# FLORA AND FAUNA DIVERSITY STATUS ON TRANS SUMATRA RAILWAY PROJECT DEVELOPMENT PLAN THROUGH THE REGION SIGLI – BIREUN -LHOKSEUMAWE - LANGSA – BESITANG, INDONESIA

# 8 ABSTRACT

1 2

3

4

5 6 7

Background and Objectives: Plans to build and operate a trans-urban railway line through 9 Aceh and northern Sumatra between Sigli - Bireun - Lhokseumawe - Langsa - Besitang, 10 11 allowing impacts on flora and fauna habitat conditions on the project. Site. This research was conducted to find the biodiversity around the project site. Methodology: A collection of 12 species data and number of plants was performed using the Quadrat Nest Plot method, 13 placed on the transect line and observation of field inventories, interviews and literature 14 studies. The results are grouped in protected and endangered species and include endemic 15 16 species in Indonesia. The result: The construction of the railway line does not have a 17 significant impact on the flora and fauna around the project footprint. There are 3 primate 18 species that utilize the habitat around the project site that is long-tailed macagues (Macaca fasicularis), Lampung monkeys (Macaca namastrina) Trachypithecus auratus) and includes 19 endemic fauna protected by the Government of Indonesia and the International Union for 20 Conservation of Nature (IUNC). But the location of the project is just an area for feeding. 21

Conclusions: An assessment of flora and fauna aspects related to prediction and impact
 evaluation. Activity plans do not affect or interfere with ecological entities

24

25 Keywords : Conservation, Endangered Species, Fauna and Flora, Ecological Entities, 26 wildlife protection

#### 29 INTRODUCTION

30 The province of Aceh is the province with the highest biodiversity on the island of

31 Sumatra, even the most unique biodiversity province in the world. Aceh Province is the only

32 landscape in the world where four endangered species live together naturally ie orang utans,

rhinoceros, elephants and Sumatran tigers. The biodiversity of Aceh is not limited to the four

34 wildlife, more widely encompassing the diversity of animals fauna and flora. Distribution of

high biodiversity is found in mountainous areas, especially mountain slopes and foothills,

and in coastal areas of the region with swamp ecosystems on the west coast such as Rawa

37 Singkil-Trumon and Tripa Swamp. The highest distribution of biodiversity is found in Leuser

- 38 Ecosystem Area located in 13 districts / cities in Aceh and 4 districts in North Sumatra
- 39 Province. Land transportation network system, in this case the railway is located within the
- 40 protected area can adversely affect the preservation of the protected area. Even with good
- 41 planning, proper technology implementation and tight protected area supervision of the

42 impacts can be minimized, the protected areas will still experience changes in the physical

<sup>27</sup> 28

and chemical conditions of the area that ultimately affect the lives of flora and fauna in the
 protected area <sup>(21)</sup>

Infrastructure development, especially public transportation and freight transportation, 45 were developed by the Indonesian government in support of National development. The 46 construction of the Trans-Sumatra Railway Line (Sigli - Bireun And Lhokseumawe-Langsa-47 Besitang) is one of the Trans Sumatra Railway lines being developed by President Jokowi's 48 government through NAWACITA program. The Trans Sumatra Railway is the result of the 49 agreement of the Governors of Sumatra who want a relationship industrial area and trade. 50 The Trans Sumatra Railway is also expected to improve the economy of all provinces in 51 Sumatra as well as catch up from the big city city on the island of Java therefore need to 52 accelerate the implementation of Trans Sumatra Rail Way facilities and infrastructure 53 development (Coordinating Ministry of Economic Affair, 2015). 54

Construction of Railway Between Sigli - Bireuen and Lhokseumawe - Langsa -55 Besitang must meet the following requirements: Spatial Plan According to the provisions of 56 57 the laws and regulations, Fulfilling the Policy in the field of environmental protection and management as well as natural resources regulated in legislative regulations, This activity 58 plan does not intersect with areas that have an interest in defense and security such as state 59 borders and military areas. Forecasts of the magnitude and nature of the geo physical, 60 socio-economic and socio-cultural impacts and public health impacts of the pre-construction, 61 construction and operation of railway lines between Sigli-Bireuen and Lhokseumawe-62 Langsa-Besitang referring to Ministerial Regulations Environment No. 16 of 2012 on 63 Guidelines for Compilation of Environmental Documents carefully. Careful forecasts of the 64 magnitude and significance of the physical, chemical, social, cultural and public health 65 66 impacts of the physical, biological, social, economic, social and cultural aspects of the construction, construction and operation of trans-urban railway line. A holistic evaluation is 67 undertaken on all stages of activities that produce Hypothetical Significant Impacts by 68 considering the linkages between impacts and impact sites, so as to know the balance of 69 Significant Impacts that are positive and of significant negative impacts as the basis for 70 71 environmental management and monitoring of chemical, social, geophysical aspects 72 Economic, socio-cultural, and public health at the pre-construction, construction and operation stages of the Business and Activity plan, The proponent has the ability to address 73 significant negative impacts through technological, ocial, and institutional approaches. In a 74 technological approach planned to mitigate significant negative impacts, especially on 75 76 Geophysical-chemical components, the initiator will apply the management technology to surface runoff, vibration, noise, traffic disturbance and the incidence of dust particles 77 (Ministry of Environment and Forestry, 2012). Social and institutional approaches are a top 78 79 priority in addressing the significant negative impacts associated with social, economic, and

cultural issues, namely the impact of homelessness, income change, local accessibility 80 81 disruption, the impact of disturbances of comfort and public restlessness, and changes in community attitudes. The Business Plan or Activity does not intersect with the customary 82 and cultural issues of the surrounding community, thus not disrupting the social values and 83 views of the community, In this study, a study of biological aspects related to the prediction 84 and evaluation of impacts on ecological entities has been conducted. The activity plan will 85 not affect and / or disturb the ecological entity, In this study, a review of the business and / or 86 activities that has been undertaken around the planned business location and / or activity. 87 The activity plan affects the business and / or activities that already exist around the 88 business location and / or activity plan but can be managed and become more developed. In 89 this study, environmental studies have been conducted covering various aspects 90 (geophysical components-chemical, social, public health) all of which can be linked to 91 environmental carrying capacity and capacity. Overall, it can be concluded that the activity 92 plan should not exceed the carrying capacity and environmental capacity in North Sumatera 93 94 Province and Aceh Province that does not exceed the applicable quality standards and the criteria for the limits of each environmental parameter (Ministry of Environment and Forestry, 95 2012). 96

In the construction of the Trans Sumatra Rail Way, it was needed a comprehensive 97 study to ensure that an ecological balance between development and the environment will 98 99 be impacted. The environmental impact assessment is a tool for planning, management, 100 monitoring and evaluation of the environment due to an activity so comprehensively between development activities and the environment runs in harmony. One of the factors likely to be 101 affected by the construction of the trans-Sumatra railway is the condition of diversity of flora 102 103 and fauna, especially protected flora and fauna. Flora and fauna are grouped according to their status, including endangered species, rare plants, endemics and protected by 104 Indonesian wildlife protection laws (Data Red Book). Law of Republic Indonesia No. 5/1990. 105 Chapter V Article 20 paragraph (1) and (2) on protecting plants and animals, and 106 Government Regulation No. 7/1999 on Preservation Of Plant And Animal Species. It also 107 108 refers to the conservation status of the International Union for Conservation of Nature and 109 Natural Resources (IUCN) Red List and the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). 110

Sumatera Island has the highest risk level of biodiversity that is threatened with extinction. Sumatra has the mammals most abundant (210 species), composed of sixteen species of mammals endemic to Sumatra, and 17 are endemic to the Mentawai Islands and listed in the Red List of Threatened in Appendix Convention IUCN Species Endangered and International Trade in Endangered Species of Wild Fauna and Flora (CITES). List Sumatra

totaling 582 birds and 14 species is endemic, species of reptiles and amphibians, 69 (23%)

while the majority of endemic plant species is endemic in the region (Critical EcosystemPartnership Found, 2001).

Infrastructure development and this development Railways on railway development 119 path between Sigli - Bireuen and Lhokseumawe - Langsa - Besitang certainly give effect to 120 the ecosystem that will be passed. Especially at the construction stage there will be 121 ecological changes of flora and fauna, but it does not occur minimally and does not have an 122 important impact on the ecological balance. The ecological balance of an area is determined 123 by the type of bat fauna. Bats are one of the organisms endemic to be in control of 124 ecological, it is because in addition, as seed dispersers of the edible fruit and pollinators of 125 flowers, boats as well as predators of insects that annoy many plants that live in the forest, 126 127 as well by Various species of birds can also be used as an indicator of ecosystem. Bird has an important role in the process of succession of ecosystems and species diversity of birds 128 129 used as ecological indicators in the process of ecological succession early stage successional forest (Oostin, H.J., 1956). 130

- 131
- 132

## 133 **RESEARCH METHODS**

134 Biological environmental components studied in the development of railway line between Sigli - Bireuen and Lhokseumawe - Langsa - Besitang ie flora: the type of 135 plants that exist in the location of activities and surroundings, fauna: the existence of 136 137 the type of animal (IUCN, 1994). Vegetation analysis by purposive sampling, 138 placement of paths and plots following the observed vegetation presence. Because the study area is relatively large, Observations of flora and fauna are conducted in 139 areas that represent study areas and plants in residential areas. This study has been 140 held on September - October 2016. 141

142

#### 143 APPLICATION METHODS IN SAMPLE

The data collection of species and number of plants was done by plotting the example of the Nested Quadrat (Mueller-Dombois, D. and H. Ellenberg, 1974) placed

- in the transect line 20x20 meters sample plot for Tree species inventory (0> 35 cm),
- 147 10 x 10 m, for A-10-35 cm), 5 x 5 m for Piles and Bushes (A = 2-10 cm) and 2 x 2 m
- for Semai (height <1.5 m) and lower plants. Meanwhile, to find out the types of plants
- that are located in the vicinity of the construction of the railway line between Sigli -
- Bireuen and Lhokseumawe Langsa Belitung, a sample plot is specified randomly.
- 151 In addition, secondary data were collected in the form of the library and the results of

studies that have been conducted for the area concerned and unstructuredinterviews with community respondents (IUCN, 1994).

154 The terrestrial fauna data were collected based on the literature review and the

results of the study conducted in the study area, interviews with the community and

156 field observations. Interviews were conducted to obtain information on wildlife

157 species and populations indirectly. The parameters studied in this study were:

158 encounter / population with wildlife and the presence / status of endangered,

159 endemic and protected species (Government Regulation, 1999).

160

#### 161 Materials Research Materials

Materials Research Materials that are used in this study in the form of data, both 162 primary and secondary. The materials used for this study are sampling location 163 maps, literature study. Research tools a lot-tool used in this research is stationary, 164 digital cameras, GPS (Global Positioning System), Personal Computer, Rol meters, 165 Thermometer, Hygrometer and Pitfall Traps. Fauna are not identified during the 166 sampling, identified laboratory using the Pictorial Keys To Soil Animals Of China. 167 Fauna Identified As Fauna Endemic / Indigenous In The Analysis Based Repubik 168 Indonesian Law No. 5 - 1990 on the Conservation of Natural Resources and 169 Ecosystems. The figure 1. shows the location of the survey which based on 170 observations of terrestrial flora and fauna includes observations of monkeys, bats 171 and mangrove ecosystems. The location is because it is feared that there are types 172 of flora and fauna that are covered by the government of Indonesia, while direct 173 observation of flora and fauna in the project location in general is relatively 174 175 homogeneous

176



177 178

182

Figure 1. Location of Fauna and Flora Observation on Trans-Sumatera Railway
Development Plan (Sigli - Bireun Dan Lhokseumawe -Langsa-Besitang (PT.
Mitra Adi Pranata, 2016).

### 183 RESULTS AND DISCUSSION

## 184 A. Flora And Fauna Commonly Found At Project Sites

185 Based on the initial observation in the field, in general the location of the construction

- 186 plan of the Sigli-Bireuen and Lhokseumawe-Langsa-Besitang railway lines is formed
- by the vegetation structure of the plantation, agriculture and yard communities. The
- 188 plantation community is made up of mixed garden / talun vegetation and oil palm
- 189 plantations, whereas the yard is generally made of ornamental plants, protectors and
- 190 fruits. Meanwhile, the agricultural community is generally a rice field and horticultural
- 191 farming.
- 192 The following data on the types of vegetation found in the plantation community are
- shown in the following table 1.
- 194
- 195
- 196

| 197 | Table 1. | Types   | Of Vegetation     | Found In   | Mixed | Garden | Fields | Around | The | Observ | /ation |
|-----|----------|---------|-------------------|------------|-------|--------|--------|--------|-----|--------|--------|
| 198 |          | Site (F | PT. Mitra Adi Pra | anata, 201 | 6)    |        |        |        |     |        |        |
|     |          |         |                   |            |       |        |        |        |     |        |        |

|      | Name of            | Scientific Nome              |     |              |              | Lo           | ocati | ion          |              |              |   | Pro  | tection S | Status | 3 |
|------|--------------------|------------------------------|-----|--------------|--------------|--------------|-------|--------------|--------------|--------------|---|------|-----------|--------|---|
| lo   | Indonesia          | Scientific Name              | 1   | 2            | 3            | 4            | 5     | 6            | 7            | 8            | 9 | IUCN |           |        | Τ |
| A. T |                    | A i                          |     | 1            | 1            | 1            |       |              |              |              |   | -    | -         | 1      | т |
| 1    | Acacia             | Acacia mangium               |     |              |              |              |       | 1            |              |              |   |      |           | -      | + |
| 2    | Angsana            | Pterocarpus indica           |     | -            | ,            |              |       |              | 1            |              | 1 | -    | -         | -      | + |
| -    | Bambu<br>gombong   | Gigantochloa<br>verticillata |     |              |              |              |       |              | $\checkmark$ |              |   | -    | -         | -      |   |
| 4    | Beringin           | Ficus benjamina              |     |              |              |              |       |              |              |              |   | -    | -         | -      |   |
| 5    | Cempedak           | Artocarpus<br>champeden      |     |              |              |              |       | V            | V            |              |   | -    | -         | -      |   |
| 6    | Coklat             | Theobroma cacao              |     |              | $\checkmark$ | $\checkmark$ |       |              | $\checkmark$ | $\checkmark$ |   | -    | -         | -      |   |
| 7    | Durian             | Durio zibethinus             |     |              |              |              |       |              |              |              |   | -    | -         | -      | T |
| 8    | Jambu air          | Syzygium aqueum              |     |              |              |              |       |              |              |              |   | -    | -         | -      |   |
| 9    | Jambu mete         | Anacardium<br>occidentale    |     |              |              |              |       | $\checkmark$ |              |              |   | -    | -         | -      | 1 |
| 11   | Jati               | Tectona grandis              |     |              |              |              |       |              |              |              |   | -    | -         | -      | 1 |
| 12   | Kapuk randu        | Ceiba pentandra              |     |              |              |              |       |              | v            |              | v | -    | -         | -      | 1 |
| 13   | Kedondong          | ,<br>Spondias pinnata        | 1   |              |              |              |       |              | v            |              |   | -    | -         | -      | 1 |
| 14   | Kelapa             | Cocos nucifera               |     |              |              |              |       |              | v            |              |   | -    | -         | -      | 1 |
| 15   | Ketapang           | Terminalia catappa           | v   |              |              |              |       | v            | · ·          | v            | v | -    | -         | -      | 1 |
| 16   | Kiangsret          | Spathodea<br>campanulata     |     |              |              |              |       |              |              |              | Ń | -    | -         | -      | - |
| 17   | Kirinyuh           | Eupathorium<br>inulifolium   |     | $\checkmark$ |              |              |       |              |              |              |   | -    | -         | -      | - |
| 18   | Mangga             | Mangifera indica             |     |              |              |              |       |              |              |              |   | -    | -         | -      | - |
| 19   | Melinjo            | Gnetum gnemon                |     |              |              |              |       |              | ,            |              |   | -    | -         | -      | - |
| 20   | Muncang/<br>kemiri | Aleurites moluccana          | v   | v            |              | v            |       | $\checkmark$ | $\checkmark$ |              |   | -    | -         | -      | - |
| 21   | Petai selong       | Leucaena<br>Leucocephala     |     |              | $\checkmark$ |              |       |              | $\checkmark$ |              |   | -    | -         | -      | 1 |
| 22   | Pinang             | Areca catechu                |     |              |              |              |       |              |              |              |   | -    | -         | -      | 1 |
| 23   | Rambutan           | Nephelium lappaceum          | v   | V            | v            | v            | v     | V            | v            | v            | v | -    | -         | -      | - |
| 24   | Sagu               | Metroxylon sagu              |     | ,            |              |              |       | •            | •            | •            |   | -    | -         | -      | - |
| 25   | Sawit              | Elaeis guineensis            |     |              |              |              | ,     |              |              |              |   | -    | -         | -      | - |
| 26   | Sawo               | Manilkara kauki              |     |              | v            |              |       |              |              |              | v | -    | -         | -      | - |
| 27   | Suren              | Toona sureni                 |     |              |              |              | V     |              |              |              |   | -    | -         | -      | - |
| 28   | Sawit              | Elaeis guenensis             | v   | v            |              | v            | v     | ×            | v            | v            | 2 | -    | _         | -      | - |
| -    | hrubs              | Lidolo guononolo             |     |              |              |              |       |              |              |              | v |      |           |        | _ |
| 1    | Jeruk nipis        | Citrus aurantifolia          |     |              |              |              |       |              |              |              |   | -    | -         | -      | ٦ |
| 2    | Kersen             | Muntingia calabura           |     |              |              |              |       |              |              |              |   | -    | -         | -      | - |
| 3    | Putri malu         | Mimosa pudica                | V   |              |              |              |       |              |              |              |   | -    | -         | -      | - |
|      | C. Bushes          | ,                            | ,   |              |              |              |       |              |              |              |   |      |           |        | 1 |
| 1    | Cabe               | Piper retrofractum           |     |              |              |              |       |              |              |              |   | -    | -         | -      | 1 |
| 2    | Kacang<br>panjang  | Vigna unguiculata            |     |              |              |              |       |              |              |              | Ń | -    | -         | -      |   |
| 3    | Lampuyang          | Panicum repens               |     |              |              |              |       |              |              |              |   | -    | -         | -      | 1 |
| 4    | Marigold           | Tithonia diversifolia        |     |              | v            |              |       |              |              |              |   | -    | -         | -      |   |
| 5    | Singkong           | Manihot utilissima           |     |              |              |              |       |              |              |              |   | -    | -         | -      | 1 |
| 6    | Pecut kuda         | Stacytarpheta indica         | · · |              |              |              |       | · ·          |              |              | v | -    | -         | -      | † |
| D. H | erbs               |                              |     |              |              |              |       |              |              |              | , | 1    | 1         |        | - |
| 1    | Pisang             | Musa paradisiaca             |     |              |              |              |       |              |              |              |   | -    | -         | -      | 1 |
| 2    | Pepaya             | Carica papaya                |     |              |              |              |       |              |              |              |   | -    | -         | -      |   |
| 3    | Harendong          | Melastoma affine             |     |              |              |              |       |              |              |              |   | -    | -         | -      |   |
| 4    | Kirinyuh           | Eupathorium                  | 1   |              | V            |              |       |              |              |              |   | -    | -         | -      | 1 |

| No    | Name of       | Scientific Name      |   |   |   | Lo | ocat | ion |   |              |   | Pro  | tection S | Status | 3 |
|-------|---------------|----------------------|---|---|---|----|------|-----|---|--------------|---|------|-----------|--------|---|
| NO    | Indonesia     | Scientific Name      | 1 | 2 | 3 | 4  | 5    | 6   | 7 | 8            | 9 | IUCN | CITES     | RI     | Е |
|       | tembelekan    |                      |   |   |   |    |      |     |   |              |   |      |           |        |   |
| 6     | Talas/keladi  | Collocasia esculenta |   |   |   |    |      |     |   |              |   | -    | -         | -      | - |
| 7     | Teklan        | Eupathorium riparium |   |   |   |    |      |     |   |              |   | -    | -         | -      | - |
| E. G  | rass          |                      |   |   |   |    |      |     |   |              |   |      |           |        |   |
| 1     | Alang-alang   | Imperata cyllindrica |   |   |   |    |      |     |   |              |   | -    | -         | -      | - |
| 2     | Rumput        | Eleusine indica      |   |   |   |    |      |     |   |              |   | -    | -         | -      | - |
|       | Carulang      |                      |   |   |   |    |      |     |   |              |   |      |           |        |   |
| 3     | Rumput        | Cynodon dactylon     |   |   |   |    |      |     |   |              |   | -    | -         | -      | - |
|       | Kawat         |                      |   |   |   |    |      |     |   |              |   |      |           |        |   |
| 4     | Tebu          | Sacharum officinarum |   |   |   |    |      |     |   | $\checkmark$ |   | -    | -         | -      | - |
| 5     | Jagung        | Zea mays             |   |   |   |    |      |     |   |              |   | -    | -         | -      | - |
| F. Pl | ants of ferns |                      |   |   |   |    |      |     |   |              |   |      |           |        |   |
| 1     | Paku          | Cycas sp.            |   |   |   |    |      |     |   |              |   | -    | -         | -      | - |

199 Source: Field Observation

200 Information. 201

1) Republic Indonesia: Law 5 of 1990 on Conservation of Biological Natural Resources and its Ecosystem 202

and Government Regulation no. 7 of 1999 on the Preservation of Plant and Animal Species

IUCN (International Union for Conservation of Nature): LC = Least Concern;

CITES (Convention of International Trade in Endangered Species of Wild Fauna and Flora) 3)

205 E : Endemisitas 4) 206 5) Location.

203

204

207

208

209

210

211 212 213

214

(1) Sub District Sakti Diitrict Pidie; (2) Sub District Glumpang Tiga District Pidie; (3) Sub District Bandar Baru District Pidie Jaya; (4) Sub District Trienggadeng, District Pidie Jaya; (5) Sub District. Bandar Dua P District idie Jaya; (6) Sub District Simpang Mamplam, District Bireuen; (7) Sub District Peudada District Bireuen; (8) Sub District Peusangan Siblah Krueng, District Bireuen; (9) Sub District. Sawang, District. Aceh Utara

Based on available surveys and literature, no plant species have Conservation Status in the IUCN red list, CITES, or the statute of the law of the Republic of Indonesia is the types of

215 terrestrial fauna observed include fauna of mammals, reptiles, amphibians and insects,

216 based on direct inventory results in the field. The location of the observation was done in

Mali village, Sub-district Sakti, District Pidie to Teupin Reusep Village, sub district Sawang, 217

218 District of North Aceh. As has been explained previously, land use along the project road

219 plan and surrounding areas is generally a residential area, agriculture and plantation owned

by surrounding communities. The high activity and the activities of the people around the 220

221 location of the activity plan caused limited space for wildlife habitat. So the animals

commonly found around this location are domesticated animals and wildlife commonly living 222

around the neighborhoods of settlements, plantations and rice fields. Survey results 223

conducted in nine observation points, wildlife found generally relatively the same. The most 224

225 commonly found for mammal species, namely coconut bajang (Callosciurus notatus) and

mice fields (Rattus exulans). While for the type of amphibian commonly found in all survey 226

227 sites, namely frogs (Hylarana erythraea) and frog (Duttaphrynus melanostictus), and for

common types of reptiles are lizards (Eutropis multifasciata) and chameleons (Bronchocela 228

229 cristatella). From the results of this survey also found one type of primate, a group of long-

230 tailed monkeys (Macaca fascicularis) with the number of individuals as many as 7 tails are

looking for food around the district. Siblah Krueng Kab. Bireuen. Meanwhile, the Kalong 231

(Cynopterus brachyotis) is often encountered across the project site, among others, Mali 232

233 village - Sakti-district Pidie sub-district and Trienggadeng-district Pidie Jaya, as:

234

| 235 | Table 2. | Types of Mammals, Amphibians, Reptiles and Insects Found at Project Sites |
|-----|----------|---------------------------------------------------------------------------|
| 236 |          | (PT. Mitra Adi Pranata, 2016)                                             |

|       | (i i i initia i     | di Planata, 2016)             |   |              |              |              |      |              |              |              |   |      |            |    |   |
|-------|---------------------|-------------------------------|---|--------------|--------------|--------------|------|--------------|--------------|--------------|---|------|------------|----|---|
| No.   | Indonesia Name      | Scientific name               |   |              |              | Lc           | cati | on           |              |              |   |      | tection St |    |   |
| INO.  | Indonesia Name      | Scientific name               | 1 | 2            | 3            | 4            | 5    | 6            | 7            | 8            | 9 | IUCN | CITES      | RI | Е |
| A. M  | AMMALS              |                               |   |              |              |              |      |              |              |              |   |      |            |    |   |
| 1     | Tikus ladang        | Rattus exulans                |   |              |              | $\checkmark$ |      | $\checkmark$ |              | $\checkmark$ |   | LC   | -          | -  | - |
| 2     | Babi hutan          | Sus scrofa                    |   |              |              |              |      |              | $\checkmark$ |              |   | LC   | -          | -  | - |
| 3     | Codot Krawar        | Cynopterus<br>brachyotis      | V |              |              | V            |      |              |              |              |   | LC   | -          | -  | - |
| 4     | Musang              | Paradoxurus<br>hermaphroditus |   |              | V            | V            |      |              |              |              |   | LC   | -          | -  | - |
| 5     | Bajing kelapa       | Callosciurus notatus          |   |              |              | $\checkmark$ |      |              |              | $\checkmark$ |   | LC   | -          | -  | - |
| 6     | Monyet ekor panjang | Macaca fascicularis           |   |              |              |              |      |              |              | $\checkmark$ |   | LC   | -          | -  | - |
| B. A  | MFIBIA              |                               |   |              |              |              |      |              |              |              |   |      |            |    |   |
| 6     | Katak Sawah         | Hylarana erythraea            |   |              |              | $\checkmark$ |      | $\checkmark$ |              | $\checkmark$ |   | LC   | -          | -  | - |
| 7     | Katak rawa          | Fejervarya<br>limnocharis     |   |              |              | V            |      |              |              |              |   | LC   | -          | -  | - |
| 8     | Kodok budug         | Duttaphrynus<br>melanostictus | V | V            | V            | V            | V    | V            | V            | V            | V | LC   | -          | -  | - |
| C. R  | EPTILIA             |                               |   |              |              |              |      |              |              |              | 1 |      |            |    |   |
| 9     | Biawak              | Varanus salvator              |   |              |              |              |      |              |              |              |   | LC   | -          | -  | - |
| 10    | Ular kobra          | Ophiophagus<br>hannah         |   |              | $\checkmark$ | V            |      |              |              |              |   | LC   | -          | -  | - |
| 11    | Kadal               | Eutropis<br>multifasciata     | V | V            | V            | v            | V    | V            | $\checkmark$ | V            | V | LC   | -          | -  | - |
| 12    | Tokek               | Gekko gecko                   |   | $\checkmark$ |              |              |      |              |              |              |   | LC   | -          | -  | - |
| 13    | Bunglon             | Bronchocela<br>cristatella    | V | V            | V            | V            | V    | V            | V            | V            | V | LC   | -          | -  | - |
| D. IN | ISEKTA              |                               |   |              |              |              |      |              |              |              |   |      | 1          |    |   |
| 14    | Belalang            | Valanga nigricornis           |   |              |              |              |      |              |              |              |   | -    | -          | -  | - |
| 15    | Kupu-kupu           | Papilio demoleus              |   |              |              |              |      |              |              |              |   | LC   | -          | -  | - |
| 16    | Kupu-kupu Pastur    | Papilio memnon                |   |              |              |              |      |              |              |              |   | LC   | -          | -  | - |
| 17    | Capung              | Crocothermis<br>servilla      | V | V            | $\checkmark$ | V            | V    | V            | $\checkmark$ | V            | V | LC   | -          | -  | - |

237 Source: Field Observation 238 Information:

239

1) Republic Indonesia: Law 5 of 1990 on Conservation of Biological Natural Resources and its Ecosystem

240 and Government Regulation no. 7 of 1999 on the Preservation of Plant and Animal Species 241 2) IUCN (International Union for Conservation of Nature): LC = Least Concern;

242

 3) CITES (Convention of International Trade in Endangered Species of Wild Fauna and Flora)
 4) E : Endemisitas 243

244 5) Keterangan Lokasi :

245 (1) Sub district Sakti - District. Pidie; (2) Sub district Glumpang Tiga- District. Pidie; (3) Kec. Sub district Bandar Baru - District. Pidie Jaya; (4) Sub district Trienggadeng, - District. Pidie Jaya; (5) Sub district Bandar Dua. - District. Pidie Jaya; (6) Sub district Simpang Mamplam, - District. Bireuen; (7) Sub district Peudada. -246 247 248 District. Bireuen

249

250 Based on Table 2. the fauna species found in the location of the activity and its surroundings

251 are not included in the endemic, protected, or CITES species of fauna. However, based on

the IUCN extinction status all wildlife belongs to the IUCN least concern category, except for 252

253 grasshoppers whose extinction status has not been categorized by IUCN. In addition, based

254 on observations and interviews, no endemic and endangered animal information such as

Sumatran elephants and Sumatran tiger were found at the site. 255

B. The Existence of Aves Fauna or Birds 256

| 257 | The existence of aves fauna or birds is very dependent on the existence of vegetation as a           |
|-----|------------------------------------------------------------------------------------------------------|
| 258 | habitat for nesting, foraging and breeding. Based on observations in all locations of the study      |
| 259 | area found at least 27 species of birds. Generally, the birds around the site are unprotected        |
| 260 | except for a few species, such as honey-sriganti (Nectarinia jugularis), barks (Halcyon              |
| 261 | smyrnensis), river checkers (Todirhampus chloris), eagles and striped shards (Rhipidura              |
| 262 | javanica). From the observation results, it was found that at 9 locations of the project site        |
| 263 | plan, it was found that the bird with the highest abundance was the type of bird bondol / pipit      |
| 264 | (Lonchura leucogastroides) with a relative density value (KR) of 16.475%. This is                    |
| 265 | understandable because in general the location of observation is agricultural land or rice           |
| 266 | fields that are the habitat for species of birds eater such as birds bondol / pipit. In addition, it |
| 267 | is also known that other bird species are quite dominant in each survey location, namely the         |
| 268 | sparrow (Passer montanus) with a KR ( Relative Density) of 15.134%. Birds are birds                  |
| 269 | common in residential community types such as those commonly found in sampling sites.                |
| 270 | Other types are quite dominant, such as cow swallow (Collocalia esculenta) with KR                   |
| 271 | 12.261%, merbah cerukcuk (Pycnonotus goiavier), cinenen gray (Orthotomus ruficeps) with              |
| 272 | KR (Relative Density) 6.705% and jen (Prinia familiaris) with KR (Relative Density) 5.364%.          |
| 273 | Seen from the spread, there are several species of birds that are almost found in all                |
| 274 | locations of observations. Among other birds merbah cerukcuk (Pycnonotus goiavier) and               |
| 275 | cow swallow (Collocalia esculenta) with the value of Relative Frequency (FR) respectively            |
| 276 | 7.692%. Both bird species are found throughout observation sites. In the meantime, several           |
| 277 | other bird species were found in each observation site, ie, birds of honey-sriganti (Nectarinia      |
| 278 | jugularis), gray cinenen (Orthotomus ruficeps) and Javanese (Prinia familiaris) with FR              |
| 279 | (Relative Frequency) value of 6.838% Species of birds in the study area can be seen in               |
| 280 | Table 3, as follows                                                                                  |
| 281 |                                                                                                      |

| - | - | - |  |
|---|---|---|--|
| 2 | Q | 2 |  |

| Ν  | Indonesian              | O si su tifis Nama          | Su |        | ED (0() | F    | rotection | Status    |   |
|----|-------------------------|-----------------------------|----|--------|---------|------|-----------|-----------|---|
| 0  | Name                    | Scientific Name             | m  | KR (%) | FR (%)  | IUCN | CITES     | RI        | Е |
| 1  | Bondol jawa             | Lonchura<br>leucogastroides | 86 | 16.475 | 3.419   | LC   | -         | -         | - |
| 2  | Bondol lurik            | Lonchura punctulata         | 24 | 4.598  | 2.564   | LC   | -         | -         | - |
| 3  | Burung cabe<br>jawa     | Dicaeum trochileum          | 17 | 3.257  | 5.983   | LC   | -         | -         | - |
| 4  | Burung gereja           | Passer montanus             | 79 | 15.134 | 5.128   | LC   | -         | -         | - |
| 5  | Burung<br>kacamata      | Zosterops sp.               | 7  | 1.341  | 3.419   | LC   | -         | -         | - |
| 6  | Burung madu<br>sriganti | Nectarinia jugularis        | 20 | 3.831  | 6.838   | LC   | -         | -         | - |
| 7  | Burung madu             | Anthreptes sp.              | 2  | 0.383  | 1.709   | LC   | -         | Protected | - |
| 8  | Cekakak<br>belukar      | Halcyon smyrnensis          | 3  | 0.575  | 1.709   | LC   | -         | Protected | - |
| 9  | Cekakak<br>sungai       | Todirhampus chloris         | 7  | 1.341  | 4.274   | LC   | -         | Protected | - |
| 10 | Cikrak                  | Abroscopus sp.              | 5  | 0.958  | 1.709   | LC   | -         | -         | - |
| 11 | Cinenen kelabu          | Orthotomus ruficeps         | 35 | 6.705  | 6.838   | LC   | -         | -         | - |

Table 3. Diversity of Bird Fauna in Location Plan of Activities (IUCN, 1994) 282

| N   | Indonesian            |                           | Su  |         |         | F     | rotection | Status    |   |
|-----|-----------------------|---------------------------|-----|---------|---------|-------|-----------|-----------|---|
| 0   | Name                  | Scientific Name           | m   | KR (%)  | FR (%)  | IUCN  | CITES     | RI        | Е |
| 12  | Cipoh kacat           | Aegithina tiphia          | 7   | 1.341   | 3.419   | LC    | -         | -         | - |
| 13  | Cucak kutilang        | Pycnonotus<br>aurigaster  | 7   | 1.341   | 1.709   | LC    | -         | -         | - |
| 14  | Elang Ular            | Spilornis cheela          | 1   | 0.192   | 0.855   | LC    | -         | Protected | - |
| 15  | Jingjing              | Hemipus sp.               | 6   | 1.149   | 2.564   | LC    | -         | -         | - |
| 16  | Kapinis               | Apus sp.                  | 9   | 1.724   | 2.564   | LC    | -         | -         | - |
| 17  | Kerak kerbau          | Acridotheres<br>javanicus | 1   | 0.192   | 0.855   | LC    | -         | -         | - |
| 18  | Kipasan belang        | Rhipidura javanica        | 16  | 3.065   | 5.983   | LC    | -         | -         | - |
| 19  | Kirik-kirik laut      | Merops philippinus        | 15  | 2.874   | 2.564   | LC    | -         | -         | - |
| 20  | Kuntul kerbau         | Bubulcus ibis             | 16  | 3.065   | 3.419   | LC    | -         | -         | - |
| 21  | Layang-layang<br>batu | Hirundo tahitica          | 10  | 1.916   | 2.564   | LC    | -         | -         | - |
| 22  | Merbah<br>cerukcuk    | Pycnonotus goiavier       | 37  | 7.088   | 7.692   | LC    | -         | -         | - |
| 23  | Perenjak jawa         | Prinia familiaris         | 28  | 5.364   | 6.838   | LC    | -         | -         | - |
| 24  | Puyuh                 | Coturnix sp.              | 4   | 0.766   | 0.855   | LC    | -         | -         | - |
| 25  | Tekukur               | Streptopelia<br>chinensis | 11  | 2.107   | 3.419   | LC    | -         | -         | - |
| 26  | Walet sapi            | Collocalia esculenta      | 64  | 12.261  | 7.692   | LC    | -         | -         | - |
| 27  | Wiwik kelabu          | Cacomantis<br>merulinus   | 5   | 0.958   | 3.419   | LC    | -         | -         | - |
| Jum | lah                   |                           | 522 | 100.000 | 100.000 | LC    | -         | -         | - |
|     | Diversity             | Index (H')                |     |         |         | 3,021 |           |           |   |

283 Source: Primary Data 284

287

288

289

Information :

1) Law of Republic Indonesia : 285 286

Constitution No. 5 of 1990 on the Conservation of Natural Resources and Ecosystems

Government Regulations No. 7 tahun 1999 tentang Pengawetan Jenis Tumbuhan dan Satwa IUCN (International Union for Conservation of Nature):LC = Least Concern;

2)

*з*́) CITES (Convention of International Trade in Endangered Species of Wild Fauna and Flora)

290 4) E : Endemisitas

291 5) Relative density-KR 6) Frequency Relative -FR

292 293

Based on Table 3.. The type of avifauna present in the location of the activity and its 294 295 surroundings does not fall within the endemic species of fauna and its trade status is not regulated in the CITES category. However, based on the IUCN extinction status all wildlife 296 belongs to IUCN's least concern category 7 of 1999 on the Preservation of Plant and Animal 297 298 Species, Honey Bird belongs to family of Nectarinidae, Cekakak Belukar, Cekakak River belongs to family of Alcedinidae, and Falconidae is a protected species (Oosting, 1956) 299 300 301 C. Flora - Fauna Surveys Are Conducted at Locations That Have Unique Fauna 302 Characteristics And Unique Habitats Located Around The Study Area 303

304 Flora - Fauna surveys are conducted at locations that have unique fauna characteristics and

305 unique habitats surrounding the study area that may be affected by the activity plan are as follows 306

1. Chiroptera in Blangraya Village, Muara Tiga Sub-district, Pidie District 307

- The Muara Tiga District has coastal habitats and hills. One of the uniqueness in Muara Tiga 308
- Subdistrict is the sleeping tree found in the mammal colony of Ordo Chiroptera with namely 309

- 310 Cynopterus brachyotis, which by local people commonly called Sematung or Long.
- 311 Cynopterus brachyotis makes Pine tree mercusii as a sleeping tree. Hundreds of Cynopterus
- 312 brachyotis colonies occupy eight Pinus mercusii trees in one area. According to local people,
- the bat has been occupying a pine tree in Blangraya village shortly after the 2004 tsunami.
- 314

315 316

317



Figure 2. *Cynopterus brachyotis* colony that occupies *Pinus mercusii* tree in Blangraya Village, Muara Tiga Sub-district, District Pidie (PT. Mitra Adi Pranata, 2016)

Cynopterus brachyotis is a nocturnal animal that actively seeks to eat at night and will rest during the day. At dusk all colonies of *Cynopterus. brachyotis* will fly to the southwest. According to locals *C. brachyotis* are flying towards Seulawah Mountain. Cynopterus brachyotis is a type of frugivora bat that is the main food in the form of aromatic fruits. In addition to fruit, *C. brachyotis* also feed on nectar and pollen.

324



- *Cynopterus brachyotis* is at coordinates 5° 32 '21,56 "LU; 95° 48 '29.53 "BT or within  $\pm$  700 meters of the track plan and  $\pm$  50 meters from the beach. *Cynopterus*
- 331 *brachyotis* which is a frugivora that in his life more rely on the ability of smell than

- hearing so that not too sensitive to the noise noise. Cynopterus brachyotis only
- utilizes the pine tree mercusii in Blangraya village as a resting place during the day.
- 334 Cynopterus brachyotis does not seem to be much disturbed by human activity
- around its sleeping tree. The reaction given at the moment of being disturbed is to fly
- away from the pine tree into a resting place, but not long after that the bat will return.







347 348

349

337 338

Figure 5. *Pinus Merkusii* tree has become *Cynopterus brachyotis* rest area (PT. Mitra Adi Pranata, 2016)

In addition to observation of habitat utilization patterns by *Cynopterus brachyotis*, also conducted data collection on plants and animals found around the habitat of his life. Plant data were done by using 10 x 10 meter sample plot while animal registration was done by VES method (Visual Encounter Survey) The data of animal and plant type is presented as shown in table 4 as follows:

355 Table 4. Types of animals and plants in the vicinity of Cynopterus brachyotis habitat

| No     | Latin Name     | Local Name           | Σ IND. | Information                                |
|--------|----------------|----------------------|--------|--------------------------------------------|
| A. Pla | ants           |                      |        |                                            |
| 1      | Pinus merkusii | Pinus merkusii/ pine | 6      | As a Cynopterus bridyotis resting<br>place |
| 2      | Cocos nucifera | Kelapa / Coconut     | 4      | Found around community                     |

| No   | Latin Name            | Local Name                                            | Σ IND. | Information                        |
|------|-----------------------|-------------------------------------------------------|--------|------------------------------------|
|      |                       |                                                       |        | settlements                        |
| 3    | <i>Elaeis</i> sp.     | Sawit/ Palm                                           | 1      | Found around community settlements |
| B. A | nimals                |                                                       |        |                                    |
| 4    | Cynopterus brachyotis | Semantung/Long                                        | > 500  | Resting on a pine tree             |
| 5    | Haliaetus leucogaster | Elang Pantai / Coastal<br>Eagle                       | 1      | Looks flying over the sea          |
| 6    | Tupaia sp.            | Tupai/ Squirrel                                       | 3      | Found around community settlements |
| 7    | Macaca fascicularis   | Cekre / monyet ekor<br>panjang/ long-tailed<br>monkey | 5      | Found around community settlements |
| 8    | Viverridae            | Musang/Weasel                                         |        | Found in the form of feces         |
| 9    | Accipitridae          | Elang /Eagle                                          |        | Local community information        |
| 10   | Sus scrofa            | Babi Hutan /Pig Forest                                |        | Local community information        |

356 Source: Survey results, 2016

# 357 2. Mangrove Habitat in Kuala Langsa, Sub District Langsa Barat - Langsa City.

The location of the railway development plan (Trans Sumatera - Aceh-Langsa-Besitang) will cross several mangrove plants, especially in Langsa City. Although the location is outside the Mangrove Forest Tourism Area of Langsa City which became the conservation area. After observation at coordinates N 04°30'58.90"; E 098°00'52.99" recorded 7 species of mangrove plants from 38 species estimated to live in Mangrove Forest Area Langsa City. Data analysis of mangrove vegetation on the lane plan is presented as follows

- 365
- 366
- 367
- 368 Ta 369

 Table 5.
 Analysis of mangrove vegetation data around the route of trans-sumatra railway

 line (Sigli - Bireun and Lhokseumawe-Langsa-Besitang).

| NO. | Species              | Total | Percentage |
|-----|----------------------|-------|------------|
| 1   | Rhizophora apiculata | 24    | 35.82%     |
| 2   | R. mucronata         | 4     | 5.97%      |
| 3   | R. conjugata         | 32    | 47.76%     |
| 4   | Lumnitzera littorea  | 4     | 5.97%      |
| 5   | Bruguiera parviflora | 3     | 4.48%      |
|     | Total                | 67    | 100.00%    |
|     | Diversity Index (H') | 1,196 |            |

370

371 Source: Processing of survey results, 2016.

372

373 The diversity of mangrove species on the land that will become the railway plan

is included in the medium category  $(1 \le H \le 3)$  with Rhizophora conjugate being the

375 most recorded species.



377 Figure 6. Mangrove Forest condition in Langsa (PT. Mitra Adi Pranata, 2016)

In addition to the analysis of mangrove plants, data collection and analysis are also conducted on animals that use mangrove habitat for their lives. Observations

were more focused on animals utilizing habitats around the site of the lane plan, as

381 shown in table 6 as follows:

376

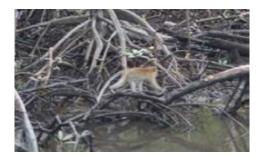
| 382 | Table 6. Fauna Recorded in Mangrove Habitat in Kuala Langsa |                           |                                                  |        |                                                                          |
|-----|-------------------------------------------------------------|---------------------------|--------------------------------------------------|--------|--------------------------------------------------------------------------|
|     | NO                                                          | Species /Latin<br>Name    | Local Name                                       | Σ IND. | Information                                                              |
|     | 1.                                                          | Macaca fascicularis       | Cekre/ monyet oker<br>panjang/Long ocher monkeys | 4      | Found in Mangrove Forest Mangrove<br>City                                |
|     | 2.                                                          | Ardea alba                | Kuntul besar                                     | 1      | Utilize the muddy expanse at the<br>observation location                 |
|     | 3.                                                          | Corvus<br>macrorhynchos   | Gagak                                            | 3      | was found flying by                                                      |
|     | 4.                                                          | Collocalia linchi         | Swallow Linci                                    | 4      | was found flying by                                                      |
|     | 5.                                                          | Thodirhamphus<br>chloris  | River Cekakak                                    | 1      | Encountered often perched on twigs<br>around the location of observation |
|     | 6.                                                          | Rhipidura javanica        | Kipasan Belang                                   | 1      | Found flying by                                                          |
|     | 7.                                                          | Egretta sarca             | Kuntul Karang                                    | 1      | Utilizing a muddy expanse at the<br>observation location                 |
|     | 8.                                                          | Tringa hypoleucos         | Trinil Pantai                                    | 1      | Utilizing a muddy expanse at the<br>observation location                 |
|     | 9.                                                          | Butorides striatus        | Sea Kokokan                                      | 1      | Utilizing a muddy expanse at the<br>observation location                 |
|     | 10.                                                         | Streptopelia<br>chinensis | Tekukur Bird                                     | 1      | Found flying by                                                          |
|     | 11.                                                         | Varanus sp.               | Biawak/Lizard                                    | 1      | Found to swim in the river                                               |
|     | 12.                                                         | Ostreidae                 | Scallops / Oysters                               | Many   | There was only a sound at night                                          |

383 Source: Processing of survey results, 2016.

384 From the results of observation, it can be concluded that not many species of

385 water birds (water bird) that utilize Mangrove area. It is possible because many birds

that use food from the pond area of the local population, evidently many species of


387 Ardea alba birds are observed in the pond population.

## 388 3. Primate Presence in Aceh Tamiang Area

389 Some of the areas in Aceh Tamiang Regency are planned to be rubber and oil 390 palm plantations. In the habitat of the plantation can still be found several types of wild fauna. According to local people, One of the most commonly encountered is
long-tailed monkeys (*Macaca fasicularis*) or commonly called Cekre. There are at
least 3 primate species that utilize plantation habitats: long-tailed monkeys / macros
(*Macaca fasicularis*), monkeys / Lampung monkeys (*Macaca namastrina*), and
langur (*Trachypithecus auratus*).

Long tail monkeys / checkers (Macaca fasiculari) can utilize rubber or palm 396 plantations. Live in groups, sometimes in large numbers. Compared with other types 397 of primates, M. fasicularis is able to utilize more habitats because it can live both 398 terrestrially and arboreally. Long tail monkeys / checkers (Macaca fasiculari) can 399 utilize young leaves, palm kernels, rubber seeds and gandri fruits as feed. According 400 to community information, Macaca fasiculari in Aceh Tamiang is not too afraid of 401 humans. In fact, it is not uncommon to enter the township of the population to steal 402 food that is placed outside the home. Macaca fasiculari (Cekre) can distinguish 403 between men and women, and tend to be more courageous towards women. 404

405



406 407 408

Figure 7. *Macaca fascicularis* has been found in the Mangrove Forest Area at Langsa (PT. Mitra Adi Pranata, 2016)

Beruk (Macaca namastrina) or the local community used to call the term monkey 409 410 Lampung, has a tail that is similar to the tail of pigs that the community is often said to be "stump tails." These mammals are classified as omnivores whose main foods are fruit and 411 seeds. Often found in rubber plantations although able to live in oil palm plantations. Agrend 412 more time in terrestrial habitat despite having excellent ability to climb trees. Currently known 413 to local monkeys tend to be brave to humans. Even there are stories of people who must run 414 chase monkey Lampung Lampung monkeys have the largest bodies among the three 415 416 primates found in plantations.

Lutung (*Trachypithecus auratus*) is the most shy of the three primate species found in plantations. Lutung only utilizes rubber plantations as a living habitat. Lutung is arboreal and very rarely descends to the plantation floor. This type of primate is expected to be disturbed if the plantation where he lived in pieces by the railroad. However, after a study of the railway plan position on rubber plantations that became a live habitat of the monkeys, but the plan of fire-lanes only slightly cut the rubber plantations where the primate lives so it is not expected to have significant coverage on the area of live lutung.

424

#### 425 CONCLUSION

426 The conclusion of this study is the diversity of fauna in the area of The Plan Of 427 Construction Of The Trans-Sumatra Railway Line between Sigli - Bireun and Lhokseumawe -Langsa-Besitang directing that The fauna species found in the location of the activity and its 428 429 surroundings are not included in the endemic, protected, or CITES species of fauna. However, based on the IUCN extinction status all wildlife belongs to the IUCN least concern 430 431 category, except for grasshoppers whose extinction status has not been categorized by the 432 IUCN, in addition based on observations and interviews, no endemic and endangered 433 animal.

The analysis of the Mangrove Diversity Index is the diversity of mangrove species on the land that will become the railway plan is included in the medium category ( $1 \le H \le 3$ ) with *Rhizophora* conjugate being the most recorded species, This indicated that the mangrove condition of the observation location is in the medium category, although the location of the observation does not include the project location.

The observation observation, there are 3 primate species that utilize the plant habitat: long-tailed monkeys / macros (*Macaca fasicularis*), monkeys / monkeys Lampung (*Macaca namastrina*), and langur (*Trachypithecus auratus*) belonging to animals protected by the Indonesian government and, Endemic and endangered species by IUCN. But these three primates are not termed in the project location plan

444

446

445 **Competing Interests** : The authors have declared that no competing interest exists.

447 **Data Availability** : All relevant data are within the paper and its supporting 448 information files.

449

This research will help researchers to uncover the critical areas of the development plan, so that the impacts of railway development can be monitored and managed. The study is

452 expected to be the basis for the management and protection of 3 primate species utilizing 453 habitats around the site of a long-tailed monkey project (Macaca fasicularis), Lampung

454 monkeys (Macaca namastrina), and langur (Trachypithecus auratus) including endemic

455 fauna protected by the Indonesian government and International Agency On Nature

456 Conservation and Natural Resources

- 457
- 458

#### 459 **REFERENCES**

- Arijit Chaudhuri. 2005. Survey Sampling Theory and Methods. Indian Statistical Institute
   Calcutta, India Chapman & Hall/CRC is an imprint of Taylor & Francis Group.
- 462 Commonwealth Scientific and Industrial Research Organisation (Division of Entomology),
   463 1991. The Insects Of Australia Volume I & II. Cornell University Press. Ithaca, New
   464 York.
- 465 Convention on the International Trade in Endangered Species (CITES). 2012. Convention 466 on the International Trade in Endangered Species of Wild Flora and Fauna Appendix I,
- 467 II, and III. Geneva, Switzerland.
- Coordinating Minister of Economic Affairs, 2015. Strategic Plan for the acceleration of
   infrastructure and regional development Year 2015-2019. Coordinating Ministry of
   Economic Affairs
- Critical Ecosystem Partnership Found, 2011. Sumatra Forest Ecosystem In Sundaland
   Indonesia's Biodiversity Hotspot. Jakarta.
- 473 Derek Ford, And Paul Williams, 2007. Karst Hydrogeology and Geomorphology University of
  474 Auckland, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex
  475 . England.
- International Union for Conservation of Nature (IUCN), 1994. IUCN Red List Categories.
   Prepared by the IUCN Species Survival Commission. IUCN, Gland, Switzerland.
- International Union for Conservation of Nature (IUCN), 2008. World Heritage Caves And
   Karst A Thematic Study A Global Review Of Karst World Heritage Properties: Present
   Situation, Future Prospects And Management Requirements.
- Jonathan E.M et al, 2004. A Global Species Assessment. The IUCN Species Survival
   Commission. IUCN Red List of Threatened Species.David Brackett. IUCN The World
   Conservation Union.
- 484 Minister of The Environment, 2012. Minister of The Environment Regulation No 16 Year
   485 2012 Of Drafting Guidelines for The Environmental Documents. Jakarta.
- Mueller-Dombois, D. and H. Ellenberg, 1974. Aims and Methods of Vegetation Ecology. New
   York: John Wiley & Sons.
- Oldfield, S., Lusty, C. and MacKinven, A. 1998. *The World List of Threatened Trees*. World
   Conservation Press, Cambridge.
- 490 Oosting, H.J. 1956. The Study of Plant Communitas. W.H. Freman Company. San491 Fransisco.
- 492 President of the Republic of Indonesia, 1990. Laws Of The Republic Indonesia No. 5 Year
   493 1990 Of the Conservation of Natural Resources and Ecosystems. Jakarta.
- 494 President of the Republic of Indonesia, 1999. Government Regulation of The Republik
   495 Indonesia No 7 Year 1999 of Preservation of Plant and Animal Species. Jakarta.
- President of the Republic of Indonesia, 1999. Government Regulation of The Republik
   Indonesia No 8 Year 1999 of Utilization of Plant and Wild Animal Species. Jakarta.
- 498 PT. Mitra Adi Pranata Consultant. 2016. Environmental Impact Analysis The Development
- 499 Of The Railway Between Train Sigli Bireuen And Lhokseumawe Langsa Besitang.
   500 Indonesia. Semarang.

- 501 Thomas H. Kunz et al. 2011. Ecosystem Services Provided By Bats. The Year In Ecology
- 502 And Conservation Biology. Annals Of The New York Academy Of Sciences. Center For
- 503 Ecology And Conservation Biology, Department Of Biology, Boston University, Boston.
- 504 Wenying, Yin. 2000. Pictorial Keys To Soil Animals Of China. Beijing: Science Press.
- Yin wenying *et al.* 1998. Pictorical keys to Soil animals of china. The project supported by
   National natural science foundation of china Science press Beijing, china.
- 507 Zainal Abidin And Syahrul ABDULLAH, 2015. An Appraisal Of The Aceh Provincial Spatial Plan And
- 508 Options For Review. The European Union's European Development Fund Programme For
- 509 Indonesia. A Project Implemented By Consortium SAFEGE And Prospect C&S
- 510