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Abstract

By introducing the notion of a pairwise singular
compactification for a pairwise hausdorff, pairwise locally
compact bitopological space it is proved that a X is a
pairwise singular compactification for X iff X-X is a
pairwise retract of X.
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1. Introduction

By a space we mean a Bitopological space and by a map we mean a
pairwise continuous map between Bitopological spaces. Letters X,Y,Z are
used for Bitopological spaces and f,g,h etc are used for maps between
them.

A Bitopological space is a triple (X, 1, 2) where 1 and 2 are topologies
on a set X.
J.C.Kelly [6] initiated the systematic study of such spaces and several
other authors namely Weston [13], Lane [8], Patty [11] etc. contributed to
the development of the theory. Kelly [6] introduced pairwise Housdorff
spaces, pairwise regular and pairwise normal spaces in the theory [6].

A cover U of a Bitopological space (X,1, 2) is called pairwise open if
U  12 and U contains at least one non-empty member of 1 and one
non-empty member of 2. A Bitopological space (X,1, 2) is called pairwise
compact if every pairwise open cover of (X,1,2) has a finite subcover
[12]. According to I.L. Reilly [12] a Bitopological space (X,1,2) is called a
pairwise locally compact if 1 is locally compact with respect to 2 and 2 is
locally compact with respect to 1. Recall that 1 is locally compact with
respect to 2 if each point of X has a 1 open neighborhood whose 2 –
Closure is pairwise compact.
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Let (X,1,2) Bitopological space and A be a subset of X we say A  is a
pairwise retract of X if there is a pairwise  continuous function r : X->A
such that r(a) = a for all a ε A such an r is called a Pairwise retraction.

A Bitopological space (X,1,2) is called pairwise Hausdroff if for two
distinct points x and y there is a 1 neighborhood U of x and 2
neighborhood V of y such that U  V =  [6]

A function f: (X,1,2)  (Y, L1, L2) is called pairwise continuous if the
induced function f:(X, 1)  (Y, L1) and f:(X, 2)  (Y, L2) are continuous
[12].

Notion of the singular set of a mapping defined by Whyburn [14] and
Cain[1] was further investigated by various workers including Cain[1],
Chandler[1,3] Tzunng, Magill Jr.[9], Faulkner[1,2,3,4] and Duda etc. Later
this concept led to the concept of a singular compactification and this
combination of these two independent areas added many steps to the
theory of compactifications.

A Compactification X is a compact, Hausdroff space that contains X as a
dense subspace. A Compactification X is called a singular compactification
if it arises out of a singular mapping from X to X-X.

We recall the construction of a singular compactification given by Chandler
etc al.: Consider a map f: XY with X locally compact Hausdroff and Y is a
compact Hausdroff space. Equip the disjoint union XY of X and Y with a
topology in which all open sets of X are open in XY and for yY, the
family {V  f -1 (v) –K | V is an open set in Y containing y and K is a
compact set in X} form a neighborhood base. With this topology XY is
easily seen to be compact and Hausdroff. Denote this space by X+fY. Here
compactness of Y gives the compactness of X+fY, while local compactness
of X is responsible for the Hausdroff of X+fY.

The idea of the pairwise singular map between Bitopological Spaces was
introduced in [16]. Recall that a pairwise continuous map

f: (X,1,2)  (Y, L1, L2)
is called a pairwise singular map if it is a L1 singular with respect to 2 and
L2 singular with respect to 1.
f is L1 singular with respect to 2 if for each U L 1, 2 cl f -1(U) is not
compact and vice-versa.

Continuing our study in this area we have introduced pairwise
singular compactification for pairwise locally compact spaces in section 2 of
this paper. Following Faulkner [4] a characterization of pairwise singular
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Compactifications is obtained for Bitopological spaces in terms of Pairwise
retracts.

One point compactification for pairwise locally compact, pairwise Hausdroff
Bitopological spaces are already introduced by I.L. Reilly in [12]. For
concerned definitions we follow Reilly.

2. Pairwise Singular Compactifications

In this section we construct an analogue of pairwise singular
compactification for a given pairwise locally compact, pairwise Hausdroff
Bitopological space. The section begins with the following definition of
pairwise singular sets [16].

2.1. Definition. Let f: (X,1,2)  (Y, L1, L2) be a pairwise continuous
map where X, Y are pairwise locally compact pairwise Hausdroff
Bitopological spaces. Then a point yY is called L1 singular point with
respect to L2 if for each open set UL1 of Y with yU, L2 cl f-1(U) is not
compact.

A Point yY is called L2 singular point with respect to 1 if for each open set
VL2 of Y with yV, 1 cl f-1(V) is not compact.

A Point pY is called a pairwise singular point if it is L1 singular point with
respect to 2 and L2 singular point with respect to 1.

The set of all pairwise singular points of f: XY is called the pairwise
singular set of f and it is denoted by SB(f).

2.2.Definition.  Let f:(X,1,2)  (Y, L1, L2) be a pairwise continuous
map with f(x) pairwise dense in (Y, L1, L2). Then f is called pairwise
singular if SB(f)=Y.

The pairwise singular set of f:(X,1,2)  (Y, L1, L2) denoted by SB(f) is in
fact the following:

SB(f) = S (f, L1,2)  S (f, L2, 1).
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Let X be a pairwise locally compact, pairwise Hausdroff Bitoipological space
and K be a pairwise compact Bitopological space. Let f: XY be a pairwise
continuous and pairwise singular map with f(X) pairwise dense in Y.
Consider the following:

B1 = 1 {Uf-1 (U) – H | U L1 and H is pairwise compact, H is 1 –
compact, 2 – compact}
B 2 = 2 {Vf-1 (V) – M | V L2 and M is pairwise compact, M is 1 –
compact, 2 – compact}

Then B 1, B 2 form bases for two respective topologies on XfY, thus
making it a Bitopological space. We denote it by (XfY,P1, P2).

1. (XfY, P1, P2) is pairwise compact : Take a pairwise open cover U of
(XfY,P1, P2). We take U to consist of basic open sets (XfY, P1, P2).
Clearly U forms a pairwise cover of (Y, L1, L2). Since Y is pairwise compact,
U permits a finite subcover say: {Uif-1(Ui)-Hi | i=1,2,3…..n}{Vjf-1(Vj)-
Mj | j=1,2,3…..m}.

n m
Note that this family covers the whole of XY except the union of  Hi
and  Mj. i=1

j=1

These are pairwise compact and pairwise compact is an absolute property.
Hence we get a finite subcover for U, giving the pairwise compactness of
(XfY, P1, P2).

2. (XfY, P1, P2) is pairwise Hausdroff: To show that (XfY,P1, P2) is
pairwise Hausdroff, there are three cases arises.

1. If x, y  X, then we get U  1, V  2 with x  U, y  V
Such that U  V =  using the pairwise Hausdroff of X.

2. If x, y  K, choose U  L1, V L2 with U  V = .
U  f –1 (U) and V  f –1 (V) are the required members of P1, P2.

3. If x  X, y  K then choose V  1 such that x  V and U  L2
: y  U

now V  [U  f –1 (U) - 2 clV] = .

Since K is L1 compact therefore (XfY,P1, P2) is pairwise Hausdroff.
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3. (X, 1, 2) is pairwise dense in (XfY,P1, P2):
To show that X is a dense subspace of X  Y, take a non empty open set U
 P1 or U  P2. If there are non empty members of 1 and 2, then U  X 
.

Take U  f-1 (U) – H  P1, where U  L1, then (U  f-1 (U) – H)  X  .
Since f-1 (U) is not contained in H.
H is 2 compact.

Similarly if V  f-1 (V) – M  P2, where V  L2.
Then (V  f-1 (V) - M)  X  .

Since f-1 (V) is not contained in M.

Gaglielmi [5] obtained that a compactification X of a locally compact
space X is singular iff  X – X is a retract of X. In this section we obtain a
characterization of pairwise singular compactifications for Bitopological
spaces in terms of pairwise retracts.

2.3. Theorem: - A pairwise compactification of a pairwise locally compact
space X is pairwise singular iff X – X is a pairwise retract of X.

Proof: - If X is a pairwise singular compactification through the map f: X
 X-X.
Define r: X  X - X by

x; if x  X-X
r(x) = 

f(x); if xX.

We need only show that r is continuous.

If V is an open set in X-X then r-1(V)=V  f-1 (V) is obviously open in X .
Thus X-X is a pairwise retract of X.
Conversely, if r is a pairwise retraction of X onto X-X, then the restriction
r/x = f.

If U is an L1
*open set around P  X-X.

Since X is dense in X and r-1 (U) is an open neighborhood of p. p is
necessarily in

L 1
* cl X (X  r-1 (U)) = L 1

* cl X(f-1 (U))
Implying that

2 cl X(f-1 (U))  L 1
* cl X(f-1 (U))

This shows that 2 cl X(f-1 (U)) is not compact and hence p  SB(f).
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