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ABSTRACT5

6
Bacteria and viruses use an array of evasion mechanisms to escape from the host immune system.
Due to antigenic variation, pathogenic micro-organisms can escape the immune system. Micro-
organisms can occur in different types, such as the 97 serotypes of Streptococcus pneumoniae.
Influenza viruses change their antigenic make-up, in particular the hemagglutinin molecule by
antigenic drift and antigenic shift. Trypanosomes and malaria parasites use DNA programmed
expression of highly variable surface antigens. Micro-organisms can also produce proteins that
degrade (IgA protease) or inactivate antibody molecules (protein A and protein G). Some bacteria and
viruses produce proteins that inhibit complement activation. Virus can become invisible for recognition
by T-lymphocytes by interference with antigen presentation. Antiviral immunity can be suppressed by
viral homologues of cytokines and cytokine receptors and other proteins. Despite the extensive
immune evasion strategies used by viruses, bacteria and other micro-organisms, the immune system
in most cases is ultimately able to control an infection.
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1. INTRODUCTION12

13

Micro-organisms and parasites use a number of different ways to escape the immune system. The14

Christian religious history has the legend of Saint Julia, who tried to escape from her future husband.15

The story of this legend is that in the 14th century, Julia, the daughter of a heathen King in Portugal,16

was promised by her father to be the bride of the King of Sicily. Julia refused because she wanted to17

remain a virgin and in order to prevent she had to marry, she prayed to God for help. Soon thereafter18

she grew a beard and her husband-to-be then refused her. Unfortunately Julia’s father became so19

mad that this prearranged marriage was cancelled that he had her crucified. Saint Julia has been20

popular through the ages and her crucifixion is depicted in many works of art, including statues,21

drawings and paintings [1]. The scene of her crucifixion is also depicted by Jheronimus Bosch in the22

Martyrdom of Saint Julia (Figure 1). For the occasion of the 600th anniversary of Jheronimus Bosch in23

2016, the painting was loaned by the Gallerie dell'Accademia, Venice, Italy to the Noord-Brabants24

Museum in ‘s Hertogenbosch, The Netherlands, the home town of Jheronimus Bosch. As a part of the25

deal the painting was fully restored and only then the beard of Saint Julia became clearly visible.26

Growing a beard as a strategy to escape marriage.27
28
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30

Figure 1.31

Detail of the painting The Martyrdom of Saint Julia by Jheronimus Bosch (around 1497). The painting32

is alternatively named Saint Wilgefortis Triptych, because Saint Julia had such as strong (fortis) will33

(wilge). Gallerie dell'Accademia, Venice, Italy.34

(http://boschproject.org/#/artworks/Saint_Wilgefortis_Triptych).35

36

37

Various microorganisms and parasites have evolved different strategies to escape the immune38

system of the host. This strategy is called evasion. Evasive mechanisms contribute strongly to the39

virulence and pathogenicity of these organisms. Different categories of evasive mechanisms can be40

distinguished, each with different targets on the immune system, which will be discussed in this41

review.42

43

44

2. IMMUNE EVASION MECHANISMS45

2.1 Due to antigenic variation pathogenic micro-organisms can escape the immune46

system47

One of the ways in which a microorganism can escape elimination by the immune system is by48

altering its antigenic make up [2]. Such a makeover can occur in three different ways.49

First, a micro-organism can occur in different types. For example, the bacterium Streptococcus50

pneumoniae has ninety seven serotypes that differ in the structure of the capsular polysaccharide51

[Figure 2] [3]. Infection with a given serotype leads to type-specific immunity, which, however, does52

not protect against infection with any of the other pneumococcal serotypes [4]. For the acquired53
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immune system, every pneumococcal serotype is therefore a separate micro-organism. This means54

that Streptococcus pneumoniae can cause a primary infection several times in the same individual.55

56

57
Figure 2.58

Streptococcus pneumoniae, a Gram-positive facultative anaerobic bacterium is encapsulated by a59

thick layer of polysaccharides (arrow in left panel). The capsule is made up by one of 93 different60

types of polysaccharides; the structural composition of four common occurring serotypes is shown in61

the right-hand panel.62

63

64

A second way of antigenic variation is more dynamic and is found among others in the influenza virus,65

the cause of influenza. There are three different types of influenza virus, A, B and C, of which66

influenza A causes the most serious disease symptoms [5]. Most infections that occur worldwide67

during the influenza season (autumn and winter) are caused by a single type of the influenza A virus.68

Over time, protective immunity arises in the population, which mainly consists of antibodies and69

cytotoxic T-lymphocytes directed against the viral hemagglutinin protein [6]. The hemagglutinin is70

involved in attachment to target cells and antibodies against hemagglutinin can (thereby) prevent the71

spread of the virus in the body [7, 8]. Due to changes in the hemagglutinin protein (see below), a virus72

type is created against which the accumulated immunity in the population does not work or does not73

function properly [9]. Such a changed virus can therefore cause a new infection. The influenza virus74

can alter the antigenic makeup of the hemagglutinin in two ways: antigenic drift and antigenic shift75

(Figure 3) [10]. Mutations in the gene coding for the hemagglutinin (and for the second important virus76

surface protein neuraminidase) produce a new variant of the influenza virus (antigenic drift) every two77

or three years [11]. This variant is less well recognized by the antibodies and cytotoxic T lymphocytes78

present. This allows the influenza virus to cause a - generally mild - flu epidemic [12]. Such an79

epidemic is mild because although some epitopes of the hemagglutinin and / or neuraminidase have80

changed, not all of them have. So there is still a certain amount of residual immunity in the population.81

Antigenic shift is a much rarer event, but with far greater consequences [13]. An antigenic shift can82

occur when a (human) influenza A virus ends up in a secondary host (e.g. a bird). The influenza RNA83

genome is segmented into eight genes, one of which is coding for hemagglutinin and one for84

neuraminidase [14]. In a secondary host, in a cell that is infected with two different influenza viruses,85

exchange of a complete RNA segment can take place [15]. Thus, in a host cell infected with both the86
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human and avian influenza virus, exchanges between both viruses can occur. From this, a (human)87

virus variant can emerge with an avian hemagglutinin (Figure 3). At least 18 subtypes of the88

hemagglutinin occur (H1 to H18), of neuraminidase 11 (N1 to N11) [16]. The most common influenza89

A types in humans are H1N1, H2N2 and H3N2 [17]. H5, H6, H7 and H8 are especially common in90

birds [18]. Due to antigenic shift, the H5N1 variant originated in which the avian H5 ended up in a91

human influenza A virus [19, 20]. The differences between the human and avian influenza92

hemagglutinin are so great that antibodies and cytotoxic T lymphocytes formed during previous93

infections do not give any cross protection. Influenza strains in which such an antigenic shift has94

occurred occur once every 15 to 20 years [10]. The so-called Hong Kong influenza pandemic in 1968,95

with world-wide one million deaths, was caused by a virus variant due to antigenic shift [19, 21].96

97

98
Figure 3.99

Antigenic shift and antigenic drift of influenza A virus. The major surface antigens of the influenza A100

virus are hemagglutinin and neuraminidase. By point mutations in the RNA encoding hemagglutinin,101

the antigenic make-up of the molecule can change somewhat. This is called antigenic drift. This102

allows original antibodies to bind less well or not at all and the mutated virus has a better chance of103

survival. In an antigenic shift, two different influenza A virus particles exchange a complete RNA104

segment, allowing a completely different hemagglutinin molecule to be expressed. Accumulated105

immunological memory from previous influenza contacts is then no longer effective because106

antibodies (and memory T lymphocytes) no longer recognize the altered hemagglutinin molecule.107

Such an altered influenza virus is therefore more easily able to cause an epidemic.108

109

110

The most recent influenza pandemic started in Mexico in 2009 and was initially called swine flu. Later,111

under pressure from Mexico, this name was changed to new influenza A (N1H1) (Figure 4). What was112

special was that this variant particularly affected young children, while normally older people are113

particularly susceptible to influenza [22, 23]. In retrospect, many people aged about 50 years and114

older were already found to have (cross-reactive and protective) antibodies against this virus, due to115
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exposure to a similar influenza in their youth [24]. The N1H1 spread rapidly around the world, and116

initially there was fear that millions of people would be killed.117

A vaccine against H1N1 has been accelerated and offered to major risk groups i.e. children between118

6 months and 4 years, household members of younger children, and adults with chronic disease [25].119

In retrospect, the H1N1 pandemic was mild, probably mainly because the elderly - in which the120

mortality is concentrated during the annual flu season - were barely susceptible to the new influenza121

A (N1H1) [24]. An estimated 300,000 people worldwide have died directly or indirectly from the virus122

[26]. A total of 65,600 deaths was confirmed in Africa, 29,700 in the Americas, 31,000 in Europe, and123

78,600 in Asia [26]. At the moment the H1N1 vaccine became available, the peak of the pandemic124

might already have passed.125

126

127
Figure 4.128

Worldwide outbreak of new N1H1 influenza virus in 2009, as reported in the press and communicated129

to travelers.130

131

The third way in which antigenic variation can occur is due to programmed changes in the DNA of the132

micro-organism or the parasite [27]. In its most extreme form, this mechanism is used by133

trypanosomes. Trypanosomes are protozoans that are transmitted by insects and cause sleeping134

sickness [28, 29]. The trypanosome is surrounded by a single protein, the variant-specific glycoprotein135

(VSG) [30]. After infection, this VSG generates a powerful antibody response that neutralizes the136

parasite. However, trypanosomes have a thousand different VSG genes of which only one is137

expressed each time. The single trypanosome that has been altered from VSG expression thus138

escapes the immune system and leads to renewed outgrowth and flare-up of the disease [30]. This139

will result in a chronic cycle of trypanosome degradation with immune complex formation and140

inflammation, followed by renewed disease activity. Ultimately, this leads to severe neurological141

damage and coma.142

The malaria parasite also uses this mechanism of antigenic variation to protect itself against the143

immune system [31]. In the erythrocyte stage of malaria there is expression of parasite proteins on the144
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membrane of the red blood cell, especially of the PfEMP1 protein [32, 33]. The PfEMP1 protein145

suppresses the production of IFN- and thus a cellular immune response [34]. Via PfEMP1 an146

infected erythrocyte adheres to vascular wall tissue and can thus prevent phagocytosis by spleen147

macrophages. PfEMP1 does elicit an antibody response and these antibodies can bind to infected148

erythrocytes. Antibody-loaded erythrocytes are captured in the spleen and phagocytosed. The malaria149

parasite has sixty variants of PfEMP1, of which only one is expressed each time [35]. Switching to150

another variant of PfEMP1 means that the already produced antibodies can no longer bind and that151

infected erythrocytes are no longer trapped.152

2.2 Micro-organisms produce proteins that can degrade or inactivate antibody153

molecules154

Micro-organisms can protect against antibody-mediated complement lysis or phagocytosis by155

enzymatically degradation of the antibodies. A number of bacteria, including Neisseria species,156

Haemophilus influenzae and Streptococcus pneumoniae, form proteolytic enzymes that can split157

secretory IgA (SIgA) antibodies into two monomeric Fab fragments and an Fc fragment [36, 37]. This158

IgA protease is capable of cleaving both free SIgA and bound SIgA antibodies. The Fab fragments159

remain on the surface of the microorganism but are unable to activate effector mechanisms160

(complement, phagocytosis) [38]. Infections with the above bacteria occur on mucous membranes161

and IgA is the most important isotype of the antibodies present [39]. The bacterial IgA proteases are162

especially capable of splitting SIgA1, SIgA2 is relatively resistant to IgA proteases [36, 37]. But163

because the IgA1 Fab fragments remain bound on the surface of the microorganism, binding of IgA2164

antibodies can be inhibited thereby [40, 41].165

IgG antibodies can also be broken down by bacterial enzymes. Pseudomonas aeruginosa and other166

bacteria produce cysteine proteases that can cleave IgG molecules in the hinge region.167

In addition to proteolytic cleavage of the molecule, IgG can also be functionally inactivated by certain168

bacterial proteins [42-44]. Staphylococcus aureus expresses a protein on its surface, protein A, which169

can bind to the Fc portion of IgG. Binding of protein A to IgG blocks Fc receptor-mediated170

phagocytosis [45, 46]. Moreover, it inhibits the binding of C1q to IgG and thus the complement171

activation [47]. In other bacteria, proteins with similar functions are found: Group-G streptococci172

produce protein G and Peptostreptococcus magnus protein-L. These proteins can also bind to IgG173

[48-50].174

2.3 Some bacteria and viruses produce proteins that inhibit complement activation175

Many bacteria produce N-formyl peptides such as fMLP [51]. These peptides are very potent176

chemoattractants for phagocytes [52]. fMLP is bound to phagocytes via specific receptors: formyl177

peptide receptor (FPR) and the related FPR-like-1 receptor (FPRL1) [53]. The fMLP is not only a178

chemoattractant but also stimulates phagocytosis [54, 55]. Staphylococcus aureus has developed a179

strategy to prevent the attraction of phagocytes to the site of the infection by producing the protein180

CHIPS (chemotaxis inhibiting protein of S. aureus) [56]. CHIPS binds to FPRL1 and thus blocks the181

functioning of this receptor [57]. CHIPS also binds to the C5a receptor on phagocytes and thereby182
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blocks the function of another chemotactic peptide, the complement fragment C5a [58]. Another183

staphylococcal protein that interferes with the complement system is SCIN (staphylococcal184

complement inhibitor) [59]. SCIN blocks the C3 converter activity of C4b2a and C3bBb [60-62]. In185

total, S. aureus possesses about ten different proteins that can all inhibit complement activation.186

Together, this will disrupt all functions mediated by the complement system (chemotaxis and lysis and187

opsonization) [62-64]. These and other proteins that are used to escape the immune system of the188

host lie encoded on the bacterial genome together in a so-called immune vascular cluster (IEC), of189

which S. aureus possesses two [65, 66].190

Not only S. aureus and other bacteria use proteins to prevent activation of the complement system191

(Figure 5) but also certain viruses. Vaccinia virus encodes a strong complement inhibitor, vaccinia192

complement control protein (VCP). VCP strengthens the split of C3b and C4b by factor I and thus193

inhibits both the classic and alternative complement activation path [67-70].194

195

2.4 Interference with antigen presentation makes viruses invisible for recognition by196

T-lymphocytes197

Viruses have developed different ways to escape the immune system. It is of course important that198

virus replication occurs only in host cells, where the virus is not immediately accessible to the immune199

system. During viral replication, components of viral proteins are presented to the immune system by200

MHC class I and class II proteins. In that way the virus would betray its presence in an infected cell.201

However, if the virus does not replicate, but remains latent, it is invisible.202

Herpes simplex virus type I infects epithelial cells and sensory neurons [71]. After a cellular immune203

response the infection is under control, but the virus can still remain latent in the nerve cells [72].204

Reactivation of the virus can, if the antiviral immunity is reduced or temporarily disturbed, lead to a re-205

infection of the skin [73]. Another herpes virus, the previously discussed Epstein-Barr virus, can206

remain latent in B lymphocytes [74]. For this it must express a certain viral protein, EBNA-1, since this207

is necessary to maintain the viral genome. EBNA-1 cannot be presented in the context of MHC class208

I, because it cannot be broken down by the proteasome. This keeps the virus invisible to the immune209

system [75-77].210

Other viruses also have proteins that interfere with antigen presentation and thus try to prevent a211

cellular immune response from getting under way. For example, the cytomegalovirus (CMV) has at212

least twelve different proteins that block the presentation of CMV peptides in the MHC at different213

sites [78]. These CMV proteins are encoded on the unique long (UL), or unique short (unique short,214

US) part of the CMV genome [79]. US3 and US10 proteins prevent MHC class I molecules from215

leaving the endoplasmic reticulum [80, 81]. If nonetheless MHC class I molecules are formed, US2216

and US11 proteins bind to this, after which the MHC molecules are degraded by proteasomes [82,217

83]. Disabling MHC class I expression prevents recognition by cytotoxic T lymphocytes, but makes218

the cell susceptible to killing by NK cells [84]. The CMV protein UL16, however, blocks the activating219

NK cell receptor NKD2D and UL18 stimulates the inhibitory NK cell receptors [85, 86]. CMV therefore220
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has an extensive package of viral proteins at its disposal to combat killing by CD8+ T lymphocytes or221

by NK cells.222

223

2.5 Viral homologues of cytokines and cytokine receptors and other proteins224

suppress antiviral immunity225

If a virus, despite its attempts to prevent recognition by the immune system, would still evoke an226

immune response, it can try to suppress that response. One of the strategies employed is that the227

viral genome encodes homologues of suppressive cytokines and/or soluble cytokine receptors. [87-228

90]. EBV encodes a viral homolog of IL-10, which is very similar to human IL-10 but has only its229

immunosuppressive properties [91, 92]. EBV also encodes an IL-12p40 related protein [93]. Pox230

viruses use soluble cytokine receptor homologous proteins and cytokine binding proteins to neutralize231

proinflammatory cytokines [94]. These viruses also code for a soluble chemokine antagonist that232

binds with high affinity to CC-chemokines .Fungi also use inhibition of cytokines to escape the233

immune response of the host. Virulent cryptococcal strains secrete proteins with anti-TNF-α and anti-234

IL-12 activity, while stimulating the IL-10 production of the host [95].235

In addition to blockade of the cytokine function, viruses can also neutralize the action of antibodies by236

synthesis of viral Fc receptors (herpes simplex and cytomegalovirus) [96, 97]. Finally, viruses can also237

resist apoptosis in order to escape cytotoxic T lymphocytes and NK cells. The most successful is the238

adenovirus, which possesses a protein that is very similar to the anti-apoptotic Bcl-2. EBV also has239

two proteins that resemble Bcl-2 [98]. Inhibition of caspase activity and reduction of the expression of240

apoptosis receptors such as FasL are other ways in which viruses prevent apoptosis [99-101].241

Despite the extensive immune evasion strategies used by viruses, bacteria and other micro-242

organisms, the immune system in most cases is ultimately able to control an infection. However, when243

components of the immune system do not function adequately, such as with congenital or acquired244

immune deficiencies, even seemingly innocent microorganisms can lead to serious infections.245
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246
Figure 5.247

Complement evasion by bacterial proteins. Figures shows examples of bacterial proteins which can248

interfere with specific pathways of the complement system. Further explanation is given in the text.249

250

3. EPILOGUE251

Saint Julia, by changing her antigenic make up, tried to evade from her husband to be. This relief was252

only temporary, because another man, notably her own father, had her crucified. The analogy with253

micro-organisms that try to escape the immune system partly holds true. Escape from complement254

mediated killing does not prevent phagocytosis and subsequent intracellular killing.255

256

257
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