1 2

3

4

5 6

7 8 9

10

11

12

13 14

Response of soybean to integrated nutrient management in cotton and soybean intercropping system

Amit M. Pujar^{1*} and V. V. Angadi² and Shamarao Jahagirdar³

¹Ph.D. Scholar, Department of Agronomy, UAS, Dharwad, Karnataka, India
²Principal Scientist (Agronomy) and Head, AICRP on IFS-OFR scheme, MARS, UAS, Dharwad, Karnataka, India
³Professor of Plant Pathology, UAS, Dharwad, Karnataka, India
^cOrresponding author e-mail: amit4670@gmail.com

15 ABSTRACT

A field experiment was conducted to study the integrated nutrient management on growth components of soybean, resource use efficiency and economics of cotton and soybean intercropping system. Study was conducted at All India Coordinated Research Project on soybean, Main Agricultural Research Station, University of Agricultural Sciences, Dharwad, Karnataka (India) during kharif 2015 and 2016. Experiment was laid out in randomised complete block design with three replications and twenty treatments. As per the treatments the organic manure (FYM) and green leaf manures (gliricidia and pongamia) were applied 15 days before sowing of the crop. Vermicompost was spot applied to soil before dibbling of seeds in cotton and soybean intercropping system in 1:2 row proportion, soybean introduced as intercrop in cotton with row spacing of cotton 120 cm and soybean 30 cm. Results of the study indicated that significantly higher soybean growth attributes were observed in sole soybean than intercropped soybean, except for plant height. Among the intercropping system, T_3 (150 % recommended dose of fertilizer for cotton and soybean) recorded significantly higher number of branches plant, leaf area per plant, leaf area index dry matter production and total number of nodules per plant. Intercropping of cotton and soybean resulted in more efficient utilization of resource. Among the intercropping system, T_3 (150 % recommended dose of fertilizer for cotton and soybean) recorded higher biomass and leaf area of cotton and soybean intercropping system. Among the different treatments, significantly higher gross returns and net returns were recorded in T₃ (150 % recommended dose of fertilizer for cotton and soybean) and it was on par with T_2 (125 % recommended dose of fertilizer for cotton and soybean) and $T_{17}(T_1 + Vermicompost 1.25 t ha^{-1} + Gliricidia 2.5 t ha^{-1}) during both years$ and in pooled data. Among the different treatments, significantly higher benefit cost ratio was recorded in T_{16} (T_1 + Gliricidia 2.5 t ha⁻¹ + Pongamia 2.5 t ha⁻¹) compared to rest of the intercropping systems and sole cotton and soybean during both years and in pooled data. However, T₁₆ was on par with T₂ (125 % recommended dose of fertilizer for cotton and soybean) during 2015-16. Farmers can adopt a fertilizer dose of 125 : 62.5 : 62.5 N. P_2O and K_2O kg ha⁻¹ in cotton and soybean intercropping system or 100 : 50 : 50 N, P_2O_5 and K₂O kg ha⁻¹ along with Gliricidia + Pongamia 2.5 t ha⁻¹ each for cotton and soybean intercropping for profitable yields in rainfed situation.

16 Keywords: Integrated nutrient management; cotton; soybean; economics

17

18 **1.INTRODUCTION**

19

20 Agriculture is one of the most vulnerable and adaptation-prone sources of livelihood facing 21 climate change. Among the different field crops, cotton (Gossypium hirsutum L.) is one of 22 the most important cash crops that provide fiber to the textile industries around the world. 23 According to the rough estimation regarding the world production of cotton, 80% comes from 24 Brazil, China, India, Pakistan, Turkey, USA, and Uzbekistan. This crop contributes a major 25 portion to the gross national product (GNP) of many countries. Hence, there is need for 26 sustainable intensification, i.e., increasing productivity from existing agricultural lands while 27 minimizing the negative environmental effects and ensuring the future needs of food 28 production, has been proposed as a central means to restrict further land clearing for 29 agriculture and transform agriculture and food systems to operate in a more sustainable way 30 [1]. The approach emphasizes reducing the use of external inputs such as industrial 31 fertilizers and pesticides that further pressurize the environment and climate. It builds on 32 spatio-temporal functional diversification of the agroecosystem and the combination of crop 33 species and traits that support and make better use of ecosystem services [2]. Intercropping 34 represents a within-field diversification strategy that is based on ecological intensification. It 35 refers to the cultivation of two or more crops together in time and space, and it is an ancient 36 practice of cropping that aims to maximize productivity per land area using only few external 37 inputs. Intercropping helps in the total production of different commodities with higher returns 38 under dryland conditions, besides better utilization of natural and scarce resources per unit 39 time [3]. Soybean, being a short duration and short stature legume, the crop has greater 40 ability to fix atmospheric nitrogen. It occupies prime position in intercropping system. 41 Intercropping of cotton with short duration legume like soybean was found more 42 remunerative than sole cotton [4 and 5]. Application of organic manures along with inorganic 43 fertilizers helps to rejuvenate the degraded soils and ensures sustainability in crop production is known as integrated nutrient management. Suitable management practices like 44 45 intercropping and judicious combination of organic and inorganic manures are considered 46 ecologically viable, economically feasible and avoid environmental pollution. In addition, 47 combination of organic and inorganic manures works like slow release fertilizers for 48 providing balanced nutrients to plants. Keeping these facts in view the present study was undertaken with objective to evaluate the sources of nutrients on the performance of 49 50 soybean in cotton and soybean intercropping system and economics of the intercropping 51 system.

51

53 2. MATERIAL AND METHODS

54

Field experiment was carried out to study the integrated nutrient management (INM) practices on growth components of soybean, resource use efficiency and economics of cotton and soybean intercropping system in 1:2 row proportion during *kharif* 2015 and 2016 at plot 101 'D' block, All India Co-ordinated Research Project on Soybean, Main Agricultural Research Station, University of Agricultural Sciences, Dharwad, Karnataka (India), which is located at latitude of 15^0 26' N and 75^0 07' E longitude with an altitude of 678 m above mean sea level. Soil was clay with pH 7.3, 0.51% organic carbon, 281 kg ha⁻¹ available N, 34 kg ha⁻¹ available P₂O₅ and 312 kg ha⁻¹ available K₂O and 0.35 dsm⁻¹ EC. The experiment was 63 laid out in randomised complete block design with three replications and twenty treatments as given in the tables. Sowing was done by adopting 120 cm x 60 cm row spacing for cotton 64 and soybean introduced as intercrop with 40 cm x 10 cm in 1:2 row proportions during kharif 65 season on June 12th, 2016. Organic manure (FYM) and green leaf manures (gliricidia and 66 pongamia) were applied 15 days before sowing of the crop according to the treatments. 67 68 Vermicompost was spot applied to soil before dibbling of seeds. RDF was applied to both crops in intercropping system according to population (100:50:50 and 40:80:25 kg N, P_2O_5 69 and K₂O ha⁻¹ for Cotton and Soybean, respectively). 70

71

72 2.1 Growth parameters of soybean

73 2.1.1 Plant height

The plant height was measured from ground level to the tip of the main shoot and their mean was expressed as plant height in centimeters (cm).

76 2.1.2 Number of branches per plant

The number of branches per plant was counted from five tagged plants and their mean wasrecorded as number of branches per plant.

79 2.1.3 Leaf area per plant

- 80 Leaf area was recorded by leaf area meter. The top, middle and bottom leaves were
- 81 collected from five selected plants at random from each plot and leaf area was measured by
- using leaf area meter (LICOR LI 3000A). The leaf area from top, middle and bottom of plant
- 83 was multiplied with number of leaves per plant (top, middle and bottom leaves). The leaf
- 84 area per plant was expressed in decimeter squares (dm²).

85 **2.1.4 Leaf area index**

86 Leaf area index (LAI) was calculated as per the procedure given by [6].

87 2.1.5 Dry matter production

- 88 The five randomly selected plants were used to record the dry matter production at at
- harvest. The plants were uprooted and separated into leaves, stem and pods. They were
 oven dried separately at 70°C for 48 hours and the total dry weight gram per plant (g plant⁻¹)
 was recorded.

92 **2.1.6 Total number of nodules per plant**

93 The plants were carefully removed from the soil without damaging the roots and roots were 94 dipped gently in a bucket containing water to remove the soil and then nodules were 95 counted. The number of effective root nodules was counted in randomly selected five plants.

96 **2.2 Resource efficiency of the system**

97 **2.2.1 Biomass**

- 98 It was measured by using the following formula at harvest of cotton and expressed in 99 kilograms per hectare (kg ha⁻¹).
- Biomass (kg ha⁻¹) = Summation of dry matter production per plant of both the crops x plant population per bestere of respective graph.
- 101 population per hectare of respective crops.

102 2.2.2 Leaf area

- 103 It was measured by using the following formula at harvest of cotton and expressed in 104 centimeter squares per hectare ($cm^2 ha^{-1}$).
- Leaf area $(cm^2 ha^{-1})$ = Summation of leaf area per plant of both the crops x plant population
- 106 per ha of respective crops

107 2.3 Economics of the system

108 The prices of the inputs that prevailed during experimentation were considered for working 109 out the cost of cultivation.

110 Gross return (Rs. ha⁻¹) was calculated on the basis of market price of the produce during 111 harvest period. Net return (Rs. ha⁻¹) was calculated by deducting the cost of cultivation (Rs.

ha⁻¹) from gross return. Benefit cost ratio (BC) was worked out as follows.

- 113 Gross returns (Rs. ha⁻¹)
- 114 BC ratio = ----

Cost of cultivation (Rs. ha⁻¹)

115 116

117 **2.4 Statistical analysis and interpretation of data**

Statistical analysis was carried out based on mean values obtained. The level of significance
used in 'F' and 'T' test was P= 0.05. The treatment means were compared by Duncan's
Multiple Range Test (DMRT) at 0.05 level of probability [7].

121

122 3. RESULTS AND DISCUSSION

123

125

124 **3.1.1 Soybean growth attributes**

126 Plant height differed significantly due to integrated nutrient management (INM) treatments 127 during both the years and in pooled data (Table 1). Among the different treatments, T_3 (150) % RDF for cotton and soybean) recorded the highest plant height during both years and in 128 129 pooled data. Number of branches per plant differed significantly due to INM treatments 130 during both the years and in pooled data (Table 1). Significantly higher number of branches 131 per plant was observed in sole soybean than intercropped soybean. Among the intercropping systems, T₃ recorded the highest number of branches per plant during both 132 years and in pooled data. Leaf area differed significantly due to INM treatments during both 133 134 the years and in pooled data (Table 1). At 60 DAS, the highest leaf area was observed in 135 sole soybean than intercropped soybean during 2016-17 and in pooled data. At 60 DAS, T₃ (150 % RDF for cotton and soybean) recorded higher leaf area and it was on par with T_2 136 (125 % RDF for cotton and soybean) and T_{17} (T_1 + Vermicompost 1.25 t ha⁻¹ + Gliricidia 2.5 t 137 ha⁻¹) during 2016-17 and in pooled data. LAI differed significantly due to INM treatments 138 139 during both the years and in pooled data (Table 2). At 60 DAS, significantly higher LAI was 140 observed in sole soybean than intercropped soybean during both years and in pooled data. 141 Among the intercropping systems at 60 DAS, the highest LAI was observed in T_3 (150 % 142 RDF for cotton and soybean) during both years and in pooled data. Dry matter production differed significantly due to INM treatments during both the years and in pooled data (Table 143 144 2). Significantly higher dry matter production was observed in sole soybean than 145 intercropped soybean during both years and in pooled data. Among the intercropping 146 systems, T₃ (150 % RDF for cotton and soybean) recorded the highest dry matter production 147 during both years and in pooled data. Total number of nodules per plant differed significantly due to INM treatments during both the years (Table 2). Among the intercropping treatments 148 at 60 DAS, T₄ recorded higher number of nodules per plant during both years and in pooled 149 data. The results are in agreement with the findings of [8 and 9], who also reported that 150 combined application of organic and inorganic nutrients was superior over inorganic alone. 151 152 In one of the study by [10] reported that optimum availability if nutrients through organic 153 manures and favorable soil environment through balanced soil moisture which enhanced N fixation, rate of photosynthesis and consequently lead to better vegetative growth. 154

155

- 156 **3.1.2 Biomass and leaf area of the system**
- 157

158 When two or more crops grown together in an intercropping system, the component crop 159 yield may be lower compared to their sole crop yields due to inter-specific competition for 160 growth resources viz., light, moisture, nutrients due to increased population pressure per unit 161 land area or demand exceeding supply or due to both. Biomass differed significantly due to 162 integrated nutrient management (INM) treatments during both the years. At harvest, the 163 highest biomass recorded in T_3 during both years and in pooled data (Table 3). Leaf area differed significantly due to INM treatments during both the years. Similar trend was followed 164 165 for leaf area of the system. The higher biomass is due to the higher uptake of nutrients by 166 both cotton and soybean along with leaf litter drops from the soybean. The results are in agreement with the findings of [10], who reported that higher biomass yield in the 167 168 intercropping system was due to higher uptake of nutrients.

169

171

170 **3.1.3 Economics of the intercropping system**

172 Gross returns differed significantly due to integrated nutrient management (INM) treatments 173 during both the years and in pooled data (Table 4). Among the different treatments, 174 significantly higher gross returns were recorded in T₃ (150 % RDF for cotton and soybean) and it was on par with T₂ (125 % RDF for cotton and soybean) and T₁₇ (T₁ + Vermicompost 175 1.25 t ha⁻¹ + Gliricidia 2.5 t ha⁻¹) during both years and in pooled data. All the intercropping 176 177 systems recorded significantly higher gross returns than sole crops in both years and in 178 pooled data. The higher gross returns with these treatments were due to better performance 179 of component crops in terms of yields and also due to higher price of cotton. Net returns 180 differed significantly due to INM treatments during both the years and in pooled data (Table 4). Among the different treatments, significantly higher net returns were recorded in T_2 (125 181 % RDF for cotton and soybean) and it was on par with T₃ (150 % RDF for cotton and 182 soybean) and T_{16} (T_1 + Gliricidia 2.5 t ha⁻¹ + Pongamia 2.5 t ha⁻¹) and T_{17} (T_1 + 183 Vermicompost 1.25 t ha⁻¹ + Gliricidia 2.5 t ha⁻¹) during both years and in pooled data and T₁₈ 184 $(T_1 + Vermicompost 1.25 t ha^{-1} + Pongamia 2.5 t ha^{-1})$ during 2015-16. All the intercropping 185 systems recorded significantly higher net returns than sole crops in both years and in pooled 186 187 data. BC ratio differed significantly due to INM treatments during both the years and in 188 pooled data (Table 4). Among the different treatments, significantly higher BC ratio was recorded in T_{16} (T_1 + Gliricidia 2.5 t ha⁻¹ + Pongamia 2.5 t ha⁻¹) compared to rest of the 189 190 intercropping systems and sole cotton and soybean during both years and in pooled data. 191 However, T₁₆ was on par with T₂ (125 % RDF for cotton and soybean) during 2015-16. The 192 higher BC ratio was due to better performance of component crops, which gave higher 193 productivity and net returns, helping in getting higher BC ratio. The results are in agreement 194 with the findings of [11], where cotton variety Narsimha intercropped with soybean (JS-335) 195 recorded significantly higher seed cotton equivalent yields, maximum net returns and BC 196 ratio. In one of the study conducted by [13] revealed that higher returns to the rupee 197 invested was found in soybean intercropping system than growing soybean sole crop.

199 4. CONCLUSION

200

198

Farmers can adopt a fertilizer dose of 125:62.5:62.5 N, P₂O and K₂O kg ha⁻¹ in cotton and soybean intercropping system or 100:50:50 N, P₂O₅ and K₂O kg ha⁻¹ along with Gliricidia + Pongamia 2.5 t ha⁻¹ each for cotton and soybean intercropping for profitable yields.

205

206 ACKNOWLEDGEMENTS

207

I feel the inadequacy of words to express my deep sense of gratitude and profound
 indebtedness to Dr. V. V. ANGADI, Principal Scientist (Agronomy) and Head, AICRP on IFS OFR Scheme, MARS, UAS, Dharwad. He played an important role in my research as the

esteemed chairperson of my advisory committee and also to my advisory committee
members Dr. J. A. Hosmath, Professor of Agronomy; Dr. Shamarao Jahagirdar, Professor of
Plant Pathology; Dr. D. N. Kambrekar, Professor of Agriculture Entomology, UAS, Dharwad,
Karnataka, India.

216 AUTHORS' CONTRIBUTIONS

217

215

'Amit M. Pujar' designed the study, performed the statistical analysis, wrote the protocol, and
wrote the first draft of the manuscript. 'Dr. V. V. Angadi and 'Dr. Shamarao Jahagirdar
managed the analyses of the study. All authors read and approved the final manuscript."

221 222

223 **REFERENCES**

- Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG, Bloomer P, Burlingame B, Dawkins M, Dolan L, Fraser D. Sustainable intensification in agriculture: Premises and policies. Science. 2013;34:33–34.
- Costanzo A, Bàrberi P. Functional agrobiodiversity and agroecosystem services in sustainable wheat production : A review. Agronomy for sustainable development.
 2014;34:327-348.
- 230 3. Sharma. Intercropping in desi cotton. PKV Research Journal. 2000;18(1):10-12.
- 4. Salwaru MI, Mahamed HMH. Effect of intercropping cotton with maize under different nitrogen rate and different hill spacing of maize. In: Proceedings of Beltwide Conference, Jan 5th, 8th, San Diego, USA, 1995;570-572.
- Sarkar RK, Chakraborthy A, Mazumdar RC. Effect of intercropping oilseeds and pulse crops in upland cotton for total productivity and monetary advantage in system. Indian Journal of Agricultural Sciences. 1995;65(4):246-249.
- Sestak Z, Castsky J, Jarvis, PG. Plant photosynthetic production. In: *Manual of Methods* (Ed.), W. JUNK, N. V., Publications, The Hughus, 1971;343-381.
- 239
 239
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
 240
- Bandyopadhaya KK, Gosh PK, Choudhary RS, Hati KM, Mishra AK. Integrated nutrient management practices in soybean and sorghum in sole and intercropping system in Vertisols. Indian Journal of Agricultural Science. 2004;74(2):55-63.
- 244 9. Channagouda RF, Babalad HB. Impact of organic farming practices on quality
 245 parameters of cotton. Research on Crops. 2015;16(4):752-756.

Naveen BT, Babalad HB. Conservation agriculture to sustain the productivity and
 soil health in cotton and groundnut intercropping system. 2017; 27(1): 24-33.

- Vidhyavathi, Dasog GS, Babalad HB, Hebsur NS, Gali SK, Patil SG, Alagawadi AR.
 Influence of nutrient management practices on crop response and economics in different cropping systems in a vertisol. Karnataka J. Agri. Sci. 2011; 24(4):455-460.
- 12. Rekha MS, Dhurua S. Productivity of pigeonpea + soybean intercropping system as
 influenced by planting patterns and duration of pigeonpea varieties under rainfed
 conditions. Legume Research. 2009;32(1):51-54.
- 25413. Manjunath MG, Salakinkop SR. Growth and yield of soybean and millets in255intercropping systems. J. Farm Sci. 2017; 30(3): 349-353.

256

257

Table 1: Plant height, number of branches per plant at harvest and leaf area per plant at 60 DAS of soybean as influenced by INM in cotton and soybean intercropping system

	Pla	nt height (cm)	Number of	of branch	nes per	Leaf are	(dm ²) at	
Treatments		. .	,		plant		60 DAS		
	2015-16 2016-17 F	Pooled	2015-16	2016-	Pooled	2015-	2016-	Pooled	
			5.041	17	- 1-	16	17		
T ₁ : 100 % RDF for cotton and soybean	33.8hi	36.2ef	35.0h	5.21k	5.10h	5.15g	11.9g	11.0	11.4f
T ₂ : 125 % RDF for cotton and soybean	33.8hi	38.0a	35.9ef	6.42c	6.73bc	6.58b	13.2bc	13.4b	13.3b
T ₃ : 150 % RDF for cotton and soybean	38.1a	38.1a	38.1a	6.51b	6.74bc	6.62b	13.4b	13.4b	13.4b
T ₄ : 100 % FYM and RDF for cotton and soybean (RC)	36.9b	37.8ab	37.3b	6.34d	6.46d	6.40c	13.2bc	12.9c-f	13.0b-d
T ₅ : T ₁ + FYM 2.5 t ha ⁻¹	34.2gh	32.1h	33.1i	5.52h	5.80g	5.66f	12.7d-f	12.3gh	12.5e
T_6 : T ₁ + FYM 5 t ha ⁻¹	34.3f-h	36.1f	35.2gh	5.56g	6.17ef	5.86de	12.6ef	12.5f-h	12.6de
T_7 : T_1 + Gliricidia 2.5 t ha ⁻¹	34.7e-g	36.9cd	35.8fg	5.33j	6.33e	5.83ef	12.6ef	12.7d-g	12.6de
T_8 : T_1 + Gliricidia 5 t ha ⁻¹	34.2gh	37.2bc	35.7fg	5.42i	6.45d	5.94de	12.6ef	12.8c-f	12.7с-е
T_9 : T_1 + Pongamia 2.5 t ha ⁻¹	33.9h	36.5d-f	35.2gh	5.22k	6.11f	5.66f	12.5f	12.6e-h	12.6de
T_{10} : T_1 + Pongamia 5 t ha ⁻¹	34.1gh	36.8c-e	35.5	5.26j	6.20ef	5.73f	12.6ef	12.7d-g	12.6de
T_{11} : T_1 + Vermicompost 1.25 t ha ⁻¹	34.9d-f	36.2ef	35.5f-h	5.81f	6.05f	5.93de	12.8c-f	12.5f-h	12.6de
T_{12} : T_1 + Vermicompost 2.5 t ha ⁻¹	35.1c-e	36.3d-f	35.7fg	5.84f	6.20ef	6.02d	12.7d-f	12.6b-d	12.7с-е
T_{13} : T_1 + FYM 2.5 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	35.4cd	37.9a	36.7b-d	6.20e	6.65bc	6.43c	13.0b-e	13.1b-d	13.1bc
T_{14} : T_1 + FYM 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	35.3с-е	37.9a	36.6cd	6.17e	6.63cd	6.40c	12.9c-f	13.1b-e	13.0b-d
T_{15} : T_1 + FYM 2.5 t ha ⁻¹ + Vermicompost 1.25 t ha ⁻¹	35.5cd	37.8ab	36.7b-d	6.23e	6.57cd	6.40c	13.1b-d	13.0b-d	13.0b-d
T_{16} : T_1 + Gliricidia 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	35.1c-e	37.9a	36.5de	6.16e	6.70cd	6.43c	12.9c-f	13.1bc	13.0b-d
T_{17} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	36.4b	38.0a	37.2bc	6.32d	6.77b	6.55bc	13.1b-d	13.2bc	13.2b
T_{18} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	35.6c	38.0a	36.8b-d	6.28d	6.75b	6.52bc	13.1b-d	12.2h	12.6de
T ₂₀ : Soybean sole crop (100 % RDF and FYM)	33.2i	34.1g	33.6i	6.92a	7.20a	7.06a	14.3a	14.9a	14.6a
Mean	34.9	36.9	35.9	5.93	6.40	6.17	12.9	12.8	12.8
S.Em. <u>+</u>	0.21	0.21	0.44	0.03	0.05	0.09	0.13	0.12	0.28
C.V. (%)	5.22	6.74	5.35	8.53	7.64	8.12	11.6	12.5	11.4

Means followed by the same letters do not differ significantly (0.05) by DMRT; RC – Recommended Check

Table 2 : Leaf area index at 60 DAS, dry matter production and total number of nodules per plant at harvest of soybean as influenced by INM in cotton and soybean intercropping system

Treatments		a index at	60 DAS	Dry matter production (g plant ⁻¹)			Total number of nodules per plant			
	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	
T ₁ : 100 % RDF for cotton and soybean	2.96e	2.76f	2.86c	5.21k	5.10h	5.15g	21.0f	21.6i	21.3i	
T ₂ : 125 % RDF for cotton and soybean	3.30bc	3.35b	3.33b	6.42c	6.73bc	6.58b	22.3b-e	24.1b-d	23.2b-d	
T ₃ : 150 % RDF for cotton and soybean	3.35b	3.36b	3.36b	6.51b	6.74bc	6.62b	22.5b-e	24.1bc	23.3bc	
T ₄ : 100 % FYM and RDF for cotton and soybean (RC)	3.29bc	3.22cd	3.26b	6.34d	6.46d	6.40c	23.0bc	24.2b	23.6b	
T ₅ : T ₁ + FYM 2.5 t ha ⁻¹	3.16cd	3.08de	3.12bc	5.52h	5.80g	5.66f	21.9d-f	22.1h	22.0h	
$T_6: T_1 + FYM 5 t ha^{-1}$	3.16cd	3.12de	3.14bc	5.56g	6.17ef	5.86de	22.0d-f	22.1gh	22.10gh	
T_7 : T_1 + Gliricidia 2.5 t ha ⁻¹	3.15de	3.18cd	3.16bc	5.33j	6.33e	5.83ef	21.7ef	22.7f	22.2gh	
T_8 : T_1 + Gliricidia 5 t ha ⁻¹	3.16cd	3.19cd	3.17bc	5.42i	6.45d	5.94de	21.8d-f	22.8f	22.3e-h	
T_9 : T_1 + Pongamia 2.5 t ha ⁻¹	3.13de	3.15cd	3.14bc	5.22k	6.11f	5.66f	21.7ef	22.6fg	22.1gh	
T_{10} : T_1 + Pongamia 5 t ha ⁻¹	3.14de	3.17cd	3.15bc	5.26j	6.20ef	5.73f	21.7ef	22.6fg	22.1gh	
T_{11} : T_1 + Vermicompost 1.25 t ha ⁻¹	3.20cd	3.13de	3.16bc	5.81f	6.05f	5.93de	22.1с-е	22.1gh	22.1gh	
T_{12} : T_1 + Vermicompost 2.5 t ha ⁻¹	3.19cd	3.14de	3.16bc	5.84f	6.20ef	6.02d	22.2b-e	22.3gh	22.2f-h	
T_{13} : T_1 + FYM 2.5 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	3.25bc	3.28c	3.27b	6.20e	6.65bc	6.43c	22.6b-e	22.4f-h	22.5d-h	
T_{14} : T_1 + FYM 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	3.22cd	3.27c	3.25bc	6.17e	6.63cd	6.40c	22.5b-e	23.4e	22.9b-f	
T_{15} : T_1 + FYM 2.5 t ha ⁻¹ + Vermicompost 1.25 t ha ⁻¹	3.27bc	3.25c	3.26b	6.23e	6.57cd	6.40c	22.7b-d	23.4e	23.0b-e	
T_{16} : T_1 + Gliricidia 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	3.22cd	3.29c	3.25b	6.16e	6.70cd	6.43c	22.3b	23.5e	22.9c-g	
T_{17} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	3.28bc	3.31c	3.29b	6.32d	6.77b	6.55bc	23.1b-d	23.8с-е	23.4bc	
T_{18} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	3.27bc	3.04e	3.16bc	6.28d	6.75b	6.52bc	22.8b-d	23.7de	23.2bc	
T ₂₀ : Soybean sole crop (100 % RDF and FYM)	4.77a	4.96a	4.87a	6.92a	7.20a	7.06a	24.4a	25.1a	24.7a	
Mean	3.23	3.31	3.22	5.93	6.40	6.17	22.3	23.0	22.7	
S.Em. <u>+</u>	0.03	0.03	0.07	0.03	0.05	0.09	0.31	0.13	0.50	
C.V. (%)	11.1	12.9	11.6	8.53	7.64	8.12	5.92	7.82	6.800	

Means followed by the same letters do not differ significantly (0.05) by DMRT; RC – Recommended Check

Table 3: Biomass and leaf area of cotton and soybean at harvest as influenced by INM in cotton and soybean intercropping system

Treetmonto	Bion	nass (kg h	a⁻¹)	Leaf area (cm ² ha ⁻¹)			
Treatments	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	
T ₁ : 100 % RDF for cotton and soybean	1,045n	1,046i	1,046h	17,922j	18,2491	18,086j	
T ₂ : 125 % RDF for cotton and soybean	1,152bc	1,225b	1,188b	18,729b-d	20,396b	19,562b	
T ₃ : 150 % RDF for cotton and soybean	1,160b	1,215b	1,187b	18,780b-d	20,170c	19,475bc	
T ₄ : 100 % FYM and RDF for cotton and soybean (RC)	1,136de	1,171de	1,153cd	18,827bc	19,136h	18,982ef	
T_5 : T ₁ + FYM 2.5 t ha ⁻¹	1,081j-l	1,120h	1,100g	18,175hi	18,645k	18,410i	
$T_6: T_1 + FYM 5 t ha^{-1}$	1,084jk	1,137f-h	1,111fg	18,308f-h	18,949ij	18,629h	
T_7 : T_1 + Gliricidia 2.5 t ha ⁻¹	1,066m	1,152e-g	1,109fg	18,082ij	19,382fg	18,732gh	
T_8 : T_1 + Gliricidia 5 t ha ⁻¹	1,075k-m	1,165de	1,120fg	18,185g-i	19,629e	18,907fg	
T_9 : T_1 + Pongamia 2.5 t ha ⁻¹	1,066m	1,146e-g	1,106g	18,037ij	19,094hi	18,565hi	
T_{10} : T_1 + Pongamia 5 t ha ⁻¹	1,069lm	1,162d-f	1,116fg	18,082ij	19,415f	18,749gh	
T_{11} : T_1 + Vermicompost 1.25 t ha ⁻¹	1,091ij	1,130gh	1,110fg	18,375fg	18,893j	18,634h	
T_{12} : T_1 + Vermicompost 2.5 t ha ⁻¹	1,103hi	1,152e-g	1,128ef	18,445ef	19,239gh	18,842fg	
T_{13} : T_1 + FYM 2.5 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	1,106gh	1,180d	1,143de	18,653cd	19,692e	19,172d	
T_{14} : T_1 + FYM 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	1,118fg	1,186cd	1,152cd	18,583de	19,866d	19,224d	
T_{15} : T_1 + FYM 2.5 t ha ⁻¹ + Vermicompost 1.25 t ha ⁻¹	1,127ef	1,168de	1,148d	18,690cd	19,616e	19,153de	
T_{16} : T_1 + Gliricidia 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	1,133de	1,205bc	1,169bc	18,584de	20,022cd	19,303cd	
T_{17} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	1,141cd	1,207bc	1,174b	18,899b	20,043c	19,471bc	
T_{18} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	1,133de	1,212b	1,172b	18,751b-d	20,099c	19,425bc	
T ₁₉ : Cotton sole crop (100 % RDF and FYM)	1,677a	1,731a	1,704a	25,689a	27,462a	26,575a	
T ₂₀ : Soybean sole crop (100 % RDF and FYM)	-	-	-	-	-	-	
Mean	1,078	1,195	1,164	17,889	19,894	19,363	
S.Em. <u>+</u>	4.30	7.95	6.41	63.7	58.2	61.0	
C.V. (%)	12.3	11.2	11.4	9.23	9.45	9.10	

Means followed by the same letters do not differ significantly (0.05) by DMRT; RC – Recommended Check

Tuble 4. Eventering as innuclied by num in verter and seybean interverepring system	Table	4:	Economics as	influenced b	y INM i	in cotton	and so	ybean	intercrop	ping	syster
---	-------	----	--------------	--------------	---------	-----------	--------	-------	-----------	------	--------

Turadananda	Gros	s returns (Rs	. ha ⁻¹)	Net returns (Rs. ha ⁻¹)			Benefit cost ratio			
Treatments	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	
T ₁ : 100 % RDF for cotton and soybean	1,21,920j	1,66,669h	1,44,294h	76,839f	1,13,497hi	95,168g	2.70g-i	3.13f	2.92fg	
T ₂ : 125 % RDF for cotton and soybean	1,41,035a	1,78,396ab	1,59,716ab	93,917a	1,23,188a	1,08,553a	2.99a	3.23bc	3.11b	
T ₃ : 150 % RDF for cotton and soybean	1,41,647a	1,79,743a	1,60,695a	92,492a	1,22,498ab	1,07,495ab	2.88bc	3.14ef	3.01cd	
T_4 : 100 % FYM and RDF for cotton and soybean (RC)	1,39,328a-c	1,73,358с-е	1,56,343с-е	83,247c	1,09,187j	96,217fg	2.48k	2.70j	2.59j	
T ₅ : T ₁ + FYM 2.5 t ha ⁻¹	1,27,645g-i	1,69,431g	1,48,538g	80,064de	1,13,760h	96,912fg	2.68hi	3.04g	2.86h	
$T_6: T_1 + FYM 5 t ha^{-1}$	1,28,601gh	1,69,823fg	1,49,212fg	78,520ef	1,11,652i	95,086g	2.57j	2.92i	2.74i	
T ₇ : T ₁ + Gliricidia 2.5 t ha ⁻¹	1,26,983hi	1,72,440fg	1,49,712fg	81,202с-е	1,18,569de	99,886de	2.77ef	3.20cd	2.99de	
T_8 : T_1 + Gliricidia 5 t ha ⁻¹	1,27,950g-i	1,73,059fg	1,50,504fg	82,869cd	1,19,888cd	1,01,378cd	2.84cd	3.25b	3.05c	
T_9 : T_1 + Pongamia 2.5 t ha ⁻¹	1,25,143i	1,70,733g	1,47,938g	79,362ef	1,16,862ef	98,112ef	2.73f-h	3.17d-f	2.95ef	
T_{10} : T_1 + Pongamia 5 t ha ⁻¹	1,26,609hi	1,71,555g	1,49,082g	81,528c-e	1,18,384de	99,956de	2.81de	3.23bc	3.02cd	
T ₁₁ : T ₁ + Vermicompost 1.25 t ha ⁻¹	1,30,276fg	1,70,050fg	1,50,163fg	82,695cd	1,14,379gh	98,537ef	2.74fg	3.05g	2.90f-h	
T_{12} : T_1 + Vermicompost 2.5 t ha ⁻¹	1,32,789f	1,70,607f	1,51,698f	82,708cd	1,12,436hi	97,572e-g	2.65i	2.93i	2.79i	
T_{13} : T_1 + FYM 2.5 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	1,35,897de	1,74,188de	1,55,042de	88,316b	1,18,517de	1,03,416c	2.86cd	3.13f	2.99de	
T ₁₄ : T ₁ + FYM 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	1,35,586e	1,74,068e	1,54,827e	88,005b	1,18,397de	1,03,201c	2.85cd	3.13f	2.99de	
T ₁₅ : T ₁ + FYM 2.5 t ha ⁻¹ + Vermicompost 1.25 t ha ⁻¹	1,37,632b-e	1,73,994de	1,55,813de	87,551b	1,15,823fg	1,01,687cd	2.75fg	2.99h	2.87gh	
T_{16} : T_1 + Gliricidia 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	1,36,430с-е	1,75,901с-е	1,56,166с-е	91,349a	1,22,730a	1,07,040ab	3.03a	3.31a	3.17a	
T_{17} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	1,39,500ab	1,77,830a-c	1,58,665a-c	91,919a	1,22,159ab	1,07,039ab	2.93b	3.19cd	3.06bc	
T_{18} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	1,38,751a-d	1,76,283b-d	1,57,517b-d	91,170a	1,20,612bc	1,05,891b	2.92b	3.17d-f	3.04cd	
T ₁₉ : Cotton sole crop (100 % RDF and FYM)	95,493k	1,28,495i	1,11,994i	54,094g	88,026k	71,060h	2.311	3.18de	2.74i	
T_{20} : Soybean sole crop (100 $\%$ RDF and FYM)	89,802l	1,01,350j	95,576j	52,860g	64,4081	58,634i	2.43k	2.74j	2.59j	
Mean	1,28,950	1,67,398	1,50,943	81,285	1,12,498	98,905	2.71	3.05	2.90	
S.Em. <u>+</u>	953	631	808	953	631	808	0.02	0.01	0.01	
C.V. (%)	10.4	11.3	10.5	13.7	12.0	11.7	7.12	7.35	6.41	

Means followed by the same letters do not differ significantly (0.05) by DMRT; RC – Recommended Check; Market price: Cotton : 5000 and 4700 Rs. q⁻¹ during 2015-16 and 2016-17, respectively; soybean : 3500 and 2750 Rs. q⁻¹ during 2015-16 and 2016-17, respectively.