SCIENCEDOMAIN international www.sciencedomain.org

SDI FINAL EVALUATION FORM 1.1

PART 1:

Journal Name:	Asian Journal of Applied Chemistry Research
Manuscript Number:	Ms_AJACR_42725
Title of the Manuscript:	Inhibition of Mild Steel Corrosion in Acidic Medium by Telfairia occidentalis Rind Extract
Type of Article:	Original Research Article

PART 2:

FINAL EVALUATOR'S comments on revised paper (if any)	Authors' response to final evaluator's comments
Corrosion rate expressed in mmy ⁻¹ was calculated from weight loss measurements and	
percentage of inhibition efficiency was calculated from the corrosion rate values.	
Equations 1 and 2 establish the relation between rate of corrosion and inhibition efficiency	
with the weight loss of metal specimens.	
Rate of corrosion $W = \frac{K \times w \text{tloss in grams}}{\text{Area in again × time in Hes × Density}}$ (1)	
Where 'K' =87600 (This is a factor used to convert cm/hour into mm/year), density of MS	
specimen= 7.88g/cc	
Percentage of inhibition or the inhibition efficiency (η) is given by	
$\eta = \frac{W - W}{W} \times 100 \tag{2}$	
where W & W' are the corrosion rates of the metal specimen in the absence and	
presence of the inhibitor respectively.	
In the first review comment, since the corrosion rates are expressed in mmy ⁻¹ , the	
constants K and density compulsorily taken for calculation. In that sense the equation for	
corrosion rate is correct. (The constants are not included in the equation).	
If all the coupons have same dimensions, the inhibition efficiency can be calculated form	
weight loss studies. In that sense authors are correct.	
Authors Comment:	
The extract, being in paste form, can be weighed to prepare the extract concentrations in	
g/L, which is mass concentration. The concentrations are not given in moles/L, which is	
molar concentration, since the molar mass of the extract is not known.	
For plotting the adsorption isotherm the concentration expressed in g/L. Then how ΔG^{o}_{ads}	
value expressed in kJ mo ⁻¹ ? (Molar mass of the extract is not known). Clarify.	

Reviewer Details:

Name:	Shaju K Shanmughan
Department, University & Country	Government Engineering College, Thrissur , India

