate fabric (CA) after treatment with H_2O_2 in 323 ultrasonic bath. (CA) samples were padded in different concentrations of TiO₂ NPs, dried and cured in 324 microwave oven at different conditions. It was found that using optimum conditions (Ultrasonic 325 treatment -0.75 % TiO₂ NPs-microwave curing at 90% for 15 seconds) leaded to: 326 Increasing whiteness and slight decreasing in Roughness and tensile strength of fabric. • 327 • Higher absorbance of UV radiation and higher self-cleaning effect (87% degradation of coffee 328 stain). 329 TiO_2 NPs on polyester fabric after oxygen gas plasma treatment had been applied and its effect on

330 fabric properties and adsorption rate of TiO₂ NPs had been investigated. It was found that treatment

331	with Plasma before TiO ₂ NPs application leaded to more uniform distribution of TiO ₂ NPs on fabric
332	surface, higher self-cleaning property and higher UV protection (decreasing in the percentages of UV
333	Reflectance) even after 10 washes.

334 Polyester cotton (80:20) blended curtains pretreated with cold plasma before the application of TiO_2 335 and SiO_2 NPs [41]. The effect of plasma was investigated by treatment of fabrics with cold plasma for 336 different periods of time before the application of TiO2 and SiO2 NPs. It was found that plasma 337 treatment for 6 minutes before the application of NPs leaded to more deposition of NPs on the fabric 338 surface, increasing UPF value from (8.51 to 40.24), improving antibacterial activity against S. aureus 339 and E. coli bacteria, increasing antistatic property and good adhesion of NPs in the fabric surface after 340 50 washes of the fabric. Also, slight decreasing in elongation, tensile strength and air permeability of 341 treated fabric was detected.

Polyester (PET) and polypropylene (PP) fabrics pretreated with Dielectric-barrier discharge (DBD) plasma before the application of TiO₂, Al₂O₃ and ZnO NPs to provide enhanced finishing to the fabric [42]. Different concentrations of Al₂O₃, ZnO and TiO₂ NPs were applied separately to fabrics by Paddry-cure method for comparing their effect on treated fabrics. It was found that In PET fabric:

346	•	Plasma pretreatment had no significant effect on the fabric.
347	•	The fabric indicated excellent UPF values with higher concentration of TiO_2 NPs (156.90).
348		Higher concentration of ZnO NPs also leaded to excellent UPF value (82.98) more than Al_2O_3
349		NPs (36.76).
350	•	ZnO NPs showed more antibacterial activity against S. aureus and K. pneumonia bacteria
351	•	TiO ₂ NPs had no antibacterial effect against both types of bacteria, while Al ₂ O ₃ NPs had only
352		slight effect against K. pneumonia bacteria (reduction percentage 6.5%).
353		In PP fabric plasma treatment before the application of NPs leaded to:
354	•	More uniform distribution of NPs on the surface of the fabric.
355	•	Improving UV protection of treated fabric (increasing UPF values from 2.4 to 38.1 with ZnO
356		NPs and to 17.9 with TiO ₂ NPs)

All of the previous researches included fabric pretreatment to provide more absorbance of NPs and improve UV protection effect, but that had slight effect on fabric properties. Advantages and disadvantages are summarized in Table 11.

Table 11

360

361 **Conclusions**:

362 This review indicates the great importance of ZnO and TiO₂ NPs as textile protective agents 363 against UV radiation. Different synthesis methods (chemical -green) of ZnO and TiO₂ NPs are 364 compared to find out which is better method. In chemical synthesis of ZnO NPs it is found that 365 hydrothermal method is better than sol gel method as it provides smaller size of NPs and higher 366 absorbance of UV radiation. On the contrary, in TiO₂ NPs synthesis sol gel method include better 367 results than hydrothermal method. Green method in both ZnO and TiO₂ NPs is better than chemical 368 synthesis method as it includes natural precursor which provides more eco-friendly synthesis. 369 Moreover, Advantages and disadvantages of the application of ZnO NPs on treated and untreated 370 fabrics individually or with natural materials (chitosan - carboxymethyl chitosan) or synthetic 371 materials (UV absorber - sodium hypophosphite - CU₂O NPs- Ag NPs) are discussed. Also, 372 advantages and disadvantages of TiO₂ NPs application on textiles without or with treatment to 373 individually or with other materials are concluded. Main disadvantages in ZnO and TiO₂ NPs 374 application concern to insufficient finishing durability tests and negative effects on fabric properties 375 which must be fixed in future researches to meet the functional demands.

376 **References**

- 1. A.Abdel Ghani, W. Qorshi, and E. El-Sayd, Int. Design J., 4, 104 (2015).
- 2. M. Akgun, B.Becerir, and H. Alpay, Int. Scientific Conference, 2, 301 (2010).
- 379 3. N. Ibrahim, E.El-Zairy, W. Abdalla, and H. Khalil, Carbohydr. Polym .,92, 1386 (2013).
- 380 4. Y. Wong, C. Yuen, and M. Leung, *Autex*. *Res. J.*, 6, 2 (2006).
- 381 5. Y.Wu, Y.Chi, J. Nie, X. Yu, A. Chen, and H.Gu, J. Funct. Polym., 15, 43(2005).
- 382 6. P. Uiky, and K.Vishwakarma, Int. J. Emerging Technol. Comput. Sci., 21, 239 (2016).

- 383 7. D.Osman, and M.Mustafa, J. Nanosci. Nanotechnol., 1, 248 (2015).
- 384 8. A. Farouk, T. Textor, E. Schollmeyer, A. Tarbuk, and A.Grancacic, Autex .Res. J., 10, 58(2010).
- 385 9. M. Conde, K. Dakhsi , H. Zouihri , K. Abdelouahdi , L. Laanab, M. Benaissa , and B. Jaber, J.
- 386 *Mater. Sci. Eng.*, **1** 985(2011).
- 387 10. S. Kathirvelu, L.Souza, and B.Dhurai, Indian .J. Fibre. Text, 34, 267(2009).
- 388 11. P. Taunk, R. Das, D. Bisen, and R. Tamrakar, J. Radiat. Res. Appl. Sci., 8, 433(2015).
- 389 12. M. Thirumavalavan, K.Huang, and J.Lee , *Mater. J.*, 6, 4198 (2013).
- 13. P. Ramesh, A. Rajendran1, and A. Subramanian, Asian. J. Phytomed. Clin. Res., 2, 189 (2014).
- 391 14. E. Varghese, and M. George, Int. J. Adv. Res. Sci. Eng., 4, 307(2015).
- 392 15. T. Shaheen, M. El-Naggar, A. Abdelgawad, and A. Hebeish, *Int. J. Biol. Macromol.*, 83, 426
 393 (2016).
- 16. V.Prasad, A.Arputharaj, A.Bharimalla, P.Patil, and N.Vigneshwaran, *Appl. Surf. Sci.*, **390**, 936
 (2016).
- 396 17. A.El.Shafei, and A.Abou-Okeil, *Carbohydr. Polym.*, 83, 920 (2011).
- 397 18. M.Abdelhady, Carbohydr. Chem., 2012, 1(2012).
- 398 19. M.Abdelhady, A.Farouk, and S.Sharaf, *Carbohydr. Polym.*, 92, 400(2013).
- 20. S. Noorian, N. Hemmatinejad, and A. Bashari, *Photochem. Photobiol.*, 91, 510 (2015).
- 400 21. M. Gorjanc , K. Jazbec , M. Sala , R. Zaplotnik , A. Vesel ,and M. Mozetic, , *Cellulose*, 21 ,
 401 3007(2014)
- 402 22. C.Wang , J.LV, Y.Ren ,Q.Zhou ,J.Chen ,T.Zhi ,Z.Lu, D.Gao , Z.Ma , and L.Jin , *Carbohydr*.
 403 *Polym.*, **138** , 106 (2016).
- 404 23. G. Mital, and T. Manoj, *Chinese Sci. Bull.*, 56, 1640 (2011).

- 405 24. S.Chaudhari, A. Mandot, and B. Patel, *Int. J. Eng. Res. Dev.*, 56, 24 (2012).
- 406 25. Z. Liu, R. Wang, F. Kan, and F. Jiang, Asian J. Chem., 26, 655(2014).
- 407 26. P.Purkait, S. Maitrab, S. Mandal, S. Bhunia, G. Das, and M. Chaudhuri, *Sci. Voyage*, 1, 28
 408 (2015).
- 409 27. R. Vijayalakshmi, and V. Rajendran, Arch. Appl. Sci. Res. 4, 1183 (2012).
- 410 28. M. Gouda, and A.Aljaafari, Adv. NPs, 1, 29 (2012).
- 411 29. M. Hema, A. Arasi, P. Tamilselvi, and R. Anbarasan, *Chem. Sci. Trans.*, 2, 239 (2013).
- 412 30. E. Mahdi, M. Hamdi, M. Yusoff, and P. Wilfred, *J.Nano.R*, 2, 71 (2013).
- 413 31. A. Tarafdar, R. Raliya, W.Wang, P. Biswas, and J. Tarafdar, Adv. Sci. Eng. Med., 5, 1 (2013).
- 414 32. S. Ganesan, I. Babu, D. Mahendran, P. Arulselvi, N. Elangovan, N. Geetha, and P.
 415 Venkatachalam, *Ann. Phytomed.*, 5, 69 (2016).
- 416 33. M.Adnan, and J.Moses, J. Tex. App. Tech. mangmt., 8, 1 (2013).
- 417 34. H. Zhang, H. Yan, and N. Mao, Ind. Eng. Chem. Res., 53, 2030 (2014).
- 418 35. M. El-Naggar, T. Shaheen, S. Zaghloul, M. El-Rafie, and A. Hebeish, *Ind. Eng. Chem. Res.*, 55,
 419 2661 (2016).
- 420 36. S.Hashemikia, and M. Montazer, Appl. Catal. A., 417-418, 200 (2012).
- 421 37. M. Milosevic, M. Radoicic, Z. Saponjic, T. Nunney, D. Markovic, J. Nedeljkovic, and M.
- 422 Radetic, J. Mater. Sci., 48, 5447 (2013).
- 423 38. S.Li, T. Zhu, j. Huang, Q.Guo, G.Chen, and Y. Lai, Int. J. Nanomedicine, 12, 2593 (2017).
- 424 39. M. Ramadan, W. Raslan, E. El-Khatib, and A. Hebeish, , *Mater. Sci. Appl.*, 3, 872 (2012).
- 425 40. S. Hashemizad, A. Haji, and S.Mireshghi, J. Biodiv. Env. Sci., 5, 220 (2014).
- 426 41. H. Memon, and N. Kumari, Surf. Rev. Lett., 23, 1 (2016).

427 42. S. Gawish, A. Ramadan, G. Sayed, and A. Hussien, Int. J. Pharm. Sci. Rev. Res., 42, 239 (2017).

428

Tables

Table 1. Comparison between chemical methods of ZnO NPs synthesis

Chemical	precursors	Optimum Size	UV Protection effect	Reference
methods		(nm)		
Sol gel	Zinc acetate -	30-60 nm	Higher UPF value for	Farouk et al.,(2010)
method	Lithium		cotton (177)	
	hydroxide		Higher UPF value for	
			CO/ PET (48)	
Sol gel	Zinc acetate -	58 nm	Absorption in UV	Conde et al., (2011)
method	Sodium		region (380 nm).	
	hydroxide			
Hydrothermal	Zinc chloride -	9 nm	UPF of cotton against	Kathirvelu et al.,
method	1-2ethanediol		UVA (8.45)	(2009)
	Sodium		UPF against	
	hydroxide		UVB(10.29)	
			UPF of CO/ PET	
			against UVA (11.80)	
			UPF against	
			UVB(16.20)	
Hydrothermal	Zinc chloride -	7 nm	Absorption in the UV	Taunk et al., (2015)
method	Tri		region (235-407 nm)	
	ethanolamine -			
	Sodium			
	hydroxide			
				/30

Precursors	Optimum Size	UV Protection effect	Reference
	(nm)		
Zinc nitrate -	19-54 nm	No tests for UV protection	Thirumavalavan et al.,
Modified chitosan		effect.	(2013)
Zinc nitrate -	9-10 nm	absorption in UV region	Ramesh et al., (2014)
Extract of Citrus		(208-400 nm).	
aurantifolia leaves			
Zinc acetate -	22.18 nm	absorption in UV region	Varghese et al., (2015)
Sodium		(340-400nm).	
hydroxide-			
extract of Aloe Vera			
leaves			
			432

 Table 2. Comparison between green methods of ZnO NPs synthesis.

Table 3. Comparison between single applications of ZnO NPs on cotton fabric.	433
---	-----

Precursors	Size (nm)	UV Protection effect	Reference
-	The used ZnO NPs size	Increasing UPF values	Abdel Ghani et al.,
	< 35 nm	from (27.22)	(2015)
		to (711.44)	
Zinc nitrate +	Resulted ZnO NPs size	UPF value (22.8) after	Shaheen et al .,
(HMTETA)	=359 nm	15 washes (17.6)	(2015)
Zinc nitrate +	Resulted ZnO NPs size	UPF value 890 after 50	Prasa et al ., (2016)
Sodium hydroxide	<100nm	washes 450	
			434

Table 4. Cons and Pros of ZnO NPs application with natural materials.

Natural material	Advantages	Disadvantages	Reference
Carboxymethyl	-Smaller size of nano	-More chemical content for	El.Shafei and Abou-
chitosan	particles.	carboxymethylation of	Okeil, (2011).
	- Higher antibacterial	chitosan.	
	activity against both gram	-No tests for finishing	
	positive and gram	durability.	
	negative bacteria.		
	-Improving UV protection		
	(7.6).		
Chitosan	-Ecofriendly method only	-Comparatively larger size of	Abdelhady, (2012).
	included chitosan in its	chitosan/ ZnO NPs (300nm).	
	simplest form.	-No tests for finishing	
	- Higher UPF values	durability.	
	(8.3).		
	- Moderate antibacterial		
	activity against both gram		
	positive and gram		
	negative bacteria.		
			437

437

Table 5. Cons and Pros of ZnO NPs application with synthetic materials438

Synthetic material	Advantages	Disadvantages	Reference
Sodium hypophosphite-	- Polycarboxylic acids are	-Iincluding durability	Abdelhady et al.,
Polycarboxylic acids	environmental friendly materials.	tests for only 2 washes.	(2013)
	- Smaller size of resulted ZnO	-Using BTCA leaded to	
	NPs.	increase flame retardant	
	- Producing multifunctional	action but it caused	

	finishing to cotton and CO/PET	increasing roughness	
	fabric.	and yellowness of	
	- Discussing the effect of ZnO	treated fabric .	
	NPs, SHP and Curing temp .	- Increasing	
	-Improving flame retardancy of	concentration of ZnO	
	cotton and CO/PET fabric.	NPs resulted in higher	
	-Higher UPF values for cotton and	UPF values but it caused	
	CO /PET fabric.	increasing in yellowness	
	-Increasing CRA values of treated	and roughness	
	fabrics.	of treated fabric.	
CU ₂ O NPs	-Synthesis of CU ₂ O/ZnO NPs in-	- Durability tests were	Noorian et al.,
	situ provided more durable	carried out after only	(2015)
	finishing.	5 washing cycles.	
	-Adding folic acid as a bio	- Slight increase in	
	template during in-situ synthesis	cotton fabric thickness.	
	of CU ₂ O/ ZnO NPs provided		
	greener, more effective method to		
	improve UV protection.		
	-Providing UV protection with		
	improving physical properties of		
	cotton fabric.		

439

Table 6. Cons and Pros of ZnO NPs application after plasma treatment.440

Plasma treatment	Advantages	Disadvantages	Reference
CF4 and H ₂ O plasma.	- Using lower concentrations of	- Decreasing in wash	Gorjanc et al.,
	ZnO NPs which provide	fastness (UPF values	(2014)

	environmental and	decrease from 58.89 to	
	economical improvement.	4.58 only after 10	
	- Higher adsorption of ZnO NPs	washes).	
	which resulted in higher UPF		
	values .		
	- Increasing hydrophilicity of		
	cotton fabrics.		
O ₂ plasma	-Green method using natural	-	Wang et al
	material (carboxymethyl		(2016)
	chitosan).		
	-Higher adsorption of		
	ZnO/CMCS NPs due to plasma		
	treatment .		
	- Providing multifunctional		
	finishing (antibacterial and UV		
	protection finishing)to cotton		
	fabric		
	- Including durable test after 30		
	washes.		
	- Producing durable antibacterial		
	and UV protection finishing after		
	30 washes.		
	- Improvement in thermal		
	properties of cotton fabric.		

Table 7. Comparison between chemical methods of TiO_2 NPs.

Chemical	Precursors	Optimum Size	UV Protection	Reference
methods		(nm)	effect	
Sol gel method	Titanium	5-10 nm	Higher UPF value	Gouda and
	tetrachloride – Poly		for cotton fabric	Aljaafari ,
	vinyl pyrrolidone-		after 20 washes	(2012)
	Borohybride.		(40).	
Sol gel method	Bulk TiO2 -	37 nm	Absorption in UV	Hema et al.,
	trisodium citrate.		region at (408	(2013)
			nm).	
Hydrothermal	Titanium	17 nm	Absorption of	Vijayalakshmi
Method	tetrachloride-		UV radiation at	and Rajendran,
	Sodium		the wavelength	(2012).
	hydroxide		of 362 nm .	
Sol gel method	Titanium	7nm	Absorption of	
	isopropoxide –		UV radiation at	
	Ethanol		the wavelength	
			of 351 nm.	
Hydrothermal	Synthetic rutile -	15.6 nm	Absorption of	Mahdi et al.,
method	Sodium		UV radiation at	(2013)
	hydroxide		the wavelength	
	-		of 400 nm.	

Targeted fabric	Advantages	Disadvantages	Reference
Pure lyocell - (80/20-	-Investigating the effect of	- TiO ₂ NPs finishing	Adnan and
60/40-50/50)% lyocell	TiO_2 NPs on both pure and blend	caused negative	Moses, (2013)
silk blends - Pure silk	fabrics.	effects on physical	
fabrics	- Including durability tests for 25	properties of all treated	
	washes.	fabrics (decreasing in	
	Providing durable UV	air permeability, tensile	
	protection after 25 washes.	strength and absorbency)	
	-Improving in anti wrinkle		
	property of all treated fabrics.		
Wool fabrics	-Providing dyeing and finishing	- No tests for dyeing and	Zhang et al.,
	process at the same time which	finishing durability.	(2014).
	save money, time and effort.	- Negative effects on	
	- Investigating the optimum	physical properties of	
	concentrations of reactive dye	wool fabric (decreasing	
	and acetic acid.	in breaking stress,	
	- Producing smaller size of TiO_2	elongation rate and	
	NPs < 10 nm.	thermal stability).	
	- Improving photocatalytic		
	activity.		
Cotton fabrics	- In situ synthesis of TiO ₂ NPs	- Also, there was	El-Naggar et al.,
	which saved (time -effort-	negative effect	(2016)
	money).	on physical properties	
	- Investigating the effect of (UN)	of cotton fabrics (Slight	
	as a peptizing agent used in TiO_2	decrease in elongation	
	NPs synthesis.	rate and tensile strength).	

Table 8. Cons and pros of TiO_2 NPs single application on different fabric types447

Providing durable multifunctional
finishing to cotton fabrics.
- Producing Moderate size of TiO ₂
NPs < 50nm.
- Including durability tests for 20
washes.
-Very good UPF values and
antibacterial activity after 20
washes.
- Increasing antibacterial activity
against both S.aureus and E. coli
bacteria.

449Table 9 comparison between green methods of TiO_2 NPs synthesis

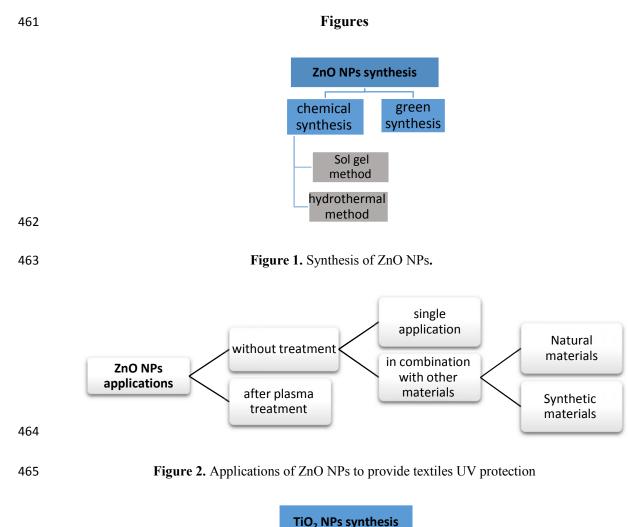
Precursors	Optimum Size	UV Protection effect	Reference
	(nm)		
TiO ₂ salt-	1.5 - 5.9 nm.	Absorbance of UV radiation	Tarafdar et al., (2013).
Extract of Aspergillus		at the range (300–350 nm).	
tubingensis fungi .			
TiO(OH) ₄ -	60-100 nm	Higher absorption of UV	Ganesan et al., (2016)
leaf extracts of		radiation at the wavelength	
Ageratina altissima		332nm.	
plant.			

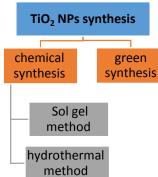
0.

Table 10. Cons and Pros of TiO_2 NPs application with other materials.454	54
--	----

Applied material	Advantages	Disadvantages	Reference
Sodium hypophosphite -	-Providing multifunctional	- Antibacterial tests	Hashemikia and
Citric acid- TiO ₂ NPs .	finishing to fabric.	included only one type	Montazer,
	- Investigating The optimum	of bacteria.	(2012).
	concentrations of CA, SHP	- Decreasing in fabric	
	and TiO_2 NPs .	tensile strength.	
	- Increasing flame retardancy and	- Including durability	
	anti pilling effect .	tests for only 10 washes.	
	- Improving antibacterial activity		
	against S.aureus bacteria.		
	- Increasing hydrophilicity and		
	self cleaning property .		
	- Improving tensile strength		
	- Including durability tests for 10		
	washes.		
Ag NPs - TiO ₂ NPs .	- Providing multifunctional	- Including durability	Milosevic et al.,
	finishing to Polyester fabrics	tests for only 10 washes.	(2013).
	- Higher antimicrobial activity	-Decreasing UPF values	
	aginst E.coli, S.aureus	after 10 washes.	
	bacteria and C.albicans fungus -	-Low fastness (for	
	Increasing UV protection of	washing and	
	treated fabrics .	perspiration) due to Ag	
	- Including durability tests for 10	NPs release.	
	washes.		

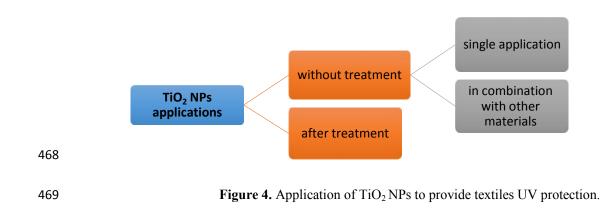
	- Durable antibacterial activity	
	after 10 washes.	
Ag NPs - TiO ₂ NPs.	- Providing multifunctional	- Li et al., (2017).
	finishing to cotton fabric.	
	- Investigating the effect of Ag	
	and TiO_2 NPs.	
	- Including hydrothermal	
	treatment for higher crosslinking.	
	- In situ synthesis of Ag NPs	
	which provided more durability.	
	- Providing excellent UV	
	protection and antibacterial	
	- Including durability tests for 50	
	washes.	
	- Durable UV protection and	
	antibacterial activity after 50	
	washes.	


455


Table 11. Cons and Pros of TiO_2 NPs application on treated fabrics.456

Treatment process	Advantages	Disadvantages	Reference
Treatment with H ₂ O ₂ in	- Using microwave curing after	- Decreasing in	Ramadan et al.,
ultrasonic bath.	the application of TiO_2 NPs.	Roughness and tensile	(2012).
	-Including investigation of the	strength of treated	
	optimum conditions (TiO ₂ NPs	fabrics.	
	concentration -microwave curing	- No tests for finishing	
	conditions).	durability were	

	-Providing multifunctional	included.	
	finishing to CA fabric .		
	- Improving UV protection		
	and self cleaning property of CA		
	fabric.		
	- Increasing the whiteness of		
	treated fabric.		
	- Decreasing in of CA fabric.		
Plasma and oxygen gas.	- Plasma pretreatment provided	- Including durability	Hashemizad et
	more uniform distribution of TiO_2	tests for only 10	al., (2014).
	NPs on PET fabric.	washes.	
	- Providing enhanced		
	multifunctional finishing to PET		
	fabric.		
	- Including durability test .		
	- Providing higher UV absorbance		
	even after 10 washes.		
	- Improving self cleaning of		
	treated fabric.		
Cold plasma treatment	- Including investigation of the	- Negative effects on	Memon and
	optimum conditions of plasma	physical properties of	Kumari, (2016).
	treatment.	polyester/ cotton blends	
	- Plasma treatment provided	fabric (decreasing in	
	higher deposition of NPs on the	elongation, tensile	
	fabric surface.	strength and air	
	- Providing improved	permeability).	
	multifunctional finishing to	- No tests for UPF	


	polyester cotton blended fabric.	values, antibacterial	
	- Improving UV protection,	and antistatic property	
	antistatic and antibacterial	after 50 washes.	
	property of treated fabric.		
	- Including durability tests for 50		
	washes.		
(DBD) plasma	-Including comparison of Al ₂ O ₃	- Antibacterial activity	Gawish et al.
treatment.	, ZnO and TiO ₂ NPs effect on	of PP fabric was not	(2017).
	PET and PP fabrics.	tested.	
	-Investigating the effect of	- TiO ₂ NPs showed no	
	plasma treatment on PP and	antibacterial effect on	
	PET fabrics.	polyester fabric.	
	- Providing more uniform	- No tests for finishing	
	distribution of NPs on PP	durability were	
	fabric due to plasma treatment.	included.	
	- Improving UV protection of		
	PP fabric. Zno NPs> TiO ₂ NPs		
	> Al ₂ O ₃ NPs.		
	- Providing excellent UV		
	protection for PET fabric		
	TiO ₂ NPs> ZnO NPs>		
	Al ₂ O ₃ NPs.		

466

Figure 3. Synthesis of TiO₂ NPs.

