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Abstract
In this article optical absorbing and band structure of solid molecular hydrogen at five
different phases are reported. Transition pressure for the non-metallic phase to the
metallic phase is found at 284 GPA. Phase-IV and phase-V of solid molecular hydrogen
are assumed to be metallic. It is also observed that UV-visible spectra of molecular
hydrogen is also changing significantly with the change of pressure.
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1 Introduction
Determining the metalization pressure of solid hydrogen is of great interest due to the
possible existence of room-temperature superconductivity [1] and a metallic liquid ground
state [2]. There are both dynamic [3] and static experiments [4, 5, 6, 7] and theoretical
calculations [8, 9, 10, 11, 12, 13]. So far five different phases of solid hydrogen are
proposed. Phase I is a molecular solid composed of quantum rotors arranged in a hexagonal
close-packed structure. It is stable up to 110 GPa. Phase II is known as broken-symmetry
phase. It exists within 110 GPa to 150 GPa pressure range. Phases I and II have different
parity of the rotational states namely ortho-para distinction [14]. In contrast, phase III
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is accompanied by a large discontinuity in the Raman spectrum. The strong rise in its
spectral weight of molecular vibrons is due to orientationally ordered structure. Phase IV
is reported above 230 GPa pressure at 300K. The most recent experimental results [15]
suggests that there may exists another phase of hydrogen above 325 GPa pressure and
300K temperature. This proposed phase V, may meet phases I and IV at a triple point
where hydrogen retains its molecular character.

It is observed that with increase in pressure, fundamental vibrational frequency and
the low-frequency excitations are partially lost [16]. Thus, Density Functional Theory (DFT)
calculations are performed to study the change of optical absorbance and vibrational frequency
shift of molecular hydrogen with the increase of pressure. Band structures are computed
taking different pressure at five different solid phases of molecular hydrogen.

2 Theoretical Background for DC conductivity
calculation using conversion parameter

DC conductivity (σ) of an electrical conductor is the ratio of the current density (Ĵ) and the
applied electrical potential (E). Current density (Ĵ) for DC potential is given as

Ĵ = −nev (2.1)

where, n is the number of electrons per cubic centimeter, e is the charge of electron and v
is the average velocity of electron due to the applied electric field. For unit potential, Ĵ = σ.
Thus, we can write

σ = −nev (2.2)

Here ne is the electronic charge density of the valance band. Thus, ne is proportional to
the electron’s probability density of the valance band. Considering electron pair hopping we
can say, when electrical field is applied, electron transfer occurs from one molecular site
to another. Quantum technique may be used to verify whether electron transferred from
one site to another site of a system is possible or not. For electrical conductors electron
transfer must be quantum mechanically allowed and transfer integral would be positive in
sign as DC conductivity is proportional to the square root of the transfer integral [8]. If we
replace electronic velocity (v) by

√
KE in Equation 2.2, where KE is the kinetic energy

integral of electrons in the valance orbital we shall get an expression of the calculation for
the electrical conductivity. Thus, DC conductivity may be defined in terms of charge density
and kinetic energy as

σ = Baρe
√
KE (2.3)

where ρe is charge density of valance electron and Ba is the proportionality constant known
as conversion parameter [8]. If we know the value of valence electron density and transfer
integral of any conductor we shall get the value of electrical conductivity of that conductor at
any temperature provided that value of Ba at that temperature is known. From Equation 2.3
it is obvious that a positive value of KE implies electron transfer is quantum mechanically
allowed. On the other hand, 0 or negative value of KE implies that the respective process
is forbidden.
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3 Computational Details
Configuration Interaction (CI) [17, 18] theory is used for the calculation of charge density of
the conductor. Transfer integrals (kinetic energy integral, KE in particular) are calculated
for different CI populations. In this process only pair hopping is considered. GAMESS
(Version = 6 SEP 2001 (R5) from Iowa State University) [19] is used for Hartree Fock level
calculation. STO-3G basis set is used for all calculations. ρe is calculated from overlap
matrix and density matrix. KE is calculated from overlap between different CI states.
Conductivity is calculated from Equation 2.3.

Density functional based calculations are done using GAUSSIAN 09 [20]. Optical
absorbance is computed using time dependent density functional theory (TDDFT) [21].
Beckes three parameter of hybrid exchange functional [22] combined with Lee−Yang−Parr
non-local correlation function [23], abbreviated as B3LYP is used for all DFT calculations.
This functional is used because it is proved that for spectral properties this functional
reproduce experimental results very accurately [24, 25, 26, 27, 28, 29, 30, 31, 32].

Conversion parameters (Ba) at different temperatures are calculated from the plot of
Ba vs T (K). For this plot, Ba values of Li and Mg at different temperatures are taken
from Reference [8]. Ba vs T (K) is plotted for Li, Mg and average of these two (Figure
1). QUANTUM ESPRESSO [33], a modular and open-source software project for quantum
simulations of materials is used for solid state calculations.

100 200 300
Temperature (K)

0

5

10

C
on

ve
rs

io
n 

pa
ra

m
et

er
 (

B
a)

Li
Mg
Avarage

Figure 1: Variation of conversion parameter with respect to temperature

4 Result and Discussion

4.1 Transition geometry of hydrogen molecular solid from
non-metallic phase to metallic phase

Kinetic energy integrals of different H2 −H2 molecular distances are taken from reference
[8] and plotted against molecular distance which is presented in Figure 2. It is observed
that KEs vary with molecular distances non-linearly. It varies in a zig zag way. At a H2−H2
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distance of 1.72Å, kinetic energy (KE) plot crosses X-axis. Thus, we may conclude that
this H2−H2 distance is the transition point of molecular hydrogen to metallic hydrogen. It is
reported [8] that pressure of the transition state is 2.8 Mbar or 280 GPa. Calculated density
of metallic hydrogen is 1.302 gm cm3 . Experimental results reported by Grigorev et al [35]
shows that at transition point density of hydrogen is within 1.08 to 1.30 gm cm3 . Thus, this
H2 −H2 distance is taken for band structure calculation.
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Figure 2: Change of kinetic energy integral with respect to molecular
distance

4.2 Change of optical absorptivity due to the change of
molecular distance

Using the time dependent density functional theory (TDDFT) calculation, UV-visible spectra
of hydrogen molecular solid for different H2−H2 distances are computed. 1.6Å, 1.7Å, 1.8Å
and 2.1Å molecular distances are taken for this computation. These values are chosen
as we know 1.7Å is the molecular distance at the transition point. 1.6Å and 1.8Å are the
molecular distances above and bellow the transition point respectively. 2.1Å molecular
distance is taken to know the spectral pattern shortly away from the transition point. Computed
spectra are presented in Figure 3.

There are five distinct peak points in the UV-visible spectrum when two H2 molecules
are separated by 2.1Å distance. The peaks are at 91nm, 78nm, 56nm, 46nm and 44nm.
Spectral pattern changes due to the decrease of inter molecular distance. At 1.8Å lowest
energy peak (91nm) doesn’t shift. But second (76nm), third (54nm) and fifth (42nm) show
blue shift while fourth (48nm) peak shows red shift. The third peak practically vanishes
beyond 1.7Å molecular distance. Red shift of fourth peak continues (49nm and 50nm
respectively). Position of second (at 76nm) and fifth peak (at 42nm) don’t change with
further change of molecular distance. But, little red shift is observed for the first peak
(92nm and 93nm respectively). Intensity ratio of the fourth and fifth peaks changes due to
the decrease of inter molecular distances. At 1.6Å molecular distance intensity of the fourth
peak is greater than that of the fifth peak.

103



A. Bag X(X), XX–XX, 20XX

(a) distance = 1.6Å (b) distance = 1.7Å

(c) distance = 1.8Å (d) distance = 2.1Å

Figure 3: Change of optical absorptivity with respect to molecular distance

4.3 Band structures of molecular solid hydrogen in different
phases at 300K temperature

Computed band structures of solid molecular hydrogen at five different phases at 300K
temperature are presented in Figure 4. The variation of band gap due to the change of
pressure at 300K temperature is presented in Table 1.

It is observed that band gap decreases due to the increase of pressure. From the band
gap values we may conclude that phase-IV and phase-V of solid molecular hydrogen are
metallic phase. Non metallic to metallic phase transition occurs near at 284 GPa pressure
which is similar to the value (280 GPa) obtained by transfer integral (kinetic energy integral)
calculation method [8]. Phase-II and phase-III are like semiconductor, while phase-I is like
non-metallic. It is also observed that though the band gap decreases due to the increase
of pressure, nature of the band structure doesn’t change.

5 Conclusions
Band gap and optical spectra of solid molecular hydrogen significantly changes with increase
of pressure. It is very difficult to predict the transition pressure of a molecular solid to the
metallic phase by studding only the band gap or band structure as the change is very
small when the change of pressure is very small. But, calculation of transition pressure
is comparatively easier by by transfer integral (kinetic energy integral) calculation method
[8]. Not only that, from the kinetic energy integral value, we can calculate the electrical
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Figure 4: Change of band structure with respect to pressure at 300K

conductivity of a metal with the help of conversion parameter at different temperatures.
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Table 1: Change of band gap due to the change of pressure at 300K
temperature.

Phase Pressure (GPa) Band gap (eV)
Phase-I 90 1.5

Phase-II 138 0.6

Phase-III 211 0.2

Phase-IV 284 0.0

Phase-V 332 0.0
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