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PARALLEL MECHANISMS BETWEEN 2 

PLACENTA/PREECLAMPSIA AND NEURODEGENERATIVE 3 

DISEASES 4 

 5 

ABSTRACT 6 

This short review summarizes recent studies on placenta-preeclampsia (PE) in the mother 7 

and/or intrauterine growth restriction (IUGR) in the child. The ideas raised here are framed 8 

within a paradigm that favors the opening of new research lines in these themes and are 9 

focused on the outlining of early investigation and/or an adequate treatment for mothers 10 

who develop the pathology.  Thus, this review focuses on those studies that categorize PE in 11 

the group of pathologies defined as "conformational diseases", as a consequence of the 12 

misfolding of proteins due to endoplasmic reticulum (ER) stress.  In this particular case, the 13 

ER stress that develops in the syncytiotrophoblast (ST) because of the oxidative stress 14 

caused in the placenta by the hypoxia that occurs as a consequence of the failure in the 15 

remodeling of endometrial arteries.  This leads to an increased ST apoptosis with 16 

detachment of misfolded proteins into the maternal circulation, which in turn would be 17 

primarily responsible for the signs of PE in the mother (proteinuria, edema, and 18 

hypertension).  The review also analyzes the PE-prions-placenta relationship, since the 19 

normal cell-surface protein (PrPc) is normally present in the plasma membrane of ST, but 20 

appears to be increased in cases of PE.  However, although neurodegenerative disorders 21 

resulting from conformational changes in the prion protein from its normal cellular form, 22 

PrPc, to the infectious scrapie isoform, PrP (Sc) are well known, there are no studies as to 23 

whether this isoform would also be present in the ST of PE cases. So, in our opinion it is 24 

important to evaluate its biological implications in the normal and pathological human 25 

placentas. 26 

 27 

Placenta and preeclampsia 28 

 The passage of nutrients from the maternal blood to the fetus is mediated by the 29 

placenta, so the normal fetal metabolism and growth require of an adequate exchange 30 

across this organ [1]. The trophoblast is the epithelium that covers the placental fetal villous 31 

tree and during development differentiates into two layers: the syncytiotrophoblast (ST) 32 

and the cytotrophoblast (CT). The former is externally located and contains many nuclei and 33 

a continuous cytoplasm, forming a syncytium. The latter consists of a monolayer of ovoid 34 

cells immediately underlying the ST.  Both structures contribute to the formation of the villi 35 

and ultimately the placenta. Villous CT fuse in order to form the ST layer that contributes to 36 

the metabolic exchange of gas and nutrients, as well as to the process of waste elimination 37 

[2, 3].  Apoptosis of the trophoblast has been observed to naturally occur in placentas of 38 

normal human pregnancies but, as expected, placentas from women with preeclampsia (PE) 39 

or intrauterine growth retardation (IUGR) show enhanced apoptosis when compared with 40 

placentas from normal pregnancies [4]. 41 

 PE is a systemic pregnancy syndrome that affects about 3-5% of all pregnancies [5].  42 

This pathology is an important contributor to maternal and perinatal morbidity and 43 

mortality worldwide. Because there is no cure other than delivery, PE is the leading cause of 44 
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iatrogenic preterm birth. Despite to be of unknown etiology, it is currently accepted that 45 

this pathology originates in the placenta [6] due to the fact that the maternal symptoms 46 

(high blood pressure and proteinuria) disappear once the organ has been expelled after 47 

delivery [7, 8]. 48 

 49 

Oxidative stress 50 

 To date, PE has been related to the process of hypoxia due to ischemia/reperfusion 51 

experienced by the placenta as a consequence of extravillous trophoblast failure in the 52 

process of endometrial spiral arteries remodeling. The involvement of oxidative stress (OS) 53 

in the early placental hypoxia development has been previously proposed in the mechanism 54 

of the syndrome [1, 5, 8, 9].  Due to the fact that the human fetal-placental vasculature lacks 55 

autonomic innervation, it is reasonable to assume that autocrine and/or paracrine agents 56 

such as the NO radical may play an important role in the regulation of fetal-placental blood 57 

flows [9]. 58 

 On the other hand, OS constitutes a unifying mechanism of injury involved in many 59 

types of disease.  It occurs when there is an imbalance between the production of ROS and 60 

the ability of the biological system to readily detoxify these reactive oxidative species (ROS) 61 

or the tissues cannot easily repair the resulting damage [10].  In PE it has been shown that 62 

enhanced ROS generation leads to a decrease in the NO bioavailability [11]. Increased 63 

generation of superoxide anion by the placenta leads to increased peroxynitrite production, 64 

resulting in further oxidative stress and endothelial dysfunction in PE patients [8].  65 

Additionally, it has been well established that NO disrupts the mitochondrial respiratory 66 

chain in a dose dependent manner, causing changes in the mitochondrial Ca
2+

 flux that 67 

induce ER Stress in pluripotent stem cells [12].  Taking all of these evidences into account, it 68 

is plausible to assume that OS developed in the placenta by the exaggerated generation of 69 

ROS would trigger ER stress in the organ, which in turn will increase the apoptosis of the ST. 70 

 71 

Placental ER stress and Amyloidosis 72 

 In the last few years, a number of studies suggesting that PE could be triggered by 73 

disorders in the folding of proteins in the ER of the ST, which results in amyloid deposits in 74 

this organelle [13-16] have been published.  In light of this evidence, the accumulation of 75 

misfolded protein in the ER lumen has been defined as ‘ER Stress’ [17-20]. 76 

 In addition, ER stress has recently been identified as a major regulator of cell 77 

homeostasis through its involvement in post-translational protein modification and folding, 78 

as well as its capacity to activate the unfolded protein response (UPR) which aims to restore 79 

the homeostatic balance within the ER [21]. If this cannot be achieved, the cell apoptotic 80 

machinery becomes consequently activated. The initial intent of the UPR is to adapt the cell 81 

to the changing environment, and reestablish normal ER function. These adaptive 82 

mechanisms involve transcriptional programs that induce expression of genes that enhance 83 

the protein folding capacity of the ER, and promote ER-associated protein degradation to 84 

remove misfolded proteins [17].  Persistent protein misfolding initiates apoptotic cascades 85 

[21] that are known to play fundamental roles in the pathogenesis of multiple human 86 

diseases, including diabetes, atherosclerosis, PE and neurodegenerative diseases [14-87 

16,22,23], all of which have been defined as “conformational diseases”. 88 

 The ER stress due to misfolded proteins in the ST increases placental apoptosis in this 89 

epithelial layer [16, 18].  Moreover, due to the fact that the ST establishes direct contact 90 
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with the maternal blood, the apoptotic process produces detachment of the syncytial 91 

infolding proteins, accumulated due to ER stress, to the maternal blood.  Consequently, 92 

these particles will be mainly responsible for the development of PE symptoms in the 93 

mother.  Recently, Bosco et al., [16] found that the Amyloid A (AA) was present in the ST of 94 

PE and IURG placentas, and that the degree of apoptosis of the CT regulates the amyloidosis 95 

destiny of the AA in the ST.  In brief, in PE cases the misfolded proteins are expelled to the 96 

maternal blood.  On the contrary, in the IURG cases they are deposited on the basal lamina 97 

of the trophoblast, without being expelled from the placenta, but also altering the 98 

mother/fetus metabolic exchange, thus producing IUGR.  Moreover, Hitomi et al., [24] 99 

suggested that activation of ER-resident caspase-12 indirectly activates cytoplasmic caspase-100 

3 and might be important in ER stress-induced neuronal apoptosis as a consequence of the 101 

presence of misfolded proteins. This is in agreement with the placental study of Bosco et al., 102 

[16] which showed the presence of active caspase 3 in the CT of PE placentas with AA 103 

amyloidoses, but not in the CT of normal placentas. 104 

 It has also been reported that caspase-12-deficient mouse cortical neurons were 105 

defective in apoptosis induced by amyloid-beta protein, but not by trophic factor 106 

deprivation [25].  Thus, caspase-12 mediates an ER-specific apoptosis pathway and may 107 

contribute to amyloid-beta neurotoxicity.  This idea is in concordance with Fu et al., [26] 108 

who found significantly higher caspase 12 activity in placentas of early or late severe PE. It is 109 

important to note that ER stress apoptosis can be induced by other various pathological 110 

conditions that alter the ER function.  In the same line of evidence, Wang et al., [27] 111 

experimentally induced ER stress and apoptosis in placentas of pregnant rats exposed to 112 

lead, which was accompanied by an increase in the caspase-12 mRNA expression, and Xu et 113 

al., [28] found an increase in the early expression of ER stress markers, followed by 114 

increased activity of caspase 12 in placental trophoblast exposed in vivo and in vitro to T. 115 

gondii, followed by an increased apoptosis of the exposed trophoblasts. Similar results were 116 

found by Wang et al., [29] in neural stem cells exposed to this parasite. It should be 117 

emphasized that in the last three investigations no studies were carried out in order to 118 

evaluate the presence of misfolding proteins in the placentas, which would have allowed 119 

amyloidosis to be discarded.  It is also important to note that in a case control study where 120 

pregnant women suspected of T. gondii infection were treated with spiramycin, a macrolide 121 

antibiotic administered before 18 weeks of pregnancy in order to reduce the rate of 122 

transmission of the parasite to the fetus, reported a reduced incidence of pregnancy-123 

induced hypertension [30].  On the basis of these results, the association of T. gondii 124 

infection with hypertension disease during pregnancy needs to be further investigated. 125 

 In another line of evidence, transthyretin (TTR) is a homotetrameric serum and 126 

cerebrospinal fluid protein. The TTR dissociation forms monomer misfolding, a variant of 127 

TTR that results in familial amyloid polyneuropathy, familial amyloid cardiomyopathy, or 128 

familial central nervous system amyloidosis [31].  TTR is also a carrier protein for thyroxin 129 

and retinol binding protein, which are secreted by trophoblast.  McKinnon et al., [32] and  130 

Mortimer et al., [33] have reported that human placenta secretes TTR into the maternal and 131 

fetal circulations and that placental TTR secreted into the maternal placental circulation can 132 

be taken up by the trophoblasts and translocated to the fetal circulation, thus conforming a 133 

TTR shuttle system. This may have important implications for maternal-fetal transfer of 134 

thyroid hormones, retinol/retinol binding protein and xenobiotics, all of which bind to TTR.  135 

Additionally, Fruscalzo et al., [34] demonstrated that TTR is dysregulated in cases of IUGR 136 
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and severe early onset PE, and Kalkunte, et al., [13] showed the presence of amyloid 137 

aggregates of TTR in PE placentas, as well as in the serum of these patients. 138 

 Taken together, all these evidences allow us to postulate that by effect of the OS the 139 

placenta develops ER stress in the ST and CT, which leads to the accumulation of misfolded 140 

proteins and, if the quantity greatly increases, this will finally activate the UPR with the 141 

consequent increase of ST apoptosis and therefore the release of the misfolded proteins 142 

into the maternal blood, which in turn will trigger the symptoms of PE in the mother. 143 

 144 

Placental PrPc  145 

 The study of this prion protein was initiated due to its involvement in a number of 146 

related neurodegenerative disorders seen in various species (bovine spongiform 147 

encephalopathy in cattle, scrapie in sheep and Creutzfeldt–Jakob disease in humans). The 148 

name ‘prion’ (for Proteinaceous Infectious) was coined as the infectious agent of these 149 

diseases was found to be significantly constituted by proteins [35].  A protein with identical 150 

sequence was found to be expressed in significant quantities in the brains of non-diseased 151 

animals.  Hence, a consensus was reached that the protein existed in two distinct forms: the 152 

normal cellular prion protein form (PrPc) and the diseased or scrapie form (PrPSc). However, 153 

recent evidence suggests that the scrapie form of the protein may be sufficient by itself for 154 

transmission of the disease [36]. Transmissible spongiform encephalopathies (TSE) or prion 155 

diseases are characterized by the deposition of PrPc in the structurally altered PrPsc form.  156 

While PrPc configuration is primarily α-helix and susceptible to proteolysis, PrPSc instead 157 

forms fibrillar aggregates containing a high percentage of β-sheet and is rather resistant to 158 

proteolytic digestion [37]. TSE condition is accompanied by physiological symptoms similar 159 

to those of aging which, in turn, have been shown to be affected by divalent metal ions 160 

[38,39]. Over the past three decades, the role of metal ions in TSE has attracted 161 

considerable attention particularly since 1970s, when Cu2
+
 chelator-induced 162 

histopathological changes were documented to be similar to scrapie [38 40]. Metal ions 163 

have been implicated as potential pathogenic candidates owing to their properties of being 164 

free-radical generators and their association with metalloenzymes such as superoxide 165 

dismutases (SODs), [41]. Pathological features of TSE resemble neuronal and brain tissue 166 

loss as is observed in the case of free radical-mediated oxidative damage [42].  167 

 On the other hand, PrPc, a copper-binding glycophosphatidylinositol-anchored 168 

protein whose function is to protect the cells against oxidative stress and to prevent the 169 

apoptosis it is expressed in the plasma membrane of neural and not neural tissues [43-46].  170 

A number of roles in neuroprotection, cellular homeostasis, response to oxidative stress, cell 171 

proliferation and differentiation, synaptic function and signal transduction have been 172 

proposed for PrPc [43,46].  Additionally, it has been shown that the abnormal isoform of 173 

PrPSc is able to induce further PrPc → PrPSc transiPon, accumulaPng in infected brains and 174 

forming amyloid plaques involved in prion diseases such as TSE, a disease with neuronal 175 

death and gliosis, producing extensive and sponge-like tissue vacuolization [37,38,47].   176 

Additionally, Hetz et al., [48] demonstrate that prion diseases characterized by accumulation 177 

of the misfolded protease-resistant form of the prion (PrPSc) produce neuronal death by 178 

apoptosis that also correlated with caspase 12 activation in neural mouse cells treated with 179 

PrPSc.  Furthermore, it has also been reported that the hypoxia-inducible factor-1 alpha 180 

(HIF-1α), which appears to be a master regulator of the cellular response to hypoxia [49], 181 

regulates PrPc expression in order to protect against neuron cell damage [50].  In correlation 182 
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with this, a variety of studies have shown that women with PE are characterized by 183 

persistently elevated placental HIF-1α levels that promote enhanced transcription of genes 184 

encoding the soluble antiangiogenic protein fms-like tyrosine kinase-1 (sFlt-1), the soluble 185 

antiagiogenic factor endoglin (sEngs) and endothelin-1 (ET-1), a powerful vasoconstrictor 186 

known to contribute to this pregnancy pathology [51-55].  Moreover, Donadio  et al., [56] 187 

and Alfaidy et al., [57] reported that PrPc is highly expressed in the human placenta, 188 

especially in CT and ST, and  Hwang et al., [58] found that the immunohistochemical 189 

expression of PrPc
 
was increased in CT and ST of PE placentas versus those from the 190 

controls.  Additionally, Brown et al., [59] and Brown and Besinger [60] demonstrated in 191 

mouse neurons that PrPc may directly or indirectly regulate the activity of Cu/Zn superoxide 192 

dismutase (Cu/Zn SOD).  In this context, Bosco et al., [61] found a decreased activity of 193 

Cu/Zn SOD in PE placentas versus normal placentas with an increased of F2-isoprostanes, a 194 

lipid peroxidation indicator.  Furtheremore, Klamt et al., [47] found a decreased activity of 195 

SOD in liver, heart, hippocampus and cerebellus in PrPc knockout and wild-type mice and an 196 

oxidative damage in proteins and lipids.  In addition, Anantharam et al., [46] found that PrPc 197 

plays a proapoptotic role during ER stress.  198 

 On the bases of the above arguments, we consider of the essential interest to carry 199 

out new research aimed at investigating the possible presence of PrPsc in ST and CT in cases 200 

of severe PE and eclampsia.  This, due to the fact that poorly folded proteins form amyloid 201 

precipitates, and because in PE, a decrease in the activity of the antioxidant enzyme SOD 202 

which is regulated by PrPc [60] has been found [61].  It is noteworthy that in the cases of 203 

pregnant mothers who develop eclampsia, the maximum expression of PE, the maternal 204 

endothelial damage can lead to severe intracranial (intracerebral and subarachnoid) 205 

hemorrhage and cerebral venous thrombosis, preceded by visual hallucinations and the final 206 

appearance of convulsions and coma [62]. 207 

 We would like to hypothetically propose that the presence of PrPSc in the ST and CT 208 

of the placenta of these mothers could be related to the increase of apoptosis in these cells 209 

and also with the significant maternal endothelial damage observed, since the release of 210 

PrPSc into the maternal blood would allow these misfolded proteins reach the blood-brain 211 

barrier. Therefore, it would be essential to perform brain biopsies of women who have died 212 

from eclampsia for the determination of amyloidosis and/or PrPSc [63]. Finally, it is 213 

important to note that in sheep placentas exposed naturally to PrPSc, the presence of PrPSc 214 

in the trophoblast has been shown by immunohistochemistry and/or ELISA essays [64]. 215 

CONCLUSIONS 216 

 This work revises and summarizes the latest studies showing a relationship between 217 

the presence of placental amyloidosis and PE.  The amyloidosis condition may be either due 218 

to an increased ER stress in the trophoblast, or to an increase in the caspase 12 activity in 219 

the ER of these cells accompanied latter by an increase in caspase 3 activity in the CT, whose 220 

cells define the fate of the misfolding proteins in the ST. 221 

 We have also reviewed some studies that demonstrate the presence of the normal 222 

prion PrPc in the plasma membrane of the CT and ST, whose presence has been noticed to 223 

increase in cases of PE.  However, it is important to analyze what type of response will occur 224 

if in vitro BeWo cells are subjected to exposure of the prion isoform PrPSc. 225 

 226 
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PROJECTIONS 227 

 Future studies are required in order to elucidate the functional role of increased 228 

amyloidosis and PrPc in the placenta of PE pregnancy, and to establish whether the 229 

determinations of amyloids [14] or PrPc [59] in urine or serum of this women could be used 230 

to prevent or predict this pregnancy pathology.  231 

 It is important to note that although diseases due to misfolding of proteins share 232 

common metabolic pathways, PE in pregnant women differs from other pathologies related 233 

to amyloidosis by ER Stress, such as diabetes, atherosclerosis, and neurodegenerative 234 

diseases, in the sense that the mother's symptoms of PE totally disappear once the placenta 235 

has been expelled, after birth. 236 

 237 
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