SCIENCEDOMAIN international www.sciencedomain.org

SDI Review Form 1.6

Journal Name:	Asian Journal of Applied Chemistry Research
Manuscript Number:	Ms_AJACR_42725
Title of the Manuscript:	Inhibition of Mild Steel Corrosion in Acidic Medium by Telfairia occidentalis Rind Extract
Type of the Article	Original Research Article

General guideline for Peer Review process:

This journal's peer review policy states that <u>NO</u> manuscript should be rejected only on the basis of '<u>lack of Novelty'</u>, provided the manuscript is scientifically robust and technically sound. To know the complete guideline for Peer Review process, reviewers are requested to visit this link:

(http://www.sciencedomain.org/page.php?id=sdi-general-editorial-policy#Peer-Review-Guideline)

PART 1: Review Comments

	Reviewer's comment	Author's comment (if agre highlight that part in the man his/her feedback here)
Compulsory REVISION comments	Line No.80. Equation $I(\%) = \left(1 - \frac{W_1}{W_0}\right) \times 100$ where W0 and W1 are the weight losses of the mild steel coupons.	
	But W0 and W1 are the corrosion rates. First determine the corrosion rate. Then using corrosion rates, determine the inhibition efficiency.	
	{The corrosion rate (v) and the percentage of inhibition efficiency (η_w %) were calculated by the following equations.	
	where W is the weight loss (g) of specimen, S is the total area(cm ²) of specimens , t is the time of treatment (4 h), v ₀ and v are the corrosion rates (mmy ¹) of uninhibited and inhibited specimens respectively.} Line No. 157 . The inhibitor can combine with freshly generated Fe ²⁺ ions on the steel surface to form metal-inhibitor complexes:	
	Complex formation involves chemical bonds. Authors not provided sufficient proof for this argument. Line No. 267 . Physical adsorption of the extract onto mild steel surface has been proposed. If it is clear complex formation, the mechanism of adsorption may be chemical adsorption. Scrapping the adsorbed layer from the surface and by doing the FTIR analysis authors can get this information. Authors prepared the inhibitor solution in g/L. Since the extract contains more than one compounds authors can't make inhibitor solution in Molar. Then how the data provided in Table 3 and Table 4 expressed in mole? Clarify this argument.	
<u>Minor</u> REVISION comments	Line No: 47 . Method of Chemical composition determination is not mentioned. Line No. 62 . Extract concentrations of 0.5 g/L, 1.0 g/L, 1.5 g/L and 2.0 g/L respectively were prepared. Line No. 72 . Previously weighed mild steel coupons were suspended with the aid of glass hooks and rods and immersed in 100 ml of 1 M H ₂ SO ₄ solution (blank) and in 1 M H ₂ SO ₄ solution containing 1.0 g/L – 2.0g/L <i>Telfairia occidentalis</i> rind extract (inhibitor), respectively, in open beakers. But 0.5 g/L is missing. In the Table 2, the data is provided. Line No. 111 . The results of the phytochemical screening of ethanol <i>Telfairia occidentalis</i> rind extract revealed the presence of tannins, flavonoids, saponins, anthraquinones and phlobatannins. Authors should provide relevant proof of phytochemical screening (GC- MS, FTIR, etc. or Phytochemical Analysis result.)	
Optional/General comments	Authors can try Electrochemical/potential analysis for corrosion analysis. Authors can use water soluble components of Telfairia occidentalis Rind Extract. Since the extract is taken in ethanol, comment on the solubility of extract in 1 M H ₂ SO ₄ .	

eed with reviewer, correct the manuscript and nuscript. It is mandatory that authors should write

SDI Review Form 1.6

Reviewer Details:

Name:	Shaju K Shanmughan
Department, University & Country	Government Engineering College, Thrissur , India