
Direct property calculation of atom: A classical approach

Abstract

In this work, a new energy functional is proposed based on classical machanics which excludes

the idea of basis set for the calculation of ground-state electronic energies and ionization energies

of atoms with Z = 1−120. Energy functionals are partitioned numarically and thus this method is

termed as partitioned classical density functional theory (PCDFT). It is demonstrated that one can

define an energy functional solely on classical grounds which reduce the computational cost of strage

and time. Calculated energies and ionization energies are in reasonably good agreement with the

quantum mechanical results of Relativistic Hartree Fock method in large basis set. Total energies

and ionization energies show mean absolute percent deviations as 0.887 and 8.73 respectively.

Given the fact that it is a simple, basis-set free, easy to implementable, one-step method, it could

be useful for larger systems.
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I. INTRODUCTION

Present day computational chemistry is constituted of a host of sophisticated, powerful

and accurate methods. Majority of these are traditional wave function-based methods, such

as Hartree Fock (HF)[1], Configuration Interaction (CI)[1], Perturbation theory (PT)[1, 2],

Coupled Cluster (CC) theory [2–4], etc. Alternatively, there are density-based methods

like Density functional theory (DFT) [5, 6]which employs single-particle density as the key

element. Within this broad classification there are several subdivisions. Some of these

are further divided into single-reference and multi-reference (MR) approaches. MR CC

methods are again divided into state-selective approach, which is a single-root method, and

multi-root approach involving an effective Hamiltonian within the Bloch method. There

are two different routes in effective Hamiltonian methods; viz., Hilbert space MRCC [7] and

Fock space MRCC [3]. There is another class of CC method named Equation of Motion

coupled cluster [8]. CC methods are very accurate and useful for small molecules, but

computationally challenging for large systems. Same is true for other ab-initio methods

as well. Full CI is considered as an exact method within a given basis set; however, its

implementation is restricted due to computational constraints. Many interesting innovative

ideas have been put forth in the past two decades to optimize the computational requirement

and the process still continues.

Density-based methods, on the other hand, employs the 3D, physically realizable, single-

particle electron density in contrast to the complex-valued wave function of 3N space and N

spin coordinates. Today’s electronic structure calculation of materials is largely dominated

by DFT, primarily due to its ability to account for the electron correlation effects in a

transparent and accurate manner. This is done through the introduction of a fictitious

non-interacting system having the same ground-state density of the real system concerned.

The most challenging part of the problem remains in finding the elusive, yet-to-be-found,

all-important exchange correlation (XC) energy density functional, whose exact form is

unknown as yet and must be approximated in practice. For smaller systems, the electron

correlation effects are conveniently and accurately described by CC, CI, MP etc. However,

for complicated larger systems, DFT has an edge over these methods, due to its unique ability

to strike a balance between quantitative accuracy and efficient computational resource in

conjunction with readily interpretable conceptual simplicity.
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This work relates the energy of a many-electron atom directly to the number of electrons

and geometry of the system without any basis-set expansion. To this end, explicit expressions

for energy and ionization energy of atoms are given in terms of the total number of electrons

and radius of the corresponding atom. Investigation on 120 atoms in the periodic table shows

that, obtained results are in agreement with non-relativistic HF and numerical relativistic

Dirac Fock results [9]. It does not involve any computational complexity (such as no basis-

set dependence, no self-consistency, etc.) and very easily implemented for the system at

hand, irrespective of the number of electrons.

In section II, we present an account of the methodology for atomic properties. Section

III gives a comparison of our results with the accurate quantum mechanical ones available

in the literature. Merits and demerits of this approach are also discussed in this section.

Finally, section IV concludes with a few pertinent remarks.

II. THEORY

Practical application of the HF and HF-based methods such as CC, CI, MP or even

the DFT methods usually employs a linear combination of the atomic orbitals as basis

to expand the molecular orbitals. Apart from other factors, partly these atomic orbitals

are responsible for the characteristic electronic shell structure of atoms. In DFT, however,

the two-electron repulsion integrals are bypassed and instead the repulsion potentials are

obtained as functional of electron density. Keeping in mind the key features of these two

different classes of methods, here we formulate a new methodology using the electron density

approach of DFT and the two-electron integrals of ab-initio methods with some modification.

It is obvious that for every atomic or molecular property there is a definite unique relation

with the parameters on which it depends. That relation may not necessarily be simple or

straightforward. However, if that exact relation could be established, calculation of that

particular property would be trivial and fast. In this work we have made an attempt to find

some such relations.

Within the broad domain of Hohenberg-Kohn-Sham [10, 11] DFT, the single-particle elec-

tron density uniquely defines the external potential and energy of a many-electron system.

In other words, the energy of such a system is a function of electron density only. Thus,

E = g{ρ} (1)
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The function g is unknown, and ρ is given in terms of the number of electron(N) and

volume(V ) as

ρ =
N

V
(2)

Though, it is obvious that in general, the electron density is not uniform for an interacting

many-electron system; however, for simplicity, such an approximation may be considered,

particularly for an atom. Assuming spherical symmetry, V is proportional to r3, and hence

from Eqs. (1) and (2), energy of an atom may be written in the following general form,

E = KbN
mρn (3)

where Kb is a proportionality constant; m and n are two unknowns. But, if we calculate

density as a function of r only, we should end up with something like the core potential in

ab-initio methods, though its value may not be the same. Thus, it is necessary to add the

effects of two-electron interactions. Since shell free electrons are considered, total number

of two-electron interactions (T ) for an N -electron atom would be N(N−1)
2

. Thus, for an N

electron system, total energy may be rewritten as,

E = KbN
mρn +KcT

p (4)

where Kc is another constant and p is a function of N . Equation 4 is exact in the sense that

it takes into account all the relevant contributions to energy.

To evaluate these constants Hydrogen atom is chosen as a reference. In order to launch the

process, an arbitrary guess of n = 0.1 is used (other values of n produce similar qualitative

results overall, with n = 0.1 offering only slightly better values). Using the ground-state

energy of −0.5 a.u., radius 0.52977Å and N = 1, Kb is found to be −0.4767, from Eq. (3).

To evaluate m and Kc, two-electron atoms with T = 1 is chosen, for which the energy

expression may be given as,

E = −0.4767× 2mρ0.1 +Kc (5)

Now four two-electron atoms are chosen, namely He,Li+, Be2+, B3+. Using their ground-

state energies as −2.9070,−7.2930,−13.9996 and −23.26153 a.u. respectively [9], and keep-

ing Kc fixed, 6 m values can be obtained considering the six paired equations (six pairs of

atoms). Obviously m is a Z-dependent function, and here we use the form as m = Z1/Z .
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Employing this m for He, gives a value of Kc = −1.40024, which is used henceforth. There

is no straightforward way to evaluate p. But clearly, it should be a function of Z and N.

One way to proceed is to split Kc into two parts to account for the Z- and N-dependence

separately. The former is incorporated by adding a term in the energy expression which is

a function of m and for the latter, a power term in N is introduced. Taking known energies

of atoms (Z = 3 − 10) from ref. [9], parametrized form of our energy expression obtained

by minimizing the per cent deviation for these atoms keeping the splitting of Kc as −1.1

and −0.30024 fixed. These atoms are chosen for parametrization because it is known that

electron correlation effects are more significant for lower-Z atoms. With this parametrization

scheme, one finally gets an expression of energy as follows,

E = −0.4767Nmρ0.1 − 1.1T (0.2+0.489m+ 0.525
m

) − 0.30024T (0.01N0.984) (6)

Now we move on to the ionization energy. As there is no shell structure and no orbital

picture in this approach, ionization energy cannot be obtained directly as the energy differ-

ence between (N − 1)- and N -electron systems, which actually reflects the orbital energy

of the N th electron according to Koopmans’ theorem. However, it is possible to get an ap-

proximate expression for ionization energy by using the above idea slightly differently. One

can evaluate different orbital energies as an one-electron functions using an effective radius

and exact nuclear charge. Then the effects of other electrons should reflect through the raise

of the power of density operator. Thus, ith orbital energy may be calculated through the

expression given below,

Ei = [−0.4767ρ(n+q)]r=S×r0 (7)

Density ρ in equation 7 should be calculated with an effective radius (r) which is S times the

equilibrium radius (r0). The actual values of q and S depend on which orbital energy one is

looking for. The values of q and S are estimated from a consideration of the experimental

ionization energies of He, Li and Ne. Using these ionization energy values and known

equilibrium radii (r0), Eq. (7) is written for 3 pair of atoms to fix n. For each such pair,

three different q and S are obtained; taking a mean gives these values as 0.206 and 0.64.

This leads to the following simple expression for the 1st ionization energy of a given atom,

IP = [−0.4767ρ0.306]r=0.64r0 . (8)

Equations 6 and 8 are used for energy and ionization energy of atoms. It is envisaged that,

for each such property of the system under consideration, there is an exact expression in
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terms of the parameters. By establishing such an exact relation for such a property of

interest, various parameters are obtained by fixing an appropriate one initially and then the

others subsequently from it in a stepwise fashion. As such, development of such relations,

remains the main objective here. This work presents such relations for ground-state energy

and ionization energy of an arbitrary atom in terms of its radius, atomic number and the

number of electrons, following some simple arguments. Note that, using Eq. (8) one could

possibly calculate atomic radii from reference experimental ionization energy as well; however

in a reverse way. Finally, other properties such as electron affinity could also be considered

in a similar manner.

III. RESULTS AND DISCUSSION

At first, the total ground-state energies and 1st ionization energies of atoms calculated

using the methodology presented above, are presented. For all the atoms up to Z = 96,

the experimental radii of [13] are employed. For higher Z, these are not available and an

approximate radii of 1.40Å has been used. This could be partly justified considering the

fact that for heavier atoms density contribution to the total energy is quite small (less than

0.001% for Z = 96). Table I gives a comparison of our energies (in a.u.) with relativistic

(RHF) and non-relativistic Hartree Fock (NHF) results [9]. Both positive and negative

deviations are found in energy relative to the RHF; present energies are lower and higher

than the reference values in 70 and 48 occasions. This could happen as the method is not

subject to the variational bound. The absolute per cent deviations with respect to RHF

and NHF values are given in columns 6,7 respectively. The mean per cent deviation and

mean absolute per cent deviation with respect to RHF are found to be 0.0054 and 0.887

respectively. In the former case, there is obviously cancellation of errors. The absolute

per cent deviation remains within the range of 0.00–1.40% (Lr, Rf), excepting the cases

of Li(11.76%), Be(4.37%), C(1.45%), N(2.5%), O(2.58%), F(2.56%) and Ne(2.54%). Our

results agree far better with RHF than the NHF values. The absolute deviation with respect

to NHF goes as high as 20.36% (ubq), and the mean absolute per cent error reaching

5.72. The deviation in NHF generally shows a trend of gradual increase leaving aside a few

exceptions as seen from column 7. From He to Li, the absolute deviation suddenly jumps

to the maximum (11.77%) which could be partly due to the large increase in radius from
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0.49 to 2.05 a.u. As one moves through Li to Be to B, the agreement in energy with the

reference tends to be better due to a gradual decrease in radius with increase of Z. Within

the 2s22pn configuration, maximum deviation is observed for O (2.58%) which may be due

to an electronic configuration which breaks a half-filled symmetry. Also it is seen that, after

every p6 electronic configuration there is a change of trend in the sense that the absolute

difference reaches a maximum in a p6 configuration; then starts to increase with increase

in Z, finally reaching a maximum again in the next p6 configuration. For the third row

atoms Na, Mg, Al, Si, present method recovers almost 99% of the total energy. After Ca,

the per cent errors in column 7 continuously increases always remaining higher compared

to those in column 6, presumably because of the relativistic effects becoming progressively

more important.

Next, the ionization energies of atoms for Z = 2 − 96 are reported in columns 8,9.

These are compared with the experimental results [14] and the overall agreement appears

to be good. In this case also, both positive and negative variations are observed. Mean

absolute deviation is 0.023 a.u., whereas the mean absolute per cent deviation is 8.73. As

there is a different independent relation for different property in this approach, agreement

or disagreement for a particular property is not reflected in other properly, which could

probably be quite advantageous in some occasions. Error in energy calculation for a given

atom has no bearing on its ionization energy; for example, energy of Be shows a deviation of

4.38% but its ionization energy is very good with respect to the experimental value (0.6%).

Deviation is generally found to be more in those cases where ionization leads to a half-filled

or completely filled s, p or d orbital.

TABLE I: Calculated energies and ionization energies using the present ap-

proach and comparison with NHF and RHF results. All quantities in a.u.

PW=Present Work. AD=Absolute Deviation. PAD=Per cent Absolute Devi-

ation. See text for details.

Atom Radius −Energy (a.u.) PAD IE (a.u.)

(Å) PW NHF [9] RHF [9] RHF NHF PW Expt.[14] AD PAD

H 0.529 0.50001 0.50000 0.50001 0.00 0.00

He 0.49 2.86175 2.86168 2.86175 0.00 0.00 0.8917 0.9026 0.0109 −1.21

Li 2.05 6.55891 7.43273 7.43327 11.76 11.76 0.2397 0.1979 0.0417 21.08

Be 1.40 13.9377 14.5730 14.5752 4.37 4.36 0.3401 0.3422 0.0021 −0.60

B 1.27 24.2933 24.5291 24.5350 0.99 0.96 0.3720 0.3047 0.0673 22.08

C 1.01 38.2184 37.6597 37.6732 1.45 1.48 0.4590 0.4134 0.0457 11.05

N 0.85 55.7009 54.2962 54.3229 2.54 2.59 0.5378 0.5336 0.0042 0.79
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TABLE I: (continued)

Atom Radius −Energy (a.u.) PAD IE (a.u.)

(Å) PW NHF[9] RHF[9] RHF NHF PW Expt.[14] AD PAD

O 0.80 76.7498 74.7692 74.8172 2.58 2.65 0.5686 0.5000 0.0686 13.71

F 0.68 102.041 99.4094 99.4897 2.56 2.65 0.6600 0.6395 0.0205 3.21

Ne 0.58 131.555 128.547 128.674 2.24 2.34 0.7638 0.7916 0.0278 −3.51

Na 2.23 160.838 161.858 162.052 0.75 0.63 0.2219 0.1887 0.0332 17.57

Mg 1.72 199.007 199.615 199.901 0.45 0.30 0.2816 0.2808 0.0007 0.26

Al 1.82 240.984 241.877 242.286 0.54 0.37 0.2673 0.2198 0.0476 21.66

Si 1.46 288.669 288.834 289.403 0.25 0.06 0.3273 0.2992 0.0281 9.39

P 1.23 341.273 340.648 341.420 0.04 0.18 0.3831 0.3851 0.0020 −0.53

S 1.09 398.883 397.479 398.502 0.10 0.35 0.4280 0.3803 0.0477 12.54

Cl 0.97 461.807 459.481 460.821 0.21 0.51 0.4764 0.4761 0.0002 0.05

Ar 0.88 530.104 526.817 528.539 0.30 0.62 0.5209 0.5786 0.0576 −9.96

K 2.37 598.856 599.164 601.351 0.42 0.05 0.2098 0.1594 0.0504 31.65

Ca 2.23 677.917 676.758 679.502 0.23 0.17 0.2219 0.2244 0.0026 −1.14

Sc 2.09 762.817 759.736 763.133 0.04 0.41 0.2355 0.2401 0.0046 −1.93

Ti 2.00 853.567 848.370 852.531 0.12 0.61 0.2452 0.2504 0.0052 −2.08

V 1.92 950.362 942.804 947.851 0.26 0.80 0.2545 0.2474 0.0071 2.87

Cr 1.85 1053.31 1043.14 1049.20 0.39 0.98 0.2634 0.2485 0.0148 5.97

Mn 1.79 1162.53 1149.63 1156.87 0.49 1.12 0.2715 0.2729 0.0015 −0.55

Fe 1.72 1278.20 1262.29 1270.88 0.58 1.26 0.2816 0.2889 0.0073 −2.54

Co 1.67 1400.33 1381.31 1391.42 0.64 1.38 0.2893 0.2885 0.0008 0.26

Ni 1.62 1529.08 1506.81 1518.64 0.69 1.48 0.2975 0.2803 0.0172 6.14

Cu 1.57 1664.58 1638.95 1652.70 0.72 1.56 0.3062 0.2836 0.0226 7.95

Zn 1.53 1806.87 1777.84 1793.78 0.73 1.63 0.3135 0.3449 0.0313 −9.09

Ga 1.81 1954.74 1923.26 1941.63 0.68 1.64 0.2687 0.2202 0.0485 22.01

Ge 1.52 2112.03 2075.34 2096.41 0.74 1.77 0.3154 0.2900 0.0254 8.77

As 1.33 2276.26 2234.16 2258.28 0.80 1.88 0.3565 0.3601 0.0036 −1.00

Se 1.22 2447.41 2399.84 2427.30 0.83 1.98 0.3860 0.3580 0.0280 7.81

Br 1.12 2625.94 2572.43 2603.59 0.86 2.08 0.4175 0.4336 0.0161 −3.71

Kr 1.03 2811.92 2752.06 2787.28 0.88 2.18 0.4508 0.5140 0.0631 −12.28

Rb 2.98 2996.08 2938.36 2978.07 0.61 1.96 0.1700 0.1535 0.0166 10.79

Sr 2.25 3198.28 3131.55 3176.17 0.70 2.13 0.2200 0.2091 0.0110 5.25

Y 2.27 3406.09 3331.67 3381.67 0.72 2.23 0.2183 0.2342 0.0160 −6.81

Zr 2.16 3622.15 3538.96 3594.81 0.76 2.35 0.2284 0.2511 0.0227 −9.02

Nb 2.08 3846.01 3753.48 3815.66 0.79 2.46 0.2365 0.2526 0.0161 −6.36

Mo 2.01 4077.79 3975.37 4044.44 0.82 2.58 0.2441 0.2606 0.0166 −6.37

Tc 1.95 4317.61 4204.60 4281.18 0.85 2.69 0.2509 0.2673 0.0163 −6.11

Ru 1.89 4565.59 4441.45 4526.10 0.87 2.79 0.2582 0.2706 0.0123 −4.55

Rh 1.83 4821.80 4685.83 4779.22 0.89 2.90 0.2660 0.2739 0.0079 −2.87

Fd 1.79 5086.23 4937.91 5046.70 0.78 3.00 0.2715 0.3062 0.0347 −11.34

Ag 1.75 5359.06 5197.70 5310.66 0.91 3.10 0.2771 0.2781 0.0010 −0.35

Cd 1.71 5640.37 5465.12 5589.04 0.92 3.21 0.2831 0.3301 0.0471 −14.25

In 2.00 5928.38 5740.16 5875.83 0.89 3.28 0.2452 0.2124 0.0328 15.42

Sn 1.72 6228.19 6022.91 6171.20 0.92 3.41 0.2816 0.2696 0.0120 4.44
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TABLE I: (continued)

Atom Radius −Energy (a.u.) PAD IE (a.u.)

(Å) PW NHF[9] RHF[9] RHF NHF PW Expt.[14] AD PAD

Sb 1.53 6536.46 6313.43 6475.24 0.95 3.53 0.3135 0.3172 0.0037 −1.15

Te 1.42 6853.11 6611.75 6788.06 0.96 3.65 0.3357 0.3308 0.0050 1.51

I 1.32 7178.67 6917.97 7109.75 0.97 3.77 0.3590 0.3836 0.0246 −6.41

Xe 1.24 7513.11 7232.14 7440.45 0.98 3.89 0.3802 0.4453 0.0651 −14.61

Cs 3.34 7844.74 7553.93 7779.91 0.83 3.85 0.1531 0.1430 0.0102 7.11

Ba 2.78 8198.21 7883.54 8128.33 0.86 3.99 0.1812 0.1913 0.0101 −5.29

La 2.74 8559.22 8221.07 8485.87 0.86 4.11 0.1836 0.2048 0.0212 −10.35

Ce 2.70 8929.52 8566.84 8852.82 0.87 4.23 0.1861 0.2034 0.0172 −8.48

Pr 2.67 9309.15 8921.07 9229.40 0.86 4.35 0.1881 0.2004 0.0124 −6.18

Nd 2.64 9698.23 9283.70 9615.86 0.86 4.47 0.1900 0.2030 0.0130 −6.40

Pm 2.62 10096.8 9654.87 10012.2 0.84 4.58 0.1913 0.2039 0.0125 −6.15

Sm 2.59 10505.0 10034.5 10418.7 0.83 4.69 0.1934 0.2070 0.0137 −6.60

Eu 2.56 10922.9 10423.0 10835.5 0.81 4.80 0.1955 0.2081 0.0127 −6.10

Gd 2.54 11350.6 10820.0 11262.5 0.78 4.90 0.1969 0.2258 0.0289 −12.80

Tb 2.51 11788.2 11226.2 11700.2 0.75 5.01 0.1990 0.2151 0.0161 −7.48

Dy 2.49 12235.7 11641.2 12148.7 0.72 5.11 0.2005 0.2181 0.0176 −8.06

Ho 2.47 12693.2 12065.0 12607.7 0.68 5.21 0.2020 0.2210 0.0190 −8.60

Er 2.45 13160.9 12498.0 13078.0 0.63 5.30 0.2035 0.2239 0.0204 −9.13

Tm 2.42 13638.9 12940.2 13559.2 0.59 5.40 0.2058 0.2270 0.0212 −9.34

Yb 2.40 14127.2 13391.5 14051.9 0.54 5.49 0.2074 0.2296 0.0222 −9.67

Lu 2.25 14626.6 13851.7 14555.9 0.49 5.59 0.2200 0.1992 0.0209 10.47

Hf 2.16 15136.3 14321.2 15071.2 0.43 5.69 0.2284 0.2441 0.0157 −6.42

Ta 2.09 15656.6 14799.7 15598.2 0.37 5.79 0.2355 0.2896 0.0542 −18.71

W 2.02 16187.6 15287.4 16136.9 0.31 5.89 0.2429 0.2930 0.0500 −17.07

Re 1.51 16733.6 15784.4 16687.4 0.28 6.01 0.3173 0.2893 0.0281 9.70

OS 1.44 17286.9 16290.5 17249.9 0.21 6.12 0.3315 0.3194 0.0121 3.78

Ir 1.41 17850.8 16806.0 17824.5 0.15 6.22 0.3379 0.3341 0.0039 1.16

Pt 1.36 18426.3 17331.0 18411.6 0.08 6.32 0.3493 0.3304 0.0189 5.73

Au 1.36 19012.5 17865.4 19011.3 0.01 6.42 0.3493 0.3387 0.0107 3.15

Hg 1.32 19610.9 18409.0 19623.5 0.06 6.53 0.3590 0.3833 0.0242 −6.32

Tl 2.08 20212.6 18961.8 20248.3 0.18 6.60 0.2365 0.2242 0.0123 5.47

Pb 1.81 20836.1 19524.0 20886.0 0.24 6.72 0.2687 0.2722 0.0035 −1.30

Bi 1.63 21471.2 20095.5 21536.6 0.30 6.85 0.2958 0.2680 0.0278 10.38

Po 1.53 22118.0 20676.5 22200.6 0.37 6.97 0.3135 0.3091 0.0044 1.43

At 1.43 22777.2 21266.9 22878.1 0.44 7.10 0.3336 0.3543 0.0207 −5.83

Rn 1.34 23449.2 21866.8 23569.0 0.51 7.24 0.3541 0.3946 0.0405 −10.27

Fr 2.60 24121.0 22475.9 24237.8 0.48 7.32 0.1927 0.1406 0.0521 37.05

Ra 2.21 24820.3 23094.3 24992.3 0.69 7.47 0.2237 0.1938 0.0299 15.41

Ao 2.15 25530.9 23722.1 25724.9 0.75 7.62 0.2294 0.1898 0.0396 20.88

Th 2.06 26255.4 24359.5 26471.9 0.82 7.78 0.2386 0.2232 0.0154 6.90

Pa 2.00 26993.8 25007.0 27233.6 0.88 7.94 0.2452 0.2162 0.0289 13.39

U 1.96 27746.3 25664.1 28010.5 0.94 8.11 0.2498 0.2221 0.0277 12.45

Np 1.90 28513.9 26331.3 28802.9 1.00 8.29 0.2570 0.2272 0.0298 13.09
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TABLE I: (continued)

Atom Radius −Energy (a.u.) PAD IE (a.u.)

(Å) PW NHF[9] RHF[9] RHF NHF PW Expt.[14] AD PAD

Pu 1.87 29296.4 27008.5 29610.8 1.06 8.47 0.2608 0.2225 0.0383 17.22

Am 1.80 30094.9 27695.5 30434.9 1.12 8.66 0.2701 0.2199 0.0502 22.82

Cm 1.69 30910.1 28392.4 31275.0 1.17 8.87 0.2862 0.2210 0.0652 29.49

Bk 1.40 31744.6 29099.9 32132.0 1.21 9.09

Cf 1.40 32592.6 29817.3 33006.1 1.25 9.31

Es 1.40 33458.4 30544.9 33897.1 1.29 9.54

Fm 1.40 34342.8 31282.6 34806.3 1.33 9.78

Md 1.40 35246.6 32030.9 35733.1 1.36 10.04

No 1.40 36170.7 32789.5 36679.1 1.39 10.31

Lr 1.40 37116.0 33558.1 37643.1 1.40 10.60

Rf 1.40 38083.5 34336.6 38624.5 1.40 10.91

Db 1.40 39074.4 35125.5 39627.1 1.39 11.24

Sg 1.40 40089.9 35924.6 40649.5 1.38 11.59

Bh 1.40 41131.5 36734.1 41692.5 1.35 11.97

Hs 1.40 42200.6 37554.1 42756.6 1.30 12.37

Mt 1.40 43298.9 38384.3 43642.3 0.79 12.80

Ds 1.40 44428.4 39225.1 44950.1 1.16 13.27

Rg 1.40 45591.1 40076.1 46080.3 1.06 13.76

Cn 1.40 46789.2 40937.8 47234.1 0.94 14.29

uut 1.40 48025.3 41809.5 48411.6 0.80 14.87

uuq 1.40 49302.1 42691.6 49613.6 0.63 15.48

uup 1.40 50622.8 43584.1 50841.1 0.43 16.15

uuh 1.40 51990.7 44487.1 52094.6 0.20 16.87

uus 1.40 53409.6 45400.5 53375.1 0.06 17.64

uuo 1.40 54883.7 46324.3 54683.5 0.37 18.48

uun 1.40 56417.6 47258.5 56020.3 0.71 19.38

ubn 1.40 58016.4 48202.8 57386.8 1.10 20.36

IV. CONCLUSION

A simple methodology has been presented for ground-state calculation of atoms. Initial

exploratory results for energy and ionization energies have been reported, which compare

reasonably well with experimental and theoretical results available in the literature. Work-

ing equations containing a few parameters are given for atomic properties following simple

arguments. There is no basis dependence and no self consistency as well. There is no real

need for computational facilities, storage and computational time. The method could be

quite useful for larger systems as there is no computational restriction and as the accuracy
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is also quite good. Finding the exact relation for a given property is not a straightforward

task, and requires caution. For excited state properties, ground state relations may not hold

good. But, one could construct valid expressions for different properties in the excited states

as well. Implementation of the method for molecular systems would be quite beneficial and

may lead to an easy practical route towards the larger systems. Some of these may be taken

up in future communications.
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