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Abstract 4 

Solar energy keeps increasing its potential to replace convent5 
need for initial investment requires careful planning and efficient use of financial resources. The most 6 
vital part of such in-depth analysis is dependable data. Solar radiation values are of great significance 7 
to be able to estimate the potential of solar systems. On the other hand, solar radiation measurements 8 
are very limited in global scale. Thus, many models have been 9 
need for the missing data. However, t10 
examined. Climatic conditions play significant role in model development. There are four climatic 11 
regions in Turkey and each of them need to be studied on its own. In this study, in order to de12 
system for maximum efficiency under certain climatic conditions in Turkey, a comperative analysis of 13 
solar energy potential for two cities in the third climatic region is conducted. 14 
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1. Introduction 16 

Adoption of solar energy is vital to meet the growing energy demand worldwide. The fact that share 17 
of carbon-based fuels in energy supply need to be reduced due to the environmental concerns, 18 
intensify the research efforts on solar energy as one of the most significant alternative. Its ability to 19 
reduce environmental side-effects and relatively simple technology help increase the popularity 20 
among other sources of renewable energy. 21 
world [1]. 22 
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24 

Fig. 1.  Renewable energy distribution in the world [1]25 

26 
Fig. 2 shows solar radiation received27 
over plotted on the solar irradiance curve28 
radiation map is displayed in Fig. 3 [3].29 
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Fig. 2. Solar Radiation 32 
 33 

Measuring solar radiation which shows the energy radiated from the sun is a significant indicator of 34 
true potential of solar energy. Lack of meteorological stations raises the need for estimation models to 35 
assess the feasibility of solar energy investments. There is a wide range of deter36 
have been developed for this purpose. In order to evaluate and compare the appropriateness of 37 
selected provinces in second climatic region for solar investments, a selection of these models are 38 
utilized in this study as discussed in th39 
 40 
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Fig. 3.43 
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In recent years, researchers have begun to focus on the evolution for local solar radiation related to 45 
model at photovoltaic system design. 46 
methodology is better than empiric models [47 
duration fraction models in China. For calibration, data for eleven years are used. Four years of data 48 
are used for validation. The root mean square error49 
linear model changed from 1.26 to 0.72 MJ/50 
0.7 MJ/m2day [7]. Tang etal. studied51 
daily solar radiation [8]. The model computed the clear sky index and clear52 
These models used sunshine duration, thickness of ozone layer, air temperature, surface elevation, 53 
relative humidity, air pressure, and Angstrom turbidity54 

Solar Radiation received on the earth [2]. 

shows the energy radiated from the sun is a significant indicator of 
true potential of solar energy. Lack of meteorological stations raises the need for estimation models to 
assess the feasibility of solar energy investments. There is a wide range of deterministic models that 
have been developed for this purpose. In order to evaluate and compare the appropriateness of 
selected provinces in second climatic region for solar investments, a selection of these models are 
utilized in this study as discussed in the following section. 
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meteorological stations in China, the obtained irradiation data from 2000 to 1993 used to confirm the 55 
hybrid model. The root mean square error determined 0.7 and 1.3 MJ/m2day, respectively [9]. To 56 
predict average hourly sun irradiation, Janjai etal. obtained a satellite-based model. For hours, the 57 
relative root mean square error during 15:00 and 9:00 varied from 10.7% to 7.5% [10]. For 17 cities in 58 
Iran, Behrang et al. searched eleven models by applying particle swarm optimization technique [11]. 59 
For two sites in Iran, Jamshid et al. researched three sunshine duration fraction (SDF) models one 60 
modified sunshine duration fraction model. They used the method of support vector regression. 61 
RMSE of them ranged between 2.14 and 3.70 MJ/m2day. The minimum and maximum temperature, 62 
relative humidity, and sunshine duration selected as inputs for kernel function [12]. For Spain, Gorka 63 
et al. compared three temperature-based empirical models, artificial neural networks (ANN), gene 64 
expression programming, and adaptive neuro-fuzzy inference system. 2855 observations obtained 65 
from 4 stations were utilized for testing and 4420 observations were utilized for training purposes. 66 
The models used five combinations of minimum and maximum air temperature, clear sky radiation, 67 
extraterrestrial radiation, and day number as inputs. The optimized GEP’s RMSE varied between 3.31 68 
and 3.49 MJ/m2day. The corresponding optimized adaptive neuro-fuzzy inference system's RMSE 69 
changed between 3.33 and 3.14 MJ/m2day. The optimized artificial neural networks’ root mean square 70 
error of the applying other 3 combinations as inputs varied between 2.97 and 2.93 MJ/m2day [13]. For 71 
79 sites in China with data for 10 years, Li et al. [14] applied a combined model (sine and cosine 72 
functions). The mean absolute percentage error varied from 15.43% to 4.00% while RMSE changed 73 
between 1.03 and 1.83 MJ/m2day. Amit etal. searched numerous articles that used ANN for the 74 
estimation of sun irradiation in three reviews and predict sun irradiation on horizontal surfaces. They 75 
pointed out that artificial neural network models were better than empiric models [15]. For 35 sites in 76 
China Zang et al. [16] researched the same model by reducing two coefficients [17]. The mean 77 
absolute percentage error and RMSE for the 35 sites ranged from 16.22%, to 4.33% and from1.88 to 78 
1.10 MJ/m2day, respectively. For seven sites in Spain, Almorox et al. researched eight non-sunshine 79 
duration models which were primary based on the minimum and maximum temperature. In some 80 
models, the characteristics of latitude, altitude, mean temperature, and the day of the year were 81 
involved. The eight models’ root mean square error changed from 3.25 to 2.70 MJ/m2day and the 82 
mean absolute percentage error varied between 29.18% and 16.37% [18].  For sixty nine sites in 83 
China, Zhou et al. analyzed six SDF models and used three SDF models to predict monthly average 84 
sun irradiation. The altitude and latitude are added as parameters in modified models. The coefficient 85 
values are derived separately. The sunshine duration fraction ranged from 1.634 to 1.636 MJ/m2day 86 
[19]. For 3 sites in Liaoning City, China, Chen et al. researched 5 sunshine duration fraction models. 87 
From each site, data for 35 years was obtained and 70% of the data were analyzed to derive empirical 88 
coefficient values. For testing, 30% of the data were used. For each station, the empirical coefficient 89 
values are determined. For Chaoyang, RMSE varied between 1.98 and 2.73 MJ/m2day, respectively 90 
[20]. For four sites in Tunisia, Chelbi et al. researched five empiric models [21]. For six provinces in 91 
Iran, Khorasanizadeh et al. assessed three mean SDF models and three NSDF models for the 92 
prediction of average monthly global sun irradiation. In mean sunshine duration fraction models, the 93 
relative humidity and temperature are added as parameters. Compared with sunshine duration fraction 94 
models, the root mean square error of all models changed from 0.82 to 0.47MJ/m2day [22]. Wan Nik 95 
et al. analyzed 6 mathematical expressions of the hourly solar radiation’s ratio to daily radiation. For 96 
monthly average hourly irradiation, the prediction was made. From three sites of Malaysia, data for 97 
three years were utilized to test the models. They obtained that the relative root mean square error 98 
varied from 26.49% to 8.22% [23]. For seven locations in Turkey, Hacer et al. investigated five 99 
sunshine duration fraction models to predict monthly average radiation [24]. For 9 sites in China, 100 
Zhao et al. researched the linear model. RMSE varied between 1.72 and 5.24 MJ/m2day [25]. For 101 
Dezful, Iran, Behrang etal. investigated multi-layer perceptron network and radial basis function 102 
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network. Six combinations of the parameters (wind speed, relative humidity, day number, 103 
evaporation, sunshine duration, and mean air temperature) were used. To train the models, 1398 days 104 
were used. For testing, 214 days were used. The mean absolute percentage error changed from 5.21% 105 
to 22.88%. [26]. For Shanghai in China, Yao et al. evaluated eighty nine monthly average radiation 106 
models. Using various coefficients, many models are applied with same mathematical expressions. 107 
For five sunshine duration fraction models in Shanghai, they derived new fitting coefficients [27]. For 108 
4 sites in Thailand and 5 sites in Cambodian, Janjai et al. researched a satellite-based model. The root 109 
mean square error is obtained as 1.13 MJ/m2day [28]. For twenty two sites in South Korea, Park etal. 110 
searched linear empiric model [29].  El-Sebaii et al. performed three mean SDF models, three SDF 111 
models and NSDF for the prediction of average monthly global sun irradiation for Saudi Arabia. The 112 
characteristics grouped in mean sunshine duration fraction models were cloud cover, temperature, and 113 
relative humidity. To derive novel empirical coefficient values, the data of nine years are employed. 114 
RMSE of the 9 models ranged between 0.02 and 0.15 MJ/m2day [30, 31]. To predict hourly solar 115 
irradiation, Shamim et al. used a fixed technique. To obtain the relative humidity and air pressure, 116 
they used a meso-scale meteorological model for diverse atmospheric layers. By using available 117 
measured data, they computed the cloud cover index with relative humidity and air pressure. By an 118 
empirical correlation, they determined clear sky radiation and transmission factor to compute the 119 
actual hourly solar irradiation. The clear sky radiation was predicted by applying irradiation transfer 120 
model. For training, Data for one year was used. The root mean square error was obtained as 110.83 121 
W/m2 [32]. For four provinces in Turkey, Ahmet et al. researched cubic, linear, and quadratic empiric 122 
models [33]. For two sites in Iran, Jamshid etal. researched two support vector regression models. As 123 
inputs, the minimum and maximum temperature, sunshine duration, and relative humidity were used. 124 
Root mean square errors were obtained from 1.63 to 4.47 MJ/m2day [34]. Bakirci investigated sixty 125 
empiric models developed for the prediction of global monthly with average daily sun irradiation, in 126 
which many of the predictions had same formulas just with diverse regressive constant parameters. 127 
However, according to the conclusions of many articles, these constant parameters are generally based 128 
on the investigation areas [35]. For 41 sites in China, Kevin etal. applied the linear Angstrom–Prescott 129 
model to predict daily global sun irradiation. Those sites divided into seven sun climate regions and 130 
nine thermal climate regions depending on diverse criteria, respectively. They applied the ANN model 131 
using latitude, altitude, longitude, day number, sunshine duration fraction, and daily mean temperature 132 
[36]. Kasra et al. presented four SDF models with data of nine years for Isfahan in Iran. Data of four 133 
years were used to test the data. RMSE of them changed between 1.18 and 1.1 MJ/m2day [37].  For 134 
Shiraz in Iran, Shahaboddin et al. assessed two SDF models, two mean SDF models and one non-135 
sunshine duration model. RMSE of the 5 models changed from 1.55 to 1.3 MJ/m2day [38]. In the 136 
artificial neural networks model, Alvaro et al. applied the satellite data. The performance obtained is 137 
reported to be very good [39]. Fariba et al. searched seventy eight empiric models. They grouped 138 
them into four classes of models based on sun ray, cloud, meteorological characteristics, and 139 
temperature. To develop a case study, they applied a few models from each of the classes for Iran. 140 
The best performance is determined through a sun ray-based model with exponential expression [40]. 141 
For Turkey, Ozgoren et al. used the artificial neural networks model of multi non-linear regression to 142 
obtain the best independent characteristics for input layer. They selected 10 characteristics (soil 143 
temperature, month of the year, altitude, sunshine duration, cloudiness, minimum and maximum 144 
atmospheric, mean atmospheric temperature, latitude, and wind speed). Levenberg-Marquardt 145 
optimization algorithm was utilized to train the ANN [41]. For eleven meteorological sites on Tibetan, 146 
Pan etal. investigated the exponential model based on temperature. The temperature difference is used 147 
as input. To calibrate the model, data for 35 years were applied. For testing, data for 5 years were 148 
applied. RMSE of the model changed from 2.54 to 3.24 MJ/m2day for all stations[42]. For twenty five 149 
sites in Spain, Manzano etal. assessed the linear Angstrom–Prescott model. More than 10 years of 150 
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data was used for calibration purposes. Except for 4 sites, RMSE changed between 0.8 and 0.36 151 
MJ/m2day [43].  Kadir studied seven different sunshine duration fraction models with data measured 152 
from 18 sites in Turkey. Various models including exponential, logarithmic, quadratic, and linear 153 
equations were used for the prediction of long-term average daily global solar radiation on monthly 154 
basis. For the same sites, the performances of the applied models are obtained with slight differences 155 
[44]. For Yazd in Iran, Fariba et al. analyzed the cloud-based model and Hargreaves model. The data 156 
of sixteen years are utilized to obtain empiric constants. RMSE changed between 1.12 and 0.71 157 
MJ/m2day [45]. For Gaize in Tibetan, Liu et al. investigated 3 non-sunshine duration models, 2 SDF 158 
models and 3 modified SDF models. For calibration, 1085 days of data were analyzed while 701 days 159 
of data were used to validation purposes. Root mean square error varied from 1.68 to 3.13 MJ/m2day. 160 
For various seasons, they argued that deriving coefficient values respectively was unnecessary [46]. 161 
For 4 cities in India, Katiyar etal. searched the quadratic, cubic, and linear models for the prediction of 162 
monthly average radiation using annual data. The values ranged from 0.8 to 0.43 MJ/m2day [47]. To 163 
predict sun irradiation, Sun etal. assessed influence of autoregressive moving average model. They 164 
investigated the data of 20 years from 2 sites in China [48]. In a year, Ayodele et al. performed a 165 
function to present the clearness index’s distribution. By using 7 years, the coefficient values 166 
determined daily sun irradiation data. Except for October, the effectiveness of all months are obtained. 167 
RMSE varied between 0.221 and 0.213 MJ/m2day [49]. For Iseyin in Nigeria, Lanre et al. used the 168 
adaptive neuro-fuzzy inference system and ANN. Maximum and minimum temperature and sunshine 169 
duration were used as inputs. Data of 6 years were obtained for model training while data of 15 years 170 
were obtained to test the model. In testing and training phases, RMSE varied between 1.76 and 1.09 171 
MJ/m2day, respectively [50]. Iranna et al. investigated sixteen non-sunshine duration models to 172 
predict monthly average clearness values. As inputs, the moisture, wind speed, altitude, longitude, 173 
relative humidity, and five other temperature related characteristics are used. Data for 875 sites are 174 
evaluated to analyze the models [51]. To obtain the most effecting input characteristics for prediction, 175 
Yadav et al. performed the Waikato Environment’s software. They determined the minimum and 176 
maximum temperature, average temperature, sunshine duration, and altitude as input characteristics, 177 
while longitude and latitude were  reported to be the least effective characteristics. The prediction was 178 
for average monthly global sun irradiation. By the artificial neural networks, the maximum mean 179 
absolute percentage error is obtained as 6.89% [52, 53]. Senkal proposed an artificial neural network 180 
model using altitude, longitude, latitude, land surface temperature and two diverse surface emissivity 181 
as inputs. The last 3 characteristics were determined using satellite data. To train the artificial neural 182 
networks, one year of data from ten sites is used. The root mean square error in testing and training 183 
stage were reported as 0.32 and 0.16 MJ/m2day, respectively [54].  For 4 provinces in Iran, 184 
Khorasanizadeh et al. [55, 56] analyzed 6 models. The first model is based on exponential, the second 185 
on polynomial and other four models on cosine and sine functions. These six models’ RMSE varied 186 
between 1.26 and 0.72 MJ/m2day, and the mean absolute percentage error changed from 5.72% to 187 
3.38%. For Akure in Nigeria, Adaramola searched six non-sunshine duration models to predict long-188 
term monthly average sun irradiation and Angstrom-Page model. In non-sunshine duration models, 189 
precipitation, relative humidity, and ambient temperature were used. RMSE changed between 8.25 190 
and 4.78 MJ/m2day for the linear model [57]. For Bandar Abass province in Iran, Mohammadi etal. 191 
[58] used support vector machine and wavelet transform algorithm. Data for 10 years were used to 192 
train the models. The difference between minimum and maximum ambient temperatures, sunshine 193 
duration fraction, water vapor pressure, relative humidity, extraterrestrial global sun irradiation, and 194 
average ambient temperature are used as parameters. RMSE varied between 1.81 and 1.79 MJ/m2day, 195 
respectively. Jiang et al. performed to priori association rules and Pearson correlation coefficients to 196 
choose the relevant input characteristics. The wind speed, total average opaque sky cover, 197 
precipitation, opaque sky cover, minimum and maximum temperature, average temperature, relative 198 
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humidity, daylight temperature, heating and cooling degree days were ch199 
et al. used Levenberg-Marquardt algorithm with inputs including area temperature 200 
night and daytime, air pressure rate number of days, vegetation 201 
monthly precipitation. For Tibetan Plateau, data of seven years from twenty two sites 202 
the artificial neural networks [60].203 
network and extreme learning machine algorithm. The relative humidity, average air temperature, 204 
temperature difference, and sunshine duration fraction are applied as inputs. 3 years of data 205 
for testing. RMSE varied between 206 
Senkal et al. studied artificial neural networks model. The mean beam radiation, mean diffuse 207 
radiation, altitude, longitude, and latitude were utilized as inputs. The satellite208 
prediction of average monthly irradiation is proposed. 209 
2.32 MJ/m2day [62]. For Saudi Arabia, Mohamed applied particle swarm optimization 210 
the ANN. The longitude, altitude, 211 
inputs. However, prediction was for monthly average global sun irradiation. To train the artificial 212 
neural networks, thirty one sites’ data are utilized. The average mean absolute percentage error is 213 
obtained as 8.85% [63]. Antonio et al. designed 214 
daily temperature variation and product of sunshine duration by using the power balance between 215 
adjacent atmosphere layer and soil layer [216 

 217 
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established based on solar energy. Thus, comprehensive investigation need to be undertaken about 222 
climate, solar energy potential and current facilities. Among many models that h223 
to calculate amount of solar radiation, 224 

225 
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 231 

Fig. 5. Solar radiation maps for Uşak and Tokat 232 

 233 

In terms of solar energy potential, both cities are placed in the second region. Average solar radiation, 234 
radiation function frequency, radiation function phase shift, and latitude values for both cities are 235 
presented in Table 1. 236 

Table 1. Radiation Values 237 

City Iort (MJ/m
2
 

.day) 

FGI (MJ/m
2
 

.day) 

FKI Latitud

e 

Usak 11.5 6.15 3.15 38.40 

Tokat 12.5 7.76 6.19 40.00 

In the next section, a comperative analysis is conducted on Matlab platform for both cities to reveal 238 
their solar radiation characteristics and potential.  239 

 240 
2. Solar Radiation Intensity Calculation 241 
Due to the climatic variations and geographic conditions, calculating amount of solar radiation 242 
depends on the specific region and requires the selection of the best model among others that are 243 
available in the literature. The model developed by Angstrom using radiation data and sunshine 244 
duration is the most commonly used one. Vartiainen et al. have proposed a statistical model to 245 
estimate the solar radiation amount through the use of data obtained from satellite [69]. Menges et al. 246 
provided a statistical comparison of daily total solar radiation on a horizontal surface in a specific city 247 
of Turkey with 50 different models in the literature [70]. Katiyar and Pandev have used solar radiation 248 
data from five different regions of India between 2001 and 2005 [71]. Consequently, they have 249 
developed Angstrom-type first, second, and third degree solar radiation models specific for each 250 
region. Monthly total radiation values of the developed model and measured values have also been 251 
compared.  252 
 253 
2.1. Horizontal Surface  254 
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2.1.1. Daily Total Solar Radiation 255 
Total solar radiation on horizontal surfaces on a given day can be calculated through the below 256 
equation [72]:  257 

( )
2

c o s
3 6 5o r t

I I F G I n F K I
π 

= − +  
     

1
 258 

where  259 
n: days,  260 
FKI: radiation function phase shift,  261 
FGI: radiation function frequency, and  262 
Iort: annual average of daily total radiation. 263 
 264 
2.1.2. Daily Diffuse Solar Radiation 265 
Total daily diffuse solar radiation on horizontal surfaces can be obtained using equation 2 [73]. 266 

( ) ( )
2 21 1 3Iy I B B= − +

                     2 
267 

where,  268 
Io: Out-of-atmosphere radiation,

  
269 

B: Transparency index. 
 

270 

       
 

271 

2.1.3. Momentary Total Solar Radiation 272 
Momentary total solar radiation on horizontal surfaces can be obtained using equation 2 [74, 75]. 273 

      
( ) ( ) ( ) ( ) ( )( )

24
sin

o s
I I Cos e Cos d Sin ws wsSin e d f

π
= +

                3 
274 

where; 275 
Is (W/m2): solar constant, e: latitude angle; ws: sunrise hour angle f: solar constant correction factor, 276 
d; declination angle can be calculated using the related tables and equations. 

 
277 

Out-of-atmosphere radiation can be calculated using equation 4 [73].
 

278 
 279 

                                                                             4 

280 

     

281 

where; 282 
Ats: solar radiation and  283 
tgi, : imaginary day length. 284 
          285 
2.1.4. Momentary Diffuse and Direct Solar Radiation 286 
 287 
Amount of momentary diffuse and direct solar radiation on horizontal surfaces can be obtained using 288 
equations 5 and 6 [21, 22] where Ays is function frequency. 289 

         5 

290 

         6 
291 

2.2. Calculating Solar Radiation Intensity on Inclined Surface  292 
2.2.1. Momentary Direct Solar Radiation 293 
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Momentary direct solar radiation on inclined surfaces (30°-60°-90° angles) can be calculated using 294 
the equation below [75]. 295 

                                                                                                                 7                                                                                                                  296 

                                                                                                      8         297 

                                                                9 298 

   299 

            10 300 

 301 
2.2.2. Momentary Diffuse Solar Radiation  302 

Value of momentary diffuse radiation on inclined surfaces can be obtained using the equation 303 
below [22]. 304 
 305 

11 306 

Conversion factor Ry for diffuse radiation can be calculated using equation below [75]: 307 

 308 
 309 

12 310 

Ry parameter provides the slope of the surface. For vertical surface (a=90
0), Ry value is 0.5. This 311 

way, momentary values of diffuse radiation on inclined surfaces with 30°, 60°, 90° angles for 24-312 
hour time period can be calculated. 313 

 314 
2.2.3. Reflecting Momentary Solar Radiation  315 
Reflecting radiation on inclined surfaces [75] can be calculated using the equation below:  316 
 317 
 318 

                  13 319 

Environment reflection rate is shown with ρ parameter and used with average value of ρ = 0.2 in 320 
calculations. 321 
 322 
2.2.4. Total Momentary Solar Radiation  323 

Momentary total radiation on inclined surfaces [75] can be obtained using equation below: 324 
 325 

14 326 
 327 
3. Methodology 328 

Figure 6 provides the values of; (a) change in annual momentary total solar radiation values for 24-329 
hour time period, (b) change in annual momentary diffuse solar radiation values per hour, (c) change 330 
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in annual momentary direct solar radiation values for 24-hour time period on horizontal surfaces.  331 
Figure 7 provides daily changes of; (a) total solar radiation values per day, (b) declination angle, (c) 332 
hourly angle for sunrise, (d) solar constant for correction factor, (e) solar radiation values out of 333 
atmosphere, (f) graph of function frequency (Ays), (g) diffuse solar radiation (Ats), (h) transparency 334 
index (B) for a horizontal surface. 335 

 
336 

          
                                                                                 (a) 

             
                                                                                (b) 

         
                                                                                (c) 

Fig. 6. Change of annual solar radiation values for 24-hour period on horizontal surfaces 
337 
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 341 
Fig. 7. Solar radiation on horizontal surfaces 342 

Momentary direct radiation values with three different angles (300, 600 and 900) for 24-hour time 343 
period are provided in Figure 8. The highest values for all three angles are obtained on the 355th day 344 
at 12:00, while the lowest values are obtained on the same day at 03:00. 345 
 346 
 347 
 348 
 349 
 350 
 351 
 352 
 353 
 354 
  355 

 356 
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(a) momentary direct radiation values on 30° inclined surface 

        

(b) momentary direct radiation values on 60° inclined surface 

       

(c) momentary direct radiation values on 90° inclined surface 

Fig. 8. Annual momentary direct radiation values on inclined surface for 24-hour period 357 
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(a) 30° momentary diffuse radiation 

      

(b) 60° momentary diffuse radiation 

    

(c) 90° momentary diffuse radiation 

Fig. 9. Annual momentary diffuse radiation values for inclined surfaces  363 
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(a)30° total momentary radiation values 

      

(b) 60° total momentary radiation values 

         

(c) 90° total momentary radiation values 

Fig. 10. Annual total momentary radiation values for inclined surface  373 

 374 

Annual momentary diffuse radiation values for three angles (300, 600 and 900) are provided in 375 
Figure 9. Annual values of total momentary solar radiation for 24-hour periods are provided in 376 
Figure 10.  377 

 378 
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4. Findings and Results 389 

Based on the above analysis, true potential of both cities can be evaluated through the solar 390 
characteristics calculations provided in Table 2. 391 

Table 2. Solar Radiation Attributes 392 
Attributes Usak Tokat Attributes Usak Tokat 

Total 

radiation 

Imax W/m2 5.3881 4.7858 

Mom. 

dir. Rad. 

Idbmax(30°) 0.8678 0.8933 

Imin W/m2 5.3500 
4.7400 Idbmin(30°) 

-
0.9670 

-
0.9721 

Declination 

angle 

dmax 23.6798 23.4488 Idbmax(60°) 0.6190 0.7807 

dmin -23.7398 -23.4468 
Idbmin(60°)  

-
0.7824 

-
0.8923 

Sunrise hour 

angle 

wmax 112.1015 112.9271 Idbmax(90°) 0.0397 0.4992 

wmin 70.9865 
69.8123 Idbmin(90°)  

-
0.4182 

-
0.5882 

Out-of-

Atmosphere 

Radiation 

Io(max) 
W/m2 

281010 
299215 

Mom. 

Dif. rad. 

IbBmax(30°)  0.0395 0.1714 
Io(min) 
W/m2 

-177450 
-189100 IbBmin(30°) 

-
0.1512 

-
0.1715 

Transp. 

Index 

Bmax 0.3330 0.3567 IbBmax(60°)  0.0489 0.1898 

Bmin -0.0011 -0.0111 IbBmin(60°) 
-
0.1549 

-
0.1872 

Total diffuse 

radiation 

Iy(max) 
W/m2 6.2822 4.7881 IbBmax(90°)  0.0458 0.1911 
Iy(min) 
W/m2 5.1800 4.7400 IbBmin(90°) 

-
0.1645 

-
0.1876 

Function 

freq. 

Ats(max) 0.9500 0.8612  
Ats(min) 0.6418 0.5695 

Mom. 

reflecting 

rad. 

IrBmax(30°)  0.0378 0.0486 

Mom. Tot. 

Rad. 
It(max) 1.7555 1.0011 IrBmin(30°) 

-
0.0400 

-
0.0485 

It(min) -0.9844 -1.1044 IrBmax(60°)  0.1191 0.1499 

Mom. Dif. 

Rad. 

(Ays)max 0.8991 0.8112 IrBmin(60°) 
-
0.1521 

-
0.1673 

(Ays)min 0.5799 0.5 IrBmax(90°)  0.2781 0.3001 

Id(max) 1.7853 0.9851 IrBmin(90°) 
-
0.2921 

-
0.3258 

Id(min) -0.5865 -0.9956 
Mom. direct 

rad. 

Ib(max) 0.0465 0.1854 
Ib(min) -0.1546 -0.1881 

Solar radiation values on inclined and horizontal surfaces are calculated through MATLAB software. 393 
Based on the calculations, the values of the indicators show that potential for photovoltaic systems in 394 
both cities correspond to expected levels. An integral of planning the photovoltaic systems is 395 
comparing the predicted values with the actual ones. The performance of the system depends on 396 
various parameters. Using realistic values of radiation has great importance for designing the 397 
optimum system. This study is aims to establish a reference for choosing the most efficient solar 398 
panel by relying on the real solar radiation values obtained for the most efficient photovoltaic system 399 
design. The solar radiation levels are evaluated to be at acceptable efficiency levels to design a 400 
photovoltaic system.  401 
 402 
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