Pre-extension demonstration and evaluation of hip pump in western Oromia, Ethiopia

Abstract: The method lifting water to the field for irrigation Ethiopia and Oromia too are mostly traditional. The water is transported to the field with the help of bucket; water points and area to be irrigated are far apart; the ground and river water are at the deeper position to convey to the area to be irrigated. Therefore, this activity was aimed at pre-extension demonstration of the hip pump. The demonstration was conducted in west wollega and Qellem Wollega zones. Totally four farmers’ groups were established consisting of 60 farmers. Theoretical and practical training was provided to all farmers’ groups’ members, subject matter specialists, and development agents. Totally eight hip pumps were distributed for all the four groups. Data was collected through focus group discussions and a semi-structured interview. The collected data was analyzed qualitatively. The study recommends that Training should be given for extension staffs who work directly with irrigation farmers on the hip pump. District Irrigation Development Authority should facilitate field demonstrations with farmers for further scale up. Sources of technology should be as close as possible to the farmers. So the respective District Irrigation Development Authority should facilitate for farmers who need these technologies by providing these pumps from the sources.

Keywords: demonstration, hip pump, Irrigation, water lifting, pre-extension,

Abstract: The method of lifting water to the field for irrigation in Oromia, Ethiopia is mostly traditional. The water is transported to the field with the help of bucket. The ground and river water are at the deeper position and are required to be lifted to the area to be irrigated. Therefore, this research was aimed at pre-extension demonstration of the hip pump. The demonstration was conducted in West Wollega and Qellem Wollega zones. Totally four farmers’ groups were established consisting of sixty farmers. Theoretical and practical training was provided to all farmers’ groups’ members, subject matter specialists, and development agents. Totally eight hip pumps were distributed for all the four groups. Data were collected through focus group discussions and a semi-structured interview. The collected data were analyzed qualitatively. The study recommends that Training should be given for extension staffs who work directly with irrigation farmers on the hip pump. Sources of technology should be as close as possible to the farmers. District Irrigation Development Authority should facilitate field demonstrations with farmers who need these technologies by providing these pumps from the sources.

Keywords: Oromia, Ethiopia, hip pump, irrigation, lifting water, pre-extension.

I. INTRODUCTION

Water is essential for the growth of crops. In many regions, however, there is insufficient rainfall available to produce a crop with decent yields, and irrigation systems are needed to provide the crop’s need for water. Provision of drinking water is also fundamental for both human beings
and livestock, but its transport from the water source to final destination is often required. Water sources can either be underground water reservoirs, open natural water bodies (rivers and lakes), or artificial water bodies (canals). The use of water lifting devices is crucial to transport water from water source to the field or the consumer.

Water lifting devices can be divided into two groups: (i) devices that are run by muscle power of humans or domestic animals and (ii) devices mechanized by lift irrigation techniques. Devices which are run by muscle power are often very time-consuming in real terms, due to their low productivity. Mechanized lift irrigation techniques, while more efficient, need to be adapted to the local conditions and the different demand needs. To establish and implement water lifting devices, local people need to be trained on how to use these technologies in water efficient way, as well as how to maintain these technologies in the long run.

Local hydrogeological, economic and social conditions, as well as national strategies, e.g., the strategy to standardize the equipment, must be considered in selecting the technology which best fits local conditions. In the end, it is the individual farmer or the benefitting association who should make the final choice.

Water lifting technologies free the farmers from the limitations of inadequate rain during dry seasons, thus raising their capacity to grow crops up to two or three planting annually. Thus additional income possibilities for the subsistence economy of the households are provided.

In addition, Water efficient technologies such as pumps can bring an improvement to the situation of women by increasing household food security and nutritional variety, as well as decreasing the amount of labor required to obtain water. Most pumps can easily be operated by women.

It is estimated that more than 90% of the food supply in Ethiopia comes from low productivity rain-fed small-holder agriculture. Hence, rainfall or access to irrigation water is the most determinant factor affecting the food self-sufficiency at the household level and national food supply. Not only limited access to water has impeded the productivity of farming system but also lack of appropriate means of utilizing the available water more productively (Ayana, M., Eshetu, F. and Tadele, K., 2006).

The development of irrigation and agricultural water management holds significant potential to improve productivity and reduce vulnerability to climactic volatility in any country. Although Ethiopia has abundant rainfall and water resources, its agricultural system does not yet fully benefit from the technologies of water management and irrigation. The majority of rural dwellers in Ethiopia are among the poorest in the country, with limited access to agricultural technology, limited possibilities to diversify agricultural production given underdeveloped rural
infrastructure, and little to no access to agricultural markets and technological innovations. These issues, combined with increasing degradation of the natural resource base, especially in the highlands, aggravate the incidence of poverty and food insecurity in rural areas. Improved water management for agriculture has many potential benefits in efforts to reduce vulnerability and improve productivity (Hiben, M.G. and Tesfa-alem, G., 2014).

“Water is the key entry point for boosting agricultural productivity and incomes,” says Alfred Wise, director of KickStart International Tanzania, the non-profit organization behind the popularization of manually operated water pumps used on smallholder irrigation projects.

Hip pump enables farmers to access water to diversify and grow higher-value crops such as fruits and vegetables. “Unlike farmers who wait for the rains, whom all come to market at the same time with the same crops, farmers using irrigation also have crops to sell in dry seasons when prices are high,” Wise said.

The hip pump can utilize a rowing motion in combination with the rocking of the hip. As the user rock their hip back and forth, their arms are also moving in a circular motion (rowing motion) to operate the piston (Fisher, M.J., Swaleh, M., Spybey, A.C. and Obudho, F., Kickstart International, Inc., 2009.). Another instance, which can be adopted, involves pushing the pump handle with the rear of the body. This pump can also be used with a hip belt to assist the user with the pulling motion. It is flexible enough to accommodate many different usage styles; the benefit is that it can be used for a long period without tiring and in a manner that is comfortable for different users. In general, this pump is highly energy efficient because a user or community can incorporate the muscle of person’s whole body to use the pump. Compared to pumps which use a person’s arm to operate this pump enable the community/society to pump for a longer duration since human’s arm have poor endurance as compared to their leg. In particular, the level effort to use this pump is substantially less than the effort required to use a similar cylinder and piston pump that does not have a pivoted base-such as a standard floor mounted bicycle pump (Fisher, M.J., Swaleh, M., Spybey, A.C. and Obudho, F., Kickstart International, Inc., 2009.).

This pump is designed for the user to perform basic maintenance with no special skill or tool is required, or furthermore, no special trainer skill is needed to install, to replace, or to operate so that any person can operate easily.
There are many manually operated pumps in the country, but many of them cannot resolve the solution of water lift for the farmer because they have some problems encountered in the society the energy request to operate and body/physiological fatigue problems. So to solve this problem the Hip pump is appropriate as it needs low energy and reduces fatigue problem.

The Hip Pump is a light and easy-to-use pressure pump. It has a maximum suction to lift water from 7 meters depth and the maximum pumping height is up to 14 meters.

People are catching on to the ways that this technology not only helps them with the problem of a lack of water but also helps them earn a living and improve their happiness in all aspects of their life. Not only was this equipment supposed to be directly useful in improving irrigation in drought-ridden areas, but it was also going to be very useful in creating a business, employment, and income. This was essential to improving the lives of these rural workers. Since this tool does rely on human power, it is ergonomic and safe.

Many farmers had problems with the inconsistent weather; they were often battling with lack of rainfall and droughts in unproductive lands. The irrigation pump allows them to have consistent water throughout the year, helping the crops and providing income that is more consistent for the families.

The main objectives for this study are:

- To create awareness among farmers on hip pump technologies.
- To get farmers feedback for further improvement of the technology.

II. MATERIALS AND METHODS

Material resources that were supplied hip pump at the due time of working season. Two zones were randomly among the mandate area of Bako Agricultural Engineering Research Center. From each zone, one district and among each district two Peasant Association picked out purposively based on irrigable land and ground/river water facilities possessed. From the identified frame of the sample, a mixture of 15 farmers (by gender & social status) per Peasant Association was selected on the random sampling basis. Totally eight hip pumps were distributed for all farmers’ groups.
Selection of Peasant Association and farmers were made joint venture team composed of the researcher, district officers and locally decentralized institution (Peasant Associations’ chairperson).

Training (capacity building) session was an integral part of the project and was organized for farmers, Development Agents, Subject Matter Specialists and other identified stakeholders of the extension area to upgrade their skills on principle, installation (assembling & disassembling), operation(usage), management, handling and repair of delivered pumps.

Moreover, for an efficient demonstration of technologies, short field day, workshop and group visit was conducted throughout the group for sharing an experience involving neighbor farmers, in addition to frequent follow up of the project at various stages.

Data collection methods:

♦ Group and individual discussions.
♦ Joint field and home visits.
♦ Semi-structured interviews.
♦ Continuous interaction (monitoring and evaluation).

Data were analyzed qualitatively from field notes and semi-structured interview guide, organized and summarized after feeding into computer.

III. RESULTS AND DISCUSSION

The demonstration was conducted in West Wollega (Gimbi district) and Qellem Wollega (Sayyo district). Two farmers’ groups were established in each district. Each farmer’s group consisted of 15 farmers. Totally four farmers’ group were established consisting of 60 farmers.

Total number of farmers were sixty farmers that participated in technical training of operation of hip pumps.

It is estimated that over 200 farmers have now had exposure to overflow treadle pump technology and rope and washer pump through field visit scale up.

Figure (1): Photos for Field Work
The benefits of using the treadle pump and rope and washer pump in farming practices:

- Increased land area under irrigation.
- Reduced work time compared with bucket irrigation (full irrigation of fields, resulting in improved crop quality).
- Reduced labor demand.
- Reduced workload.
- Irrigation used for seed multiplication; examples include coffee and tomatoes.
- Social and cultural changes, where women operate hip pumps without any traditional or religious constraints considering it as an opportunity for empowerment.

IV. CONCLUSION

The demonstration was conducted in west wollega (Gimbi district) and Qellem Wollega (Sayyo district). Two farmers’ group were established in each district consisting of 15 farmers in each group. Totally four farmers’ group were established consisting of 60 farmers. Theoretical and practical training was given for all farmers’ group members, Subject Matter Specialists, and Development Agents. Totally eight hip pumps were distributed for all farmers’ group.

The hip pump creates the farmers’ group using this technology and the demand. Due to demand created on this technology from neighboring of the hosting farmers, Sayyo Irrigation Development Authority has been started to provide this hip pump.

Its advantages are saving water; it does not require large water sources, reduce drudgery, saves their time as compared to bucket Irrigation and no need of fuel as it is operated manually by using our hip; It also helps for rearing seedlings at nursery site for those who irrigate a large area of land. It is very useful for those farmers who cannot afford a motor pump and its cost of fuel because the hip pump is affordable for smallholder farmers.

Although, it has the advantage above the problem with the hip pump are It cannot irrigate a large area of land, and the other problem is its spare parts because It is imported from abroad. Therefore, the hip pump is recommended for further pre-scaling up Sources of technology should be as close as possible to the farmers. So the respective district Irrigation Development Authority should facilitate for farmers who need these technologies by providing these pumps from the sources. Irrigation Development Authority at Zonal and district level should give training for farmers and Das and facilitate supply. NGOs who are working on irrigation development should consider this hip pump and facilitate for farmers on credit basis as other pumps like motor pump to reach smallholder farmers

ACKNOWLEDGEMENTS
I am grateful to Oromia Agricultural Research Institute for providing us fund and necessary support to undertake this research. I am also grateful to farmers who participated in the project.

REFERENCES


http://www.iwmi.egiar.org/publications/working papers

http://www.Kick start.org/product/moneymaker hip pump .com


https://wocatpedia.net/wiki/Water_lifting_devices accessed on 21/10/2017