Original Research Article

Influence of integrated nutrient management on nutrient uptake by cotton and soybean in intercropping system

8 ABSTRACT

1 2

3

Δ

5 6 7

9 A field experiment was conducted to study the integrated nutrient management practices on nutrient uptake by cotton and soybean intercropping system in 1:2 row 10 11 proportion during kharif 2015 and 2016 at plot 101 'D' 101 plot of All India Coordinated 12 Research Project on Soybean, Main Agricultural Research Station, University of Agricultural 13 Sciences, Dharwad, Karnataka, India. The study was undertaken to evaluate the sources of nutrients for efficient uptake by the cropping system. The field experiment was laid out in 14 15 randomised complete block design with three replications and twenty treatments. Treatment 16 comprised of organic and inorganic sources of nutrients used in different combinations. 17 Soybean introduced as intercrop in cotton with 40 x 10 cm spacing for soybean and 120 x 60 18 cm for cotton. Results revealed that uptake of nitrogen, phosphorus and potassium were 19 significantly higher in T₃ (150 % RDF for cotton and soybean) and it was on par with T₂ (125 % RDF for cotton and soybean). It could be concluded that application of 125 : 62.5 : 62.5 N. 20 P_2O and K_2O kg ha⁻¹ in cotton and soybean intercropping system or 100 : 50 : 50 N, P_2O_5 and K_2O kg ha⁻¹ along with Gliricidia + Pongamia 2.5 t ha⁻¹ each for cotton and soybean 21 22 23 intercropping was found to be optimum for efficient mineralization of nutrients for higher 24 nutrient uptake by the crop .

Key words: Cotton, Soybean Intercropping, Nutrient uptake, Integrated nutrient
 management

27 1. INTRODUCTION

28 Cotton is the most important fiber crop in the world and the lint is used to make processed 29 cotton, which is woven into fabrics, either alone or combined with other fibers. Recently, 30 input-responsive varieties and high-tech production technologies will go a long way to meet 31 the increasing demand for the natural fiber. The increase in productivity alone could not 32 benefit the cotton. Cotton being a long duration, wide spaced, slow growing at early stage offers a great scope for intercropping of short duration, fast growing, non-competitive 33 34 intercrops with dissimilar growth habit and productive that utilize the available resources very 35 efficiently and effectively. Intercropping enables crop diversification within agro eco-region and ensures better return to the growers. Intercropping of cotton with soybean is more for 36 37 production sustainability than yield advantage under rainfed condition. As per the package of 38 practice of UAS, Dharwad, cotton and soybean intercropping (1:2 rows) is recommended 39 with spacing of cotton 120 cm x 60 cm and soybean in 40 cm rows [1]. Although the use of 40 chemical fertilizers is the fastest way of counteracting the pace of nutrient depletion, its 41 increasing costs and limited availability deter the farmers from using these inputs in 42 balanced proportions and in recommended quantities. The ability to take advantage of the 43 natural resources is a major step toward economic prosperity for a country like India, as

Comment [H1]: Study what of INM? Influence or impact or something like that!!!!

Comment [H2]: Is this name of experimental plot?

Formatted: Font color: Red

Comment [H3]: Is this your conclusion? Or someone earlier said this? If not you, then provide reference.

Formatted: Font color: Red

Comment [H4]: Recently investigators are more concerned about negative impact of chemical fertilizer on soil health. But there is e=mention about it.

Formatted: Font color: Red

usage of chemical fertilizers for crop production is expensive, mainly because of shortfall in 44 availability and problems of environmental pollution [2] Suitable management practices like 45 Comment [H5]: The statement remains unclear. intercropping and judicious combination of organic and inorganic manures are considered 46 Formatted: Font color: Red 47 ecologically viable, economically feasible and avoid environmental pollution. In addition, 48 combination of organic and inorganic manures works like slow release fertilizers for 49 providing balanced nutrients to plants. Considering this fact the present investigation was Comment [H6]: Provide reference with text 50 undertaken. 51 2. MATERIAL AND METHODS Two years field experiment was carried out at plot 101 'D' block All India Coordinated 52 Comment [H7]: Experimental site differs from as Research Project on soybean, Main Agricultural Research Station, University of Agricultural 53 stated in Abstract 54 Sciences, Dharwad, Karnataka (India) during kharif 2015-16 and 2016-17. The Formatted: Font color: Red geographical co-ordinates of Dharwad are 15° 26' N latitude and 75° 07' E longitude with an 55 56 altitude of 678 m above mean sea level. Dharwad comes under Northern Transition Zone 57 (Zone-8) of Karnataka (India) which lies between the Western Hilly Zone (Zone-9) and 58 Northern Dry Zone (Zone-3). The soil was medium black cotton belonging to vertisols. The soil pH was neutral, organic carbon, available nitrogen; phosphorus and potassium in soil 59 60 were optimum for crop growth. The details on soil physical and chemical properties of soil were furnished in Table 1. The rainfall received during the crop growing period from July to 61 December was 308 mm during 2015 and June to December was 462 mm during 2016. The 62 63 field experiment was laid out in randomised complete block design with three replications 64 and twenty treatments as given in the tables. Sowing was done by adopting 120 cm x 60 cm row spacing for cotton (Neeraja Bt) and 40 cm x 10 cm for soybean (DSb 21) in 65 intercropping system (1:2) during kharif season on 99.7.2015 and 12.6.2016. According to 66 Comment [H8]: 99.7.2015 ??. Unable to find such date. Be careful with dates and 67 the treatments the organic manure (FYM) and green leaf manures (gliricidia and pongamia) 68 were applied 15 days before sowing of the crop. Vermicompost was spot applied to soil Comment [H9]: follow standard format of before dibbling of seeds. RDF was applied to both crops in intercropping system according 69 XX.XX/XXXX, e.g. 12.06.2016 to population (100:50:50 and 40:80:25 kg N, P2O5 and K2O5 hat for Cotton and Soybean, 70 Formatted: Font color: Red 71 respectively). Based on nutrient content of plants and dry matter production, uptake of Formatted: Font color: Red nitrogen, phosphorus and potassium were worked out by using following formula. 72 Per cent nutrient concentration Formatted: Font color: Red 73 Comment [H10]: How was the amount Nutrient uptake = - × Biomass (kg ha⁻¹) calculated? Can you be more elaborative? You are using the word RDF first time in the manuscript, so 74 100 use the full form 75 Statistical analysis was carried out based on mean values obtained. The level of significance Comment [H11]: Which software was sued for 76 used in 'F' and 'T' test was P = .05. The treatment means were compared by Duncan's statistical analysis? 77 Multiple Range Test (DMRT) at .05 level of probability in which means followed by the same Formatted: Font color: Red letters do not differ significantly (P = .05) [6]. 78

Table 1: Physical and chemical properties of the soil experimental site (0-30 cm depth)

Particulars	Value	Methods employed
1. Physical properties		

Particle size distribution		
Coarse sand (%)	6.25	
Fine sand (%)	14.32	
Silt (%)	27.14	International pipette method [3]
Clay (%)	52.47	
Textural class	Clay	
2. Chemical properties		
Organic carbon (%)	0.51	Walkey and Black method [4]
pH (1:2.5, Soil: Water)	7.30	Potentiometric method using pH meter [4]
Electrical conductivity (dS m ⁻¹) at 25° C	0.35	Conductivity using EC bridge [4]
Available N (kg ha ⁻¹)	281	Alkaline permanganate method [5]
Available P_2O_5 (kg ha ⁻¹)	34	Olsen's method [4]
Available K_2O (kg ha ⁻¹)	312	Flame photometry method [4]

81

82

83

84 3. RESULTS AND DISCUSSION

85 **3.1 Nutrient uptake by cotton**

Nitrogen uptake differed significantly due to INM treatments_during_both_the years_ and in pooled data (Table 2 and 3). Among the different treatments at 50 per cent flowering, T_3 (150 % RDF for cotton and soybean) recorded significantly higher nitrogen uptake and it was on par with T_2 (125 % RDF for cotton and soybean) compared to rest of the

Comment [H12]: The word is used first time here. Use the short form in brackets along with full form

90 intercropping systems during both years and in pooled data. At harvest, T_3 (150 % RDF for 91 cotton and soybean) recorded significantly higher nitrogen uptake and it was on par with T₂ (125 % RDF for cotton and soybean) during 2015-16 and in pooled data and also with T_{17} 92 93 $(T_1 + Vermicompost 1.25 t ha^{-1} + Gliricidia 2.5 t ha^{-1})$ and T_{18} $(T_1 + Vermicompost 1.25 t ha^{-1})$ 94 + Pongamia 2.5 t ha⁻¹) during 2016-17. The organic and green manures produce proper 95 mineralization of nutrients in the soil consequently increased the uptake of nutrients. [7], who 96 reported that application of organic manures, resulted in increase in available N, P₂O₅ and 97 K₂O of soil.

98 Phosphorus uptake differed significantly due to INM treatments during both the 99 years and in pooled data (Table 4 and 5). Among the different treatments at 50 per cent 100 flowering, T₃ (150 % RDF for cotton and soybean) recorded the highest phosphorus uptake 101 and it was on par with T_2 (125 % RDF for cotton and soybean), T_4 (100 % FYM and RDF for cotton and soybean) and T_{17} (T_1 + Vermicompost 1.25 t ha¹ + Gliricidia 2.5 t ha¹) during 102 both years and in pooled data. At harvest, T₃ recorded significantly higher phosphorus 103 uptake and it was on par with T2 (125 % RDF for cotton and soybean) during both years and 104 105 in pooled data and also with T₁₇ and T₁₈ (T₁ + Vermicompost 1.25 t ha⁻¹ + Pongamia 2.5 t ha⁻¹ ¹) during 2016-17. Proper mineralization of nutrients by manures improved the nutrient by 106 107 cotton.

108 Potassium uptake differed significantly due to INM treatments during both the years 109 and in pooled data (Table 6 and 7). Among the different treatments, T₃ (150 % RDF for 110 cotton and soybean) recorded higher potassium uptake and it was on par with T₂ (125 % RDF for cotton and soybean) compared to rest of the intercropping systems and sole cotton 111 at 50 per cent flowering and at harvest during both years and in pooled data. The results 112 113 suggested that addition of organics not only increased the availability of these nutrients in 114 soil, but also favoured the release of nutrients from organic sources through mineralization 115 by microorganisms and uptake by the crop. Higher uptake of nitrogen, phosphorus and potassium by cotton is due to higher yield in T₃ and T₂. The substantial quantity of addition of 116 organic manures with these treatments enhanced the soil organic carbon over RDF alone. 117 The results are in agreement with the findings of [8], who observed that recycling ensures 118 119 the return of major portion of nutrients recovered by the crop back to mother earth.

120 3.2 Nutrient uptake by soybean

Nitrogen uptake differed significantly due to INM treatments during both the vears 121 122 and in pooled data (Table 2 and 3). Among the different treatments at 50 per cent flowering, T₃ (150 % RDF for cotton and soybean) recorded significantly higher nitrogen uptake and it 123 was on par with T2 (125 % RDF for cotton and soybean) compared to rest of the 124 125 intercropping systems during both years and in pooled data. At harvest, T_3 (150 % RDF for 126 cotton and soybean) recorded significantly higher nitrogen uptake and it was on par with T2 (125 % RDF for cotton and soybean) during 2015-16 and in pooled data and also with T_{16} 127 $(T_1 + Gliricidia 2.5 t ha^1 + Pongamia 2.5 t ha^1)$, $T_{17} (T_1 + Vermicompost 1.25 t ha^1 + Gliricidia 2.5 t ha^1)$ and $T_{18} (T_1 + Vermicompost 1.25 t ha^1 + Pongamia 2.5 t ha^1)$ during 128 129 130 2016-17. Results are in agreement with the findings of [9], who also reported that integrated application of vermicompost + gliricidia equivalent to RDF recorded higher avialble N, P2O5 131 132 and K_2O over RDF + FYM (5 t ha⁻¹).

133 Phosphorus uptake differed significantly due to INM treatments during both the 134 years and in pooled data (Table 4 and 5). Among the different treatments, T_3 (150 % RDF 135 for cotton and soybean) recorded significantly higher phosphorus uptake and it was on par 136 with T_2 (125 % RDF for cotton and soybean) compared to rest of the intercropping systems 137 and sole soybean at 50 per cent flowering and at harvest during both years and in pooled **Comment [H13]:** Mineralization is a microbial process. How can organic and green manures produce mineralization of nutrients? However they can facilitate the microbial process. Rectify your statement

Comment [H14]: How??

138 data, except at 50 per cent flowering during 2015-16 and also with T_{16} (T_1 + Gliricidia 2.5 t 139 ha⁻¹ + Pongamia 2.5 t ha⁻¹), T_{17} (T_1 + Vermicompost 1.25 t ha⁻¹ + Gliricidia 2.5 t ha⁻¹) and T_{18} 140 (T_1 + Vermicompost 1.25 t ha⁻¹ + Gliricidia 2.5 t ha⁻¹) and T_{18}

140 $(T_1 + Vermicompost 1.25 \text{ tha}^{-1} + Pongamia 2.5 \text{ tha}^{-1})$ in 2016-17 at harvest.

141 Potassium uptake differed significantly due to INM treatments during both the years 142 and in pooled data (Table 6 and 7). Among the different treatments, T₃ (150 % RDF for 143 cotton and soybean) recorded significantly higher potassium uptake and it was on par with T₂ (125 % RDF for cotton and soybean) compared to rest of the intercropping systems and 144 145 sole soybean at 50 per cent flowering and at harvest during both years and in pooled data and also with T_{17} (T_1 + Vermicompost 1.25 t ha⁻¹ + Gliricidia 2.5 t ha⁻¹) and T_{18} (T_1 + 146 Vermicompost 1.25 t ha⁻¹ + Pongamia 2.5 t ha⁻¹) in 2016-17 at harvest. Similarly, [10] 147 148 observed higher organic matter in soil due to application of FYM and vermicompost after the 149 harvest of wheat crop, which was attributed to addition of more biomass.

150 **3.3 Total uptake by cotton + soybean**

151 Nitrogen uptake differed significantly due to INM treatments during both the years and in pooled data (Table 2 and 3). Among the different treatments at 50 per cent flowering, 152 153 T₃ (150 % RDF for cotton and soybean) recorded significantly higher nitrogen uptake and it was on par with T₂ (125 % RDF for cotton and soybean) compared to rest of the 154 155 intercropping systems during both years and in pooled data. At harvest, T₃ (150 % RDF for 156 cotton and soybean) recorded significantly higher nitrogen uptake and it was on par with T₂ (125 % RDF for cotton and soybean) during 2015-16 and in pooled data and also with T_{17} 157 (T₁ + Vermicompost 1.25 t ha⁻¹ + Gliricidia 2.5 t ha⁻¹) and T₁₈ (T₁ + Vermicompost 1.25 t ha⁻¹ 158 159 + Pongamia 2.5 t ha⁻¹) during 2016-17. The higher uptake of nitrogen, phosphorus and 160 potassium is due to higher uptake by cotton and soybean.

161 Phosphorus uptake differed significantly due to INM treatments during both the years and in pooled data (Table 4 and 5). Among the different treatments at 50 per cent 162 163 flowering, T₃ (150 % RDF for cotton and soybean) recorded significantly higher phosphorus 164 uptake and it was on par with T₂ (125 % RDF for cotton and soybean) compared to rest of 165 the intercropping systems during both years and in pooled data. At harvest, T₃ (150 % RDF 166 for cotton and soybean) recorded significantly higher phosphorus uptake and it was on par with T_2 (125 % RDF for cotton and soybean) during 2015-16 and in pooled data and also with T_{17} (T_1 + Vermicompost 1.25 t ha⁻¹ + Gliricidia 2.5 t ha⁻¹) and T_{18} (T_1 + Vermicompost 167 168 1.25 t ha⁻¹ + Pongamia 2.5 t ha⁻¹) during 2016-17. 169

170 Potassium uptake differed significantly due to INM treatments during both the years 171 and in pooled data (Table 6 and 7). Among the different treatments at 50 per cent flowering, T₃ (150 % RDF for cotton and soybean) recorded significantly higher potassium uptake and 172 it was on par with T₂ (125 % RDF for cotton and soybean) compared to rest of the 173 174 intercropping systems during both years and in pooled data. At harvest, T₃ (150 % RDF for cotton and soybean) recorded significantly higher potassium uptake and it was on par with 175 T_2 (125 % RDF for cotton and soybean) during 2015-16 and in pooled data and also with T_{17} (T_1 + Vermicompost 1.25 t ha^{-1} + Gliricidia 2.5 t ha^{-1}) during 2016-17. Use of organic 176 177 178 manures along with recommended dose of fertilizers upon releases nutrients present in them on decomposition and help in enriching soil. Biodegradation of manures exerted 179 180 favorable effect on the release of nutrients, which depended on type, quantity of residues 181 and stage of decomposition [11].

Comment [H15]: The statement is not clear

182 4. CONCLUSIONS

Farmers can adopt a fertilizer dose of 125 : 62.5 N, P₂O and K₂O kg ha⁻¹ in cotton and soybean intercropping system or 100 : 50 : 50 N, P₂O₅ and K₂O kg ha⁻¹ along with Gliricidia + Pongamia 2.5 t ha⁻¹ each for cotton and soybean intercropping for efficient utilization of mineral nutrients in soil to get profitable yields.

187

189

188 F	R	ĒF	E	R	E	Ν	С	E	S

- Anonymous. Improved Cultivation Practices, Directorate of Extension, UAS,
 Dharwad, 2014; 177-178. India.
 Marimuthu S, Surendran U, Subbian P. Productivity, nutrient uptake and postharvest soil fertility as influenced by cotton-based cropping system with integrated
 nutrient management practices in semi-arid tropics. Archives of Agronomy and Soil
- 195 Sci. 2014;60(1):87-101.
- 196 3. Piper, CS. Soil and Plant Analysis, Academic Press, New York, 1966;47-77.
- Sparks. Methods of Soil Analysis Part-3, Chemical Methods, Soil Sci. USA,
 Wisconsin, 1996; 377.
- 199 5. Sharawat KL, Buford JR. Modification of alkaline permanganate method for
 200 assessing the availability of soil nitrogen in upland soils. Soil Sci. 1982;133:53-57.
- Gomez KA, Gomez AA. Statistical procedure for agricultural research. John Wiley
 and Sons Publishers, New Delhi, India. 1984.
- 7. Halemani HL, Hallikeri SS, Nandagavi RA, Harishkumar HS. Effect of organics on
 cotton productivity and physiological properties of soil. Indian Agric. 2004;33: 221 225.
- Babalad HB. Integrated nutrient management for sustainable production in soybean
 based cropping systems. *Ph. D. Thesis*, Univ. Agric. Sci. Dharwad (India). 1999.
- Channagouda RF, Babalad HB. Impact of organic farming practices on quality
 parameters of cotton. Res. on Crops. 2015;16 (4): 752-756.

210	10. Nawlakhe SM, Mankar, DD. Nitrogen uptake in cotton + greengram intercropping
211	system as influenced by integrated nutrient management. Crop Res. 2011;41 (1):
212	59-63.
213	11. Mkandwire, RW, Likoswe, A.A. The effect of intercropping cotton with legumes on
214	crop yields and yield components. Agron Journal. 2000;8:41-46.
215	

	Nitrogen uptake (kg ha ⁻¹)									
Treatments		Cotton		Soybean			Cotton + soybean			
	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	
T ₁ : 100 % RDF for cotton and soybean	43.2g	47.7h	45.5h	75.1i	83.0m	79.1k	118h	1301	124k	
T ₂ : 125 % RDF for cotton and soybean	57.0ab	62.4a	59.7a	97.4a	106a	101a	154a	168a	161a	
T ₃ : 150 % RDF for cotton and soybean	59.2a	64.1a	61.6a	98.3a	108a	103a	157a	172a	164a	
T ₄ : 100 % FYM and RDF for cotton and soybean (RC)	53.9bc	58.3b	56.1b	93.1b	102b	97.6b	147b	160b	153b	
T_{5} : T_{1} + FYM 2.5 t ha ⁻¹	48.2d-f	52.4fg	50.3d-g	80.5gh	88.1h-k	84.3g-i	128f	140h-j	134i	
T ₆ : T ₁ + FYM 5 t ha ⁻¹	48.4d-f	53.2d-g	50.8c-g	80.6gh	89.3h-j	84.9gh	129f	142g-i	135hi	
T_7 : T_1 + Gliricidia 2.5 t ha ⁻¹	47.3ef	51.5g	49.4fg	79.2h	87.2i-l	83.2h-j	126fg	138ij	132ij	
T_8 : T_1 + Gliricidia 5 t ha ⁻¹	47.3ef	52.7e-g	50.0e-g	79.3h	87.4h-l	83.3h-j	126fg	140h-j	133i	
T_9 : T_1 + Pongamia 2.5 t ha ⁻¹	45.2fg	50.4gh	47.8gh	77.2hi	84.1lm	80.6jk	122gh	134kl	128jk	
T_{10} : T_1 + Pongamia 5 t ha ⁻¹	47.5ef	51.2g	49.3g	78.2hi	86.3j-m	82.2h-k	125fg	137jk	131ij	
T ₁₁ : T ₁ + Vermicompost 1.25 t ha ⁻¹	48.2d-f	53.2d-g	50.7c-g	80.1gh	90.5g-i	85.3gh	128f	143gh	136hi	
T ₁₂ : T ₁ + Vermicompost 2.5 t ha ⁻¹	51.1cd	55.1c-f	53.1b-e	83.1fg	91.3f-h	87.2fg	134e	146fg	140gh	
T ₁₃ : T ₁ + FYM 2.5 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	51.2cd	55.8b-e	53.5b-d	87.1de	96.1de	91.6de	138c-e	151de	145d-f	
T ₁₄ : T ₁ + FYM 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	50.2c-e	55.2c-f	52.7b-f	86.0ef	94.4d-f	90.2ef	136de	149ef	142e-g	
T ₁₅ : T ₁ + FYM 2.5 t ha ⁻¹ + Vermicompost 1.25 t ha ⁻¹	51.5cd	56.1b-d	53.8bc	89.2cd	98.0cd	93.6cd	140cd	154cd	147с-е	
T_{16} : T_1 + Gliricidia 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	50.6c-e	54.9c-f	52.7b-e	84.4ef	93.6e-g	89.0ef	135e	148ef	141fg	
T_{17} : T ₁ + Vermicompost 1.25 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	52.2c	57.1bc	54.7b	91.2bc	100bc	95.7bc	143bc	157bc	150bc	
T ₁₈ : T ₁ + Vermicompost 1.25 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	51.8cd	56.3b-d	54.0bc	90.1b-d	98.1cd	94.1cd	142bc	154cd	148cd	
T ₁₉ : Cotton sole crop (100 % RDF and FYM)	51.4cd	56.1b-d	53.8bc	-	-	-	51.4j	56.1n	53.8m	
T ₂₀ : Soybean sole crop (100 % RDF and FYM)	-	-	-	77.2hi	84.5k-m	80.8jk	77.2i	84.5m	80.81	
Mean	50.3	55.0	52.6	84.6	93.1	88.7	128	140	137	
S.Em. <u>+</u>	1.11	0.95	1.03	1.04	1.22	1.13	1.71	1.38	1.56	
C.V. (%)	9.25	7.54	7.96	8.35	8.91	9.1	18.8	16.4	13.2	

Table 2: Nitrogen uptake by cotton and soybean and cotton + soybean intercropping system at 50 per cent flowering as influenced by INM in cotton and soybean intercropping system

				Nitrog	en uptake (k	ag ha⁻¹)			
Treatments		Cotton		Soybean			Cotton + soybean		
Treatments	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled
T ₁ : 100 % RDF for cotton and soybean	64.1f	74.2h	69.1e	140j	134k	137g	204k	208j	206i
T ₂ : 125 % RDF for cotton and soybean	77.2a	85.2ab	81.2a	162a	173a	167ab	239a	258ab	248a
T ₃ : 150 % RDF for cotton and soybean	78.1a	86.1a	82.1a	163a	174a	168a	241a	260a	250a
T ₄ : 100 % FYM and RDF for cotton and soybean (RC)	73.1b	83.2b-d	78.1b	158b	168d	163с-е	230b	251de	241bc
T ₅ : T ₁ + FYM 2.5 t ha ⁻¹	68.0de	79.1g	73.5d	144hi	158j	151f	210hi	237i	225h
T ₆ : T ₁ + FYM 5 t ha ⁻¹	68.1de	79.1g	73.6d	146gh	159ij	152f	214hi	238i	226f-h
T_7 : T_1 + Gliricidia 2.5 t ha ⁻¹	67.3e	82.2c-f	74.7cd	144hi	164ef	154f	211ij	246fg	229e-g
T_8 : T_1 + Gliricidia 5 t ha ⁻¹	67.4e	82.5c-e	74.9cd	144hi	165e	154f	211ij	247ef	229ef
T_9 : T_1 + Pongamia 2.5 t ha ⁻¹	66.1ef	81.0d-g	73.5d	142ij	162g	152f	208j	243gh	225gh
T_{10} : T_1 + Pongamia 5 t ha ⁻¹	66.2ef	81.3d-g	73.7d	143i	163fg	153f	209j	244fg	227e-h
T ₁₁ : T ₁ + Vermicompost 1.25 t ha ⁻¹	68.1de	80.3e-g	74.2d	147gh	160hi	153f	215gh	240hi	227e-h
T ₁₂ : T ₁ + Vermicompost 2.5 t ha ⁻¹	70.1cd	81.1d-g	75.6cd	148fg	161gh	154f	218fg	242gh	230e
T ₁₃ : T ₁ + FYM 2.5 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	70.1cd	83.9a-c	77.0bc	152de	171bc	161c-e	222de	255b-d	238cd
T ₁₄ : T ₁ + FYM 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	70.1cd	83.9a-c	77.0bc	151e	170c	160e	221ef	254cd	237d
T ₁₅ : T ₁ + FYM 2.5 t ha ⁻¹ + Vermicompost 1.25 t ha ⁻¹	71.0bc	83.2b-d	77.1bc	154cd	168d	161de	225cd	251de	238cd
T_{16} : T_1 + Gliricidia 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	70.1cd	84.3a-c	77.2bc	150ef	172ab	161de	220ef	256a-c	238cd
T_{17} : T ₁ + Vermicompost 1.25 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	72.1bc	85.1ab	78.6b	156bc	173a	164bc	220c	258ab	243b
T_{18} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	71.1bc	85.1ab	78.1b	155c	173a	164cd	226c	258ab	242b
T ₁₉ : Cotton sole crop (100 % RDF and FYM)	71.2bc	80.1fg	75.7cd	-	-	-	71.2m	80.1I	75.7k
T ₂₀ : Soybean sole crop (100 % RDF and FYM)	-	-	-	142ij	1271	134g	1421	127m	134j
Mean	70.0	82.2	76.1	149	163	156	208	233	225
S.Em. <u>+</u>	0.79	0.71	0.75	0.90	1.12	1.02	1.03	1.26	1.15
C.V. (%)	7.8	6.4	6.8	6.2	5.4	5.9	17.3	19.5	18.4

Table 3: Nitrogen uptake by cotton and soybean and cotton + soybean intercropping system at harvest as influenced byINM in cotton and soybean intercropping system

	Phosphorus uptake (kg ha ⁻¹)								
Treatments		Cotton		Soybean			Cotton + soybean		
	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled
T ₁ : 100 % RDF for cotton and soybean	8.40k	9.53f	8.91k	11.7j	13.5i	12.6i	20.1k	23.0k	21.6k
T ₂ : 125 % RDF for cotton and soybean	14.8a	16.6a	15.7ab	24.3b	27.5a	25.9a	39.1a	44.1a	41.6a
T ₃ : 150 % RDF for cotton and soybean	15.1a	17.1a	16.1a	26.0a	29.0a	27.5a	41.2a	46.1a	43.7a
T_4 : 100 % FYM and RDF for cotton and soybean (RC)	14.1ab	16.0ab	15.0a-c	21.6c	24.4b	23.0b	35.8b	40.4b	38.1b
T_{5} : T_{1} + FYM 2.5 t ha ⁻¹	9.80ij	11.1ef	10.4h-k	17.5ef	19.8d-f	18.7d-f	27.3f-h	31.0f-h	29.1f-h
T ₆ : T ₁ + FYM 5 t ha ⁻¹	10.2h-j	11.4d-f	10.8g-k	17.8ef	20.1d-f	19.0d-f	28.0fg	31.5e-g	29.8fg
T_7 : T_1 + Gliricidia 2.5 t ha ⁻¹	9.20jk	10.5ef	9.88i-k	16.3fg	18.1fg	17.2fg	25.5hi	28.7hi	27.1hi
T_8 : T_1 + Gliricidia 5 t ha ⁻¹	9.47i-k	10.3ef	9.88i-k	16.7f	19.5ef	18.2ef	26.3gh	29.8gh	28.1gh
T_9 : T_1 + Pongamia 2.5 t ha ⁻¹	8.90jk	10.0ef	9.48jk	13.8hi	15.3hi	14.5hi	22.7j	25.4jk	24.0j
T ₁₀ : T ₁ + Pongamia 5 t ha ⁻¹	9.00jk	10.2ef	9.64i-k	14.6gh	16.2gh	15.4gh	23.6ij	26.5ij	25.0ij
T ₁₁ : T ₁ + Vermicompost 1.25 t ha ⁻¹	10.5g-i	12.6c-f	11.6f-j	17.9ef	20.3d-f	19.1d-f	28.5fg	32.9ef	30.7ef
T ₁₂ : T ₁ + Vermicompost 2.5 t ha ⁻¹	11.2f-h	12.4c-f	11.8f-i	18.3ef	21.4de	19.8de	29.5d-f	33.9de	31.7d-f
T ₁₃ : T ₁ + FYM 2.5 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	12.4c-f	14.2a-d	13.3c-f	19.3de	22.1cd	20.7cd	31.8cd	36.3cd	34.0cd
T ₁₄ : T ₁ + FYM 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	12.1d-f	13.1b-e	12.6d-g	19.2de	21.2de	20.2de	31.4de	34.3de	32.8de
T ₁₅ : T ₁ + FYM 2.5 t ha ⁻¹ + Vermicompost 1.25 t ha ⁻¹	13.1b-d	14.3a-d	13.7b-f	20.7cd	23.8bc	22.2bc	33.9bc	38.1bc	36.0bc
T_{16} : T_1 + Gliricidia 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	11.7e-g	13.0b-e	12.3e-h	17.6ef	21.2de	19.4de	29.3ef	34.2de	31.7d-f
T_{17} : T ₁ + Vermicompost 1.25 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	14.0ab	15.5a-c	14.8a-d	21.1cd	24.2bc	22.7bc	35.1b	39.8b	37.5b
T_{18} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	13.4bc	15.1a-c	14.3а-е	21.3c	24.1bc	22.7bc	34.8b	39.3b	37.0b
T ₁₉ : Cotton sole crop (100 % RDF and FYM)	12.7c-e	14.3a-d	13.5c-f	-	-	-	12.71	14.3	13.5
T ₂₀ : Soybean sole crop (100 % RDF and FYM)	-	-	-	12.5ij	14.2hi	13.3i	12.51	14.2	13.3
Mean	11.6	13.0	12.3	18.3	20.9	19.6	28.4	32.2	31.2
S.Em. <u>+</u>	0.41	0.86	0.68	0.65	0.73	0.67	0.77	0.90	0.84
C.V. (%)	19.2	20.4	18.7	20.1	21.3	19.4	26.1	13.2	12.4

Table 4: Phosphorus uptake by cotton and soybean and cotton + soybean intercropping system at 50 per cent flowering as influenced by INM in cotton and soybean intercropping system

	Phosphorus uptake (kg ha ⁻¹)									
Treatments		Cotton		Soybean			Cotton + soybean			
	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	
T ₁ : 100 % RDF for cotton and soybean	64.1f	74.2h	69.1e	140j	134k	137g	204k	208j	206i	
T ₂ : 125 % RDF for cotton and soybean	77.2a	85.2ab	81.2a	162a	173a	167ab	239a	258ab	248a	
T ₃ : 150 % RDF for cotton and soybean	78.1a	86.1a	82.1a	163a	174a	168a	241a	260a	250a	
T_4 : 100 % FYM and RDF for cotton and soybean (RC)	73.1b	83.2b-d	78.1b	158b	168d	163c-e	231b	251de	241bc	
T_{5} : T_{1} + FYM 2.5 t ha ⁻¹	68.0de	79.1g	73.5d	144hi	158j	151f	212hi	237i	225h	
T ₆ : T ₁ + FYM 5 t ha ⁻¹	68.1de	79.1g	73.6d	146gh	159ij	152f	214hi	238i	226f-h	
T_7 : T_1 + Gliricidia 2.5 t ha ⁻¹	67.3e	82.2c-f	74.7cd	144hi	164ef	154f	211ij	246fg	229e-g	
T_8 : T_1 + Gliricidia 5 t ha ⁻¹	67.4e	82.5c-e	74.9cd	144hi	165e	154f	211ij	247ef	229ef	
T_9 : T_1 + Pongamia 2.5 t ha ⁻¹	66.1ef	81.0d-g	73.5d	142ij	162g	152f	208j	243gh	225gh	
T_{10} : T_1 + Pongamia 5 t ha ⁻¹	66.2ef	81.3d-g	73.7d	143i	163fg	153f	209j	244fg	227e-h	
T ₁₁ : T ₁ + Vermicompost 1.25 t ha ⁻¹	68.1de	80.3e-g	74.2d	147gh	160hi	153f	215gh	240hi	227e-h	
T ₁₂ : T ₁ + Vermicompost 2.5 t ha ⁻¹	70.1cd	81.1d-g	75.6cd	148fg	161gh	154f	218fg	242gh	230e	
T ₁₃ : T ₁ + FYM 2.5 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	70.1cd	83.9a-c	77.0bc	152de	171bc	161c-e	222de	255b-d	238cd	
T ₁₄ : T ₁ + FYM 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	70.1cd	83.9a-c	77.0bc	151e	170c	160e	221ef	254cd	237d	
T ₁₅ : T ₁ + FYM 2.5 t ha ⁻¹ + Vermicompost 1.25 t ha ⁻¹	71.0bc	83.2b-d	77.1bc	154cd	168d	161de	225cd	251de	238cd	
T_{16} : T_1 + Gliricidia 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	70.1cd	84.3a-c	77.2bc	150ef	172ab	161de	220ef	256a-c	238cd	
T_{17} : T ₁ + Vermicompost 1.25 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	72.1bc	85.7ab	78.6b	156bc	173a	164bc	228c	258ab	243b	
T_{18} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	71.1bc	85.1ab	78.1b	155c	173a	164cd	226c	258ab	242b	
T ₁₉ : Cotton sole crop (100 % RDF and FYM)	71.2bc	80.1fg	75.7cd	-	-	-	71.2m	80.I	75.7k	
T ₂₀ : Soybean sole crop (100 % RDF and FYM)	-	-	-	142ij	1271	134g	1421	127m	134j	
Mean	70.0	82.2	76.1	149	163	156	208	233	225	
S.Em. <u>+</u>	0.79	0.71	0.75	0.90	1.12	1.02	1.03	1.26	1.15	
C.V. (%)	14.7	7.20	13.2	8.25	9.40	7.26	23.1	20.1	19.2	

Table 5: Phosphorus uptake by cotton and soybean and cotton + soybean intercropping system at harvest as influenced byINM in cotton and soybean intercropping system

				Potas	sium uptake ((kg ha⁻¹)			
Treatments		Cotton		Soybean			Cotton + soybean		
	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled
T_1 : 100 % RDF for cotton and soybean	31.4g	34.8h	33.1h	44.5h	51.1j	47.8i	76.0i	86.0i	81.0i
T ₂ : 125 % RDF for cotton and soybean	46.8a	52.3a	49.5a	63.2a	73.1a	68.2a	110a	125a	117a
T ₃ : 150 % RDF for cotton and soybean	47.3a	53.8a	50.5a	64.7a	74.2a	69.5a	112a	128a	120a
T ₄ : 100 % FYM and RDF for cotton and soybean (RC)	42.6b	47.3b	45.0b	59.4b	68.1bc	63.8b	102b	115b	108b
T_{5} : T_{1} + FYM 2.5 t ha ⁻¹	34.5d-f	38.2fg	36.3fg	51.3e-g	59.1gh	55.2fg	85.9g	97.4g	91.6g
T ₆ : T ₁ + FYM 5 t ha ⁻¹	35.7с-е	40.1ef	37.9ef	54.2c-e	62.2ef	58.2de	89.9f	102f	96.1f
T_7 : T_1 + Gliricidia 2.5 t ha ⁻¹	33.4e-g	37.3f-h	35.3f-h	50.3fg	58.1hi	54.2f-h	83.8gh	95.4gh	89.6h
T_8 : T_1 + Gliricidia 5 t ha ⁻¹	33.5e-g	37.4f-h	35.4f-h	51.5d-f	59.3gh	55.4fg	85.0g	96.8gh	90.9gh
T_9 : T_1 + Pongamia 2.5 t ha ⁻¹	32.5fg	36.1gh	34.3gh	48.4g	56.5i	52.5h	80.9h	92.7h	86.8gh
T_{10} : T_1 + Pongamia 5 t ha ⁻¹	33.2e-g	37.6f-h	35.4f-h	50.0fg	57.1hi	53.6gh	83.3gh	94.7gh	89.0h
T ₁₁ : T ₁ + Vermicompost 1.25 t ha ⁻¹	36.2cd	40.4ef	38.3ef	54.2c-e	62.6ef	58.4de	90.5f	103f	96.7gh
T ₁₂ : T ₁ + Vermicompost 2.5 t ha ⁻¹	36.9cd	42.2de	39.5de	54.5cd	63.2ef	58.9de	91.4f	105ef	98.4ef
T ₁₃ : T ₁ + FYM 2.5 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	38.2c	43.3с-е	40.7de	58.4b	66.1cd	62.2bc	96.6de	109с-е	103ef
T ₁₄ : T ₁ + FYM 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	37.9c	42.3de	40.1de	55.4c	64.1de	59.8cd	93.4ef	106d-f	99.9cd
T ₁₅ : T ₁ + FYM 2.5 t ha ⁻¹ + Vermicompost 1.25 t ha ⁻¹	37.4c	42.2de	39.8de	59.4b	68.2bc	63.8b	96.8de	110cd	103d-f
T_{16} : T_1 + Gliricidia 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	38.6c	44.9b-d	41.7cd	54.5cd	63.1ef	58.8de	93.1ef	108c-e	100cd
T_{17} : T ₁ + Vermicompost 1.25 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	37.3c	43.1de	40.2de	60.4b	69.3b	64.8b	97.7cd	112bc	105de
T_{18} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	41.4b	46.2bc	43.8bc	60.0b	68.5bc	64.3b	101bc	114b	108b
T ₁₉ : Cotton sole crop (100 % RDF and FYM)	37.4c	42.3de	39.8de	-	-	-	37.4k	42.3k	39.8k
T ₂₀ : Soybean sole crop (100 % RDF and FYM)	-	-	-	52.1d-f	60.8fg	56.5ef	52.1j	60.8j	56.5j
Mean	37.5	42.2	39.8	55.1	63.5	59.2	88.0	100	96.1
S.Em. <u>+</u>	0.87	1.00	0.94	0.95	0.82	0.88	1.30	1.42	1.36
C.V. (%)	12.1	7.84	11.6	9.75	6.83	8.41	19.6	13.2	17.2

Table 6: Potassium uptake by cotton and soybean and cotton + soybean intercropping system at 50 per cent flowering as influenced by INM in cotton and soybean intercropping system

	Potassium uptake (kg ha ⁻¹)									
Treatments		Cotton		Soybean			Cotton + soybean			
	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	
T ₁ : 100 % RDF for cotton and soybean	57.4i	68.2i	62.8h	76.1g	84.2j	80.2h	133j	1521	143f	
T ₂ : 125 % RDF for cotton and soybean	72.3a	77.4ab	74.8a	95.1a	103a	99.3a	167a	181a	174a	
T ₃ : 150 % RDF for cotton and soybean	73.1a	78.3a	75.7a	96.2a	104a	100a	169a	182a	175a	
T ₄ : 100 % FYM and RDF for cotton and soybean (RC)	68.2b	72.3d-h	70.3bc	91.1b	97.2b-d	94.2с-е	159b	169d-f	164bc	
T ₅ : T ₁ + FYM 2.5 t ha ⁻¹	60.1f-h	70.1hi	65.1f-h	83.1de	90.4i	86.7g	143gh	160k	151e	
T ₆ : T ₁ + FYM 5 t ha ⁻¹	61.2e-g	70.4g-i	65.8e-g	85.6cd	91.1i	88.4fg	146fg	161jk	154de	
T_7 : T_1 + Gliricidia 2.5 t ha ⁻¹	59.1g-i	72.2d-h	65.6e-g	82.1ef	95.2d-f	88.7fg	141hi	167f-h	154de	
T_8 : T_1 + Gliricidia 5 t ha ⁻¹	59.2g-i	72.3d-h	65.8e-g	83.1de	96.2c-e	89.7f	142hi	168e-g	155de	
T_9 : T_1 + Pongamia 2.5 t ha ⁻¹	58.2hi	71.1f-h	64.7gh	80.2f	93.6f-h	86.9g	138i	164h-j	151e	
T_{10} : T_1 + Pongamia 5 t ha ⁻¹	57.9hi	71.4e-h	64.6gh	80.9ef	94.1e-g	87.5fg	138i	165g-i	152de	
T ₁₁ : T ₁ + Vermicompost 1.25 t ha ⁻¹	62.2ef	70.5g-i	66.3e-g	86.1c	91.3hi	88.7fg	148ef	161i-k	155de	
T ₁₂ : T ₁ + Vermicompost 2.5 t ha ⁻¹	62.1ef	71.2f-h	66.6d-g	86.4c	92.3g-i	89.3fg	148ef	163i-k	156d	
T ₁₃ : T ₁ + FYM 2.5 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	63.9de	74.5cd	69.2b-d	89.6b	98.2bc	93.9de	153cd	172cd	163c	
T ₁₄ : T ₁ + FYM 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	63.3de	73.6c-f	68.4b-e	87.1c	98.2bc	92.7e	150d-f	171c-e	161c	
T ₁₅ : T ₁ + FYM 2.5 t ha ⁻¹ + Vermicompost 1.25 t ha ⁻¹	63.1de	73.4d-g	68.2b-e	92.3b	98.5bc	95.4cd	155bc	171c-e	163c	
T_{16} : T_1 + Gliricidia 2.5 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	65.2cd	74.3c-e	69.7bc	86.2c	99.2b	92.7e	151de	173c	162c	
T_{17} : T ₁ + Vermicompost 1.25 t ha ⁻¹ + Gliricidia 2.5 t ha ⁻¹	63.9de	76.3a-c	70.1bc	92.2b	103a	97.9ab	156bc	180ab	168b	
T_{18} : T_1 + Vermicompost 1.25 t ha ⁻¹ + Pongamia 2.5 t ha ⁻¹	66.7bc	75.1b-d	70.9b	91.2b	101a	96.5bc	157b	177b	167b	
T ₁₉ : Cotton sole crop (100 % RDF and FYM)	62.1ef	73.2d-g	67.7c-f	-	-	89.7f	62.11	73.2n	67.7h	
T ₂₀ : Soybean sole crop (100 % RDF and FYM)	-	-	-	85.1cd	94.2e-g	-	85.1k	94.2m	89.7g	
Mean	63.1	73.0	68.0	86.8	96.2	91.5	142	160	154	
S.Em. <u>+</u>	0.81	0.91	0.86	0.84	0.79	0.82	1.28	3.49	1.25	
C.V. (%)	8.10	6.41	6.82	6.30	8.43	7.31	17.2	16.9	15.2	

Table 7: Potassium uptake by cotton and soybean and cotton + soybean intercropping system at harvest as influenced byINM in cotton and soybean intercropping system