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Computational Method for the Simulation of Duffing Oscillators

ABSTRACT

A one-step computational method is proposed for the simulation of Duffing oscillators in this research. In
achieving this, power series was adopted as a basis function in the derivation of the method. The
integration was carried out within a one-step interval, where the interval was partitioned at four different
points. The computational method developed was applied on some Duffing equations and from the results
obtained; it was evident that the method developed is computationally reliable.
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1. INTRODUCTION

Duffing equation is one of the most significant and classical nonlinear ordinary differential equations in
view of its diverse applications in science and engineering, [1]. Little wonder, it has received remarkable
attention due to its variety of applications in science and engineering. The Duffing oscillators are applied
in weak signal detection [2], magneto-elastic mechanical systems [3], large amplitude oscillation of
centrifugal governor systems [4], nonlinear vibration of beams and plates [5], fluid flow induced vibration
[6], among others. Given its characteristic of oscillation and chaotic nature, many scientists are inspired
by this nonlinear differential equation since it replicates similar dynamics in our natural world.

In this paper, we shall consider a computational method for the simulation of Duffing oscillators of the
form;

y'®)+ny' (®)+py®)+ry )= f(t) )
with initial conditions,
y0)=a, y'(0)=4 2)

where 77, 11,7, «and [ are real constants and f(t) is a real-valued function. We shall assume that
equation (1) satisfy the existence and uniqueness theorem stated below.

Theorem 1.1 [7]
Let,

u® = f(x,u,u’,..,u™™), u®(x,) =c, (3)
k=0,1,...,(n—=1), uand f are scalars. Let R be the region defined by the inequalities
X, X< X, +8,

; —Cj‘éb, j=0,1,....,(n-1), (@a>0,b>0). Suppose the function
f(X,$,,S,,..,S, ;) is defined in R and in addition:
(i) f isnon-negative and non-decreasing in each of X,S;,S,,...,S, , in R
(i) f(x,c,,c,....c,,)>0,for X, <X<x,+a,and
(iii)c, 20,k =0,1,....n-1
Then, the initial value problem (1) and (2) has a unique solution in R .

Several methods have been proposed in literature for simulating problems of the form (1). These methods
include; Hybrid method [1], Laplace decomposition method [8], restarted Adomian decomposition
method [9], differential transform method [10], modified differential transform method [11], improved
Taylor matrix method [12], variational iteration method [13,14], modified variational iteration method
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[15], Trigonometrically fitted Obrechkoff method [16], among others. The most recent of these works is
the development of hybrid block method for the simulation of problems of the form (1), see [1] for
details.
It is important to note that the Duffing equation is a simple model that shows different types of
oscillations such as chaos and limit cycles. The terms associated with the system in equation (1) as given
by [1] are;

y'(t) : small damping

n : ratio (coefficient) of viscous damping (it controls the size of damping)

1Y(t)+ 7y’ (t) : nonlinear restoring force acting like a hard spring (with £ controlling the size
of stiffness and ¥ controlling the size of nonlinearity)
f (t): small periodic force

Duffing equations are routinely associated with damping in physical systems [1], where damping is
defined as an influence within or upon oscillatory system that has the effect of reducing, restricting or
preventing its oscillation.

2. MATHEMATICAL FORMULATION OF THE COMPUTATIONAL METHOD
We shall formulate a discrete computational method (which is an extension of the earlier work of [1]) for
the simulation of equation (1). The author in [1] partitioned the one-step interval at three different points.
However, in this research, the one-step interval shall be partitioned at four different points. This will
enable us to develop a more accurate method that will be used for the simulation of equations of the form
(1). The discrete computational method shall have the form,

1
AYYD =3 hley® +hd f(y,)+h’b f(Y,),i=0,1 (4)
i=0

We shall seek the approximate solution to equation (1) in the integration interval [Xn, X, +1] . We assume

that the solution on the interval [Xn , XM] is locally approximated by the basis function,

r+s-1

y(x) = r;x! (5)
j=0

where 7;are the real coefficients to be determined, S is the number of interpolation points, I' is the

number of collocation points and h =X, —X_ , is a constant step-size of the partition of the interval

n-1

[, B] which is given by & =X, <X, <X, <..<X,_, <X, =/.

and the

W~

3
The polynomial (5) is assumed to pass through the interpolation points (Xn A +S),S = g,

n+r2 "n+r

1 .
collocation points (X f ), r= O(gjl . This gives the following (I +S) system of equations,

r+s-1

Z zjj = Yniso SZE’
=0 S

r+s-1
Z j(j—l)Z'ij_2= fn+ra r:()(l]l
=0 S

The (r+S) undetermined coefficients 7 ; are obtained by solving the system of nonlinear equations (6)

4
5

(6)

using Gauss elimination method. This gives a continuous hybrid linear multistep method of the form;
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y(X) = 0(2 (t)yn+§ + OCE (t)yn+ﬂ + h2 [Z IBj (t) fn+j + ﬂk (t) fn+k J’ k=

5 5

where the coefficients o;,a,, 5,, B,,B,,B;, B, B are given by;

5 5 5 5 5 5

a, =4-5t
5
o, =5t-3
5
b, =— 156250t" —656250t° +1115625t° —984375t* +479500t° —126000t> + 15880t — 672
® 252000
_ | 781250t” —3062500t° + 4659375t —3368750t* +1050000t* — 70295t + 10668
1
s 252000
__ 1! 781250t” —2843750t° +3871875t° —2340625t* +525000t> +15700t —9744
2
s 126000
B = ! (781250ﬁ-—2625000ﬁ-+3215625P-—1706250ﬁ-+350000ﬁ-—29065t+13524)
2 126000
N 781250t —2406250t° +2690625t° —1334375t* + 262500t + 160t — 2688
4
S 252000
B = T 21000 (156250t7 —437500t° +459375t> —218750t* + 42000t — 535t —84)
®)
X=X
where t = n

The continuous method (7) is then solved for the independent solution at the grid points to give the
continuous block method:

l (jh)(m) (m) 2 . 1
y@®) = E e y\™ +h E o,Of. i +of.l k:g,
i=0 !

j=0

W | N
W |

3
= 9
5 ©)

. 1
where the coefficients o;, | = O(gjl are given by;
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. = _—(1250t7 —5250t° +8925t° —7875t* +3836t° —1008t2)
° 2016

o, = 25 (250t7 —-980t° +1491t° —1078t* +336t3)
s 2016

o, = _ﬁ(zsoﬂ -910t° +1239t° — 749t* +168t3)
1008

o, = Rl (250t7 —840t° +1029t° — 546t* +112t°)
= 1008

o, = —i(zsoﬂ —770t° + 861t — 427t" +84t’ )
S 2016

o =L(1250t7 —~3500t° +3675t° ~1750t* +336t’ )
' 2016

(10)

I(1
We then evaluate (9) at t = g(gjl to give the one-step computational method of the form (4) where,

T

T
Ym:|:yn-¢-1 yn+z yn+§ yn+i yn+]:| ? f(Ym):|:f 1 f 2 f 3 f 4 fn+1
5 5 5 5

n+—  N+> N+> N4—
5 5 5 5

i i i i i i
O =y v vy v f v =[ o fn fs o £
and A =5x5 identity matrix.

For i=0:
0000 1 0 00 0 1231 863 -761 941 -341 107
5 126000 50400 63000 126000 126000 25200
00001 0000% 0 0 0 0 771 & ﬁ 136 —101 8
00001 5 3150 7875 1575 7875 15750 7875
e0=00001,e1=0000§,d0:0 00 o0 2 ,b, = 3501 - 87 = 2
00001 5 3500 28000 3500 2880 875 5600
00001 00002 000 o I 1424 176 608  -16 16
5 7875 7875 7875 7875 1575 7875
00001 6 00 o S 475 25 125 25 1L
| ] I 1008 | 12016 504 1008 1008 2016 |
Fori=1:
0o 0 0 o 1o 1427 133 241 -173 3
288 7200 1200 3600 7200 800
0000 1] 0o 00 o % A e
00001 22f 12510 255 255 7;1 450
e=[00001}, d=[0 0 0 0 oL , b = T T 3
00001 800 800 400 400 800 800
00 0 o A 4 8 64 14
(0000 1] 225 255 75 255 255
o 00 0 12 3 25 25 25 19
| 288 | | 96 144 144 96 288 |
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3. ANALYSIS OF BASIC PROPERTIES OF THE COMPUTATIONAL METHOD
Some basic properties of the computational method derived shall be discussed in this section.

3.1. Order of Accuracy and Error Constant of the Method
According to [17], the computational method (4) is said to be of uniform accurate order p,if P is the

largest positive integer for which Co=Ci=Cr=.. =Ep =Ep+1 =0, Ep+2 £0. 6p+2 is called the error
constant and the local truncation error of the method is given by;
the = Cpeah ™2 yP 2 (1) + O (11)

Therefore, for the computational method derived 60 =ci=C= 63 =Cy= Es 266 = 67 =0, implying
that the  order p= [6 6 6 6 6]T and the error constant is give by

<[ 19 19 4 8 o _ou 7
| 9450000000 369140625 1750000000 73828125 75600000 |

3.2 Consistency of the Method
The computational method (4) is consistent since it has order p=62>1. Consistency controls the

magnitude of the local truncation error committed at each stage of the computation, [18].

3.3 Zero-Stability of the Method
Definition 3.1 [18]: The computational method (4) is said to be zero-stable, if the roots z, s =1,2,..., k of

the first characteristic polynomial p(z) defined by p(z)=det(zA"” —g,) satisfies |Zs| <1 and every
root satisfying |ZS| =1 have multiplicity not exceeding the order of the differential equation. Moreover,

as h— 0, p(2)=2""(z-1)", where u is the order of the matrices A"’ and e,.
For our method,

[10000]| [00001]
01000 (00001
p(2)=]2|00100|-{00001[=zz-1)=0 (12)
00010 00001
100001 {00001

Therefore, 2, =2,=2,=12,=0, Z, =1. Hence, the computational method is zero-stable. Zero-stability

controls the propagation of the error as the integration progresses.

3.4 Convergence of the Method

The computational method is convergent since it is consistent and zero-stable.

Theorem 3.1 [19]

A linear multistep method is convergent if and only if it is stable and consistent.

3.5 Region of Absolute Stability of the Method

Definition 3.2 [20]

Region of absolute stability is a region in the complex z plane, where Z=Ah. It is defined as those

values of z such that the numerical solutions of y"=-A1Y satisfy y; -0 as j— oo for any initial

condition.
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Applying the boundary locus method, we obtain the stability polynomial for the computational method
derives as;

ﬁ(w):—hlo( 1 S 149 W4)_hg( 1481 W o 393603 W4j

W+
1230468750 14 765625000 29531250000 177 187500000

_hé( 311 5, 42407 W4j_h4(139 W Wsj_hz(st+4_7W4J
236250000 59062500 3750 5000 50 75

+w =2w’

(13)

The stability region for the computational method is shown in Figure 3.1.

Figure 3.1: Stability Region of the Computational Method
The stability region in the Figure 3.1 is A-stable

4. RESULTS
4.1 Numerical Experiments
We shall apply the computational method derived in this research to simulate some Duffing oscillators
that find applications in science and engineering.
The following notations shall be used in the tables below:
ESS-End point absolute errors obtained in [16]
EOM-Absolute error in [21]
EJS-Absolute error in [1]
EMU-Absolute error in [22]
ETG-Absolute error in [10]

Problem 4.1:
Consider the undamped Duffing equation,

y"(t)+ y(t)+y’ (t) =(cost + &sin 10t)3 —99¢sin10t (14)
with the initial conditions,

y(0)=1, y'(0) =10¢ (15)

where & =107"". The exact solution is given by,



166 y(t) =cost+ ¢sin10t (16)
167  This equation describes a periodic motion of low frequency with a small perturbation of high frequency.
168  Source: [21]

169  Problem 4.2:

170  Consider the following undamped Duffing equation of the form;

171 y"()+ y(t)+ Yy’ (t) = BcosQt (17)
172  with initial conditions,
173 y(0)=a, y'(0)=0 (18)
174 where,
175 a =0.200426728067,B =0.002, Q=1.01
176  The exact solution to the problem is
3
177 y(t)=>" A,..Cos((2i+1)Qt) (19)
i=0
178  where,
179 AALA, 3 0.200179477536,0.0024946143,0.000000304014,
ALA N 0.000000000374,0.000000000000
180  Source: [16]
181

182  Problem 4.3:
183  Consider the damped Duffing equation,

184 Yy +2y'()+yt)+8y () =e™" (20)
185  with the initial conditions,
1 1
186 0)=—, y'(0)=— 21
y(0) > Y (0) 5 (21)
187  The exact solution is given by,
188 y(t) :%e‘ (22)

189  Source: [22]

190

191  Problem 4.4:

192  Consider the damped Duffing equation,

193 YU+ Y () + y() + Yy (t) = cos’ (t) —sin(t) (23)
194  whose initial conditions are,

195 y(0)=1,y'(0)=0 (24)
196  The exact solution is given by,

197 y(t) =cos(t) (25)
198  Source: [10]

199

200  Problem 4.5:
201  Consider the undamped Duffing equation,

202 y'"(t)+3y(t)+ 2y3 (t) = cos(t)sin(2t) (26)
203 with the initial conditions,
204 y(0)=0, y'(0)=1 (27)

205  The exact solution is given by,
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y(t) =sin(t) (28)
Source: [12]
Table 4.1: Showing the results for problem 5.1 in comparison with the absolute errors in [21]

t Exact Solution Computed Solution Error EOM Time/s
0.0025 0.9999968750041274  0.9999968750041274  0.000000e+000  0.000000e+000 0.1039
0.0050  0.9999875000310395 0.9999875000310395 0.000000e+000 1.110223e-016 0.1348
0.0075 0.9999718751393287 0.9999718751393286 1.110223e-016 8.881784e-016 0.1736
0.0100  0.9999500004266486 0.9999500004266486 0.000000e+000 7.771561e-016 0.2112
0.0125 0.9999218760297148 0.9999218760297148 0.000000e+000 4.440892¢-016 0.2121
0.0150 0.9998875021243030 0.9998875021243031 1.110223e-016  9.992007e-016 0.2127
0.0175 0.9998468789252486 0.9998468789252487 1.110223e-016 1.665335¢-015 0.2133
0.0200  0.9998000066864446 0.9998000066864449 2.220446e-016 2.775558e-015 0.2140
0.0225 0.9997468857008414 0.9997468857008415 1.110223e-016  5.440093e-015 0.2146
0.0250 0.9996875163004431 0.9996875163004431 0.000000e+000 7.216450e-015 0.2152
0.0275 0.9996218988563066 0.9996218988563066 0.000000e+000 9.436896e-015 0.2160
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Figure 4.1: Graphical result showing the oscillatory nature of Problem 4.1
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Table 4.2: Comparison of the end-point absolute errors in [1] and [16] with that of the new method

h Error EJS ESS

M
—_— 4.846124e-015 8.813783e-013 1.81e-010
500

M
—_— 2.148108e-014 1.114692¢-012 8.02e-012
1000

M
_— 9.221651e-014 2.953554e-012 5.52e-012
2000

M
—_— 2.008060e-014 2.339406e-012 7.28e-012
3000

M 2.930989¢-014 1.859929¢-012 6.99¢-012
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5000

3.613776e-014

1.328992¢-012

6.65¢-012

Note: M =101in Table 4.1 above.

L)

””II
Wttty
g ety
LI

7

Yiry

7

sy i
LT
g,

g7

Wiree
I[,ll’lllll
Wy

47
trpy e
it

Figure 4.2: Graphical result showing the oscillatory nature of Problem 4.2

Table 4.3: Showing the results for problem 4.3 in comparison with the absolute errors in [22]

t Exact Solution Computed Solution Error EMU  Time/s
0.1000 0.4524187090179798 0.4524187090179798 0.000000e+000 1.487¢-08  0.0411
0.2000 0.4093653765389909 0.4093653765389909 0.000000e+000 1.286e-07  0.0474
0.3000 0.3704091103408589 0.3704091103408589 0.000000e+000 1.464e-07  0.0539
0.4000 0.3351600230178196 0.3351600230178196  0.000000e+000 1.393e-07  0.0603
0.5000 0.3032653298563167 0.3032653298563167 0.000000e+000 1.845e¢-07  0.0669
0.6000 0.2744058180470131 0.2744058180470131 0.000000e+000 2.422¢-07  0.0735
0.7000 0.2482926518957047 0.2482926518957047 0.000000e+000 2.468e-07  0.0799
0.8000 0.2246644820586107 0.2246644820586106 2.775558e-017 2.127¢-07  0.0866
0.9000 0.2032848298702994 0.2032848298702994 5.551115e-017 1.987e-07  0.0929
1.0000 0.1839397205857211 0.1839397205857210 5.551115e-017 2.071e-07  0.0998

Figure 4.3: Graphical result showing the oscillatory nature of Problem 4.3
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Table 4.4: Showing the results for problem 4.4 in comparison with the absolute errors in [10]

t Exact Solution Computed Solution Error EJS Time/s
0.1000 0.9950041652780258 0.9950041652780257 1.110223e-016 9.418022e-013 0.0093
0.2000 0.9800665778412416 0.9800665778412414 2.220446e-016 9.320766¢-012 0.0160
0.3000 0.9553364891256060 0.9553364891256060 0.000000e+000 2.371603e-011 0.0234
0.4000 0.9210609940028850 0.9210609940028852 2.220446e-016 4.248379¢-011 0.0301
0.5000 0.8775825618903727 0.8775825618903725 1.110223e-016 6.390422¢-011 0.0367
0.6000 0.8253356149096781 0.8253356149096780 1.110223e-016  8.632239¢-011 0.0434
0.7000 0.7648421872844882 0.7648421872844881 1.110223e-016 1.082653e-010 0.0500
0.8000 0.6967067093471651 0.6967067093471649 1.110223e-016 1.285219¢-010 0.0567
0.9000 0.6216099682706640 0.6216099682706638 1.110223e-016 1.461836e-010 0.0634
1.0000 0.5403023058681392 0.5403023058681390 2.220446e-016 1.606468e-010 0.0704

0.5 I/II[[I/I |
o llll// / llll -
\“\\ W /lllllllll”" /] III’ ”’lllll I II// \\\\ l III ”//III ‘
Figure 4.4: Graphical result showing the oscillatory nature of Problem 4.4
Table 4.5: Showing the results for problem 4.5 in comparison with the absolute errors in [12]

t Exact Solution Computed Solution Error EJS Time/s
0.1000 0.0998334166468281 0.0998334166468282 1.387779¢-017  3.024248e-013 0.0437
0.2000 0.1986693307950612 0.1986693307950612 0.000000e+000 4.584944e-013 0.0492
0.3000 0.2955202066613397 0.2955202066613396 1.110223e-016 7.316370e-014 0.0547
0.4000 0.3894183423086507 0.3894183423086505 2.220446e-016 1.692257e-012 0.0603
0.5000 0.4794255386042032 0.4794255386042029 2.775558e-016 4.596878e-012 0.0662
0.6000 0.5646424733950356 0.5646424733950353 3.330669¢-016  8.754997¢-012 0.0719
0.7000 0.6442176872376914 0.6442176872376908 5.551115e-016 1.390665¢e-011 0.0775
0.8000 0.7173560908995231 0.7173560908995226 5.551115e-016 1.959244e-011 0.0831
0.9000 0.7833269096274838 0.7833269096274829 8.881784e-016 2.519718e-011 0.0888
1.0000 0.8414709848078968 0.8414709848078962 6.661338e-016 2.999911e-011 0.0946
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Figure 4.5: Graphical result showing the oscillatory nature of Problem 4.5

4.2 Discussion of Results

We simulated some Duffing oscillators with the aid of the computational method developed and from
the results obtained, it is obvious that the computational method developed is more efficient than the
existing ones with which we compared our results.

5. CONCLUSION
A one-step computational method has been developed for the simulation of Duffing oscillators using
the power series approximate solution. It is obvious from the results (numerical and graphical) obtained
that the method is computationally reliable. The method developed was also found to be consistent,
convergent, zero-stable and A-stable. This paper therefore recommends the use of this method for solving
not only Duffing equations but second order nonlinear (and linear) differential equations of the form (1).
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