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ABSTRACT 8 

The process of species accumulation,during progressive sampling, results in the regular, 9 

monotonicincrease of the number of recorded species with sampling size. On the 10 

contrary, the numbers f1(N), f2(N), f3(N), …, fx(N) of those species recorded 1-, 2-, 3-, …, x-11 

times at sampling-size N all shownon-monotonic variations with N. The major 12 

characteristic elements of this non-monotonic variations (namely: the maximum 13 

reached at ∂fx (N)/∂N = 0 andthe inflexion point at ∂2fx (N)/∂N2  = 0) provide interesting 14 

cues regarding the degree of advancement of sampling completeness.Such cues yet 15 

remain undetectable however along the regular, monotonic increase of the species 16 

accumulation curve itself. Althoughusually unrecorded, thevariations of the fx(N) may yet 17 

be computed and, accordingly, the associated cuesabove thereby made available in 18 

practice. This computation involves the Taylor expansion of the fx(N), making use of 19 

recently derived mathematical properties of the species accumulation process.For 20 

common practice, focus is placed upon the variations of the fx(N) of lower-orders (i.e. f1(N), 21 

f2(N), f3(N), f4(N)), which suffice to disclose information of particular relevance in assessing 22 

the progress of sampling towards completeness. 23 

Key-words: species accumulation, survey, biodiversity, completeness, estimate, 24 

extrapolation, exhaustivity 25 

 26 

1. INTRODUCTION 27 

Theprogressive sampling of an assemblage of objects (and, in particular,an assemblage 28 

of species) is accounted for numerically by the so-called accumulation (or discovery) 29 

curve. The “species accumulation curve”typically shows a very simple shape, 30 

monotonically increasing, at a regularly decreasingpace, all along the course 31 

ofprogressive sampling. The process of species accumulation, however, is less simple 32 

than would be suggested by this simple shape. In fact, it is upon the numbers of 33 

singletons, doubletons,… x-tons, of those species respectively recorded once, twice,… x-34 

times, that the sampling operation playsa direct role.Progressive sampling thus 35 

results,at first, in the definite – and, as will be seen below, partly coordinate – variations 36 

of the numbers of singletons, doubletons,…, x-tons. One may say, metaphorically, 37 

thatsampling in act plays directly on the “keyboard” of the x-tons.In turn, the resulting 38 

regular growth of the species accumulation curve along progressive samplingis only the 39 

consequenceof these combined variations of the numbers of singletons, doubletons,… x-40 

tons. 41 
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Thinking this way might appear as a pure verbal or conceptual exercise, unnecessarily 42 

focusing upon the underlying details at the origin of thesimple shape peculiar to any 43 

species accumulation curve.This, however, is not the case. 44 

The priority consideration of the values and variations of the numbers f1,f2, f3,…,fx, of 45 

singletons, doubletons, tripletons, …, x-tons, indeed has major practical importance, 46 

especially, as concerns the degree of advancement (completeness) of the sampling 47 

procedure. As a well-known example, most nonparametric estimators of the number of 48 

still unrecorded species (in particular “Chao” and the “Jackknife” series at different 49 

orders) are entirely based upon the values of the numbers fxof species currently 50 

recorded x-times (considering the smallest values of x). In addition, beyond the values 51 

taken by the fx at agiven sampling-size, the variationsof the fxwith sampling-size may be 52 

highly informative about the degree of advancement of the sampling process. And this is 53 

of more particular interest when considering thefx of lowest order x, which primarily 54 

concern theleast abundant species,that make the bulk of those species remaining to be 55 

recorded. 56 

More specifically, the progress of sampling may be considered either: 57 

     - classically and globally, by the estimated ratio of sampling completeness (ratio R0/St 58 

between the number R0 of currently recorded species and the estimated total species 59 

richness St of the sampled assemblage of species); 60 

      - less classically andmore analytically, by examining the trend of variationof each of 61 

thefx(N)with sampling-size N(focusing of course on the smallest values of x) at the 62 

current point of advancement of the considered sampling. 63 

Admittedly, both approaches are complementary rather than mutually exclusive and, in 64 

current practice, the first, classical approach is likely expected to remain paramount. 65 

Yet, departing momentarily from the entire range of species to focus more specifically 66 

on the least abundant ones – whichbecome progressively decisive for the further 67 

improvementof completeness of an ongoing sampling – is also of substantial interest. 68 

Hereafter, we will concentrate on the determination of the trends of variationsof each of 69 

thefx(N) (in practice f1, f2, f3, f4) with increasing sampling-size N. Meanwhile, essential 70 

general mathematical rules that (i) govern the variations of the fx(N) with sampling-size 71 

N and (ii) establish a narrow linkage between the successive fx(N), will be highlighted. 72 

 73 

2. PRELIMINARY: THE SUCCESSIVE DERIVATIVES OF THE NUMBER OF X-TONS 74 

WITH RESPECT TO SAMPLING-SIZE N 75 

The successive derivatives, ∂xR(N)/∂Nx, of the Species Accumulation Curve R(N) satisfy 76 

the following general equation: 77 

 [∂x R(N)/∂Nx]  =  (-1)x-1fx (N)/CN, x  (1)  78 

withR(N) as the number of currently recorded species, fx (N) as the number of x-tons and 79 

CN, x  = N!/x!/(N-x)! as the number of combinations of x items among N.  A detailed proof 80 

of this general theorem is provided in Appendix. 81 

Leaving aside the very beginning of sampling (of no practical relevance here), the 82 

sampling-size N rapidly exceeds widely the numbers x of practical concern, so that, in 83 

practice, CN, x  ≅x!/Nx. Accordingly,the preceding equation may be simplified as: 84 
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[∂x R(N)/∂Nx] = (– 1)x-1 (x!/Nx).fx (N)(2) 85 

This relation has a general relevance because its derivation does not require any specific 86 

assumption relative to the particular shape of the distribution of species abundances 87 

inthe sampled assemblage of species. Accordingly, equations (1) and (2) actually 88 

constrain the theoretical expressions of any kind of Species Accumulation Curves. 89 

From equation (2) it comes: 90 

fx (N)  = (– 1)x-1 (Nx/x!) [∂x R(N)/∂Nx ]      (3) 91 

The derivation of equation (3), according to sample size N, then gives: 92 

∂fx (N)/∂N = (– 1)x-1/x! {x. Nx-1.[∂xR(N)/∂Nx] + Nx.[∂x+1 R(N)/∂Nx+1]}          93 

By applying equation (2) to the expressions of [∂x R(N)/∂Nx] and [∂x+1 R(N)/∂Nx+1], it 94 

comes:          95 

∂fx (N)/∂N  =[ x.fx (N) – (x+1).fx+1 (N) ]/N   (4) 96 

Equation (4) thus provides the expression of the first derivative of the number fx (N) at 97 

any given sample-size N, in terms of the recorded values taken by fx (N) and fx+1 (N) at 98 

sampling-size N.    99 

In turn, the second derivative of fx (N) is obtained by further operating a new derivation 100 

of equation (4): 101 

∂2fx (N)/∂N2  = – [x.fx (N) – (x+1).fx+1 (N) ]/N2 + [x.∂fx (N)/∂N – (x+1).∂fx+1 (N)/∂N]/N 102 

Replacing the derivatives ∂fx(N)/∂N and ∂fx+1 (N)/∂N by their values according to 103 

equation (4) yields: 104 

∂2fx (N)/∂N2 =  105 

[– x.fx (N)+(x+1).fx+1 (N)+x2.fx (N)–(x+1).(2x+1).fx+1 (N)–(x+1).(x+2).fx+2 (N)]/N2 106 

and, finally: 107 

∂2fx (N)/∂N2  =[(x2 – x).fx (N) – (2x2 + 2x).fx+1 (N)  + (x2 + 3x + 2).fx+2 (N)]/N2 (5) 108 

Equation (5) thus provides the expression of the second derivative of  the number fx (N) 109 

at any given sample-size N, in terms of the recorded values taken by fx (N), fx+1 (N) and fx+2 110 

(N) at sampling-size N.    111 

In turn, iteratively operating new derivations of equation (5) would provide 112 

successively the derivatives of fx (N) at any higher order. As a general rule, the expression 113 

of the ith derivative of fx (N) , [∂ifx (N)/∂Ni],involves the recorded values of the (i+1) 114 

numbers fx (N), fx+1 (N), fx+2 (N), fx+3 (N),… fx+i (N), that is: 115 

∂ifx (N)/∂Ni = (1/Ni).gi(fx (N), fx+1 (N), fx+2 (N), fx+3 (N),… fx+i (N))          (6) 116 

where gi(fx (N), fx+1 (N), fx+2 (N), fx+3 (N),… fx+i (N)) is a linear function, with integer 117 

coefficients,of fx (N), fx+1 (N), fx+2 (N), fx+3 (N),… fx+i (N). 118 

As they result from relationship (2) above, equations (4), (5) and (6) – defining ∂fx 119 

(N)/∂N,∂2fx (N)/∂N2and, more generally, ∂ifx (N)/∂Ni – thereby benefit from the same 120 

general relevance and, thus, are valid for all kinds of Species Accumulation Curves. 121 

As shown below, the possibility of defining the successive derivatives of fx (N)in terms of 122 

the (easily recorded)values of the fi (N) at sampling-size N has important practical 123 

consequences. This makes possible: 124 

(i) tocharacterize quantitatively themain successive stages of variation of the fx (N) along 125 

increasing sampling-size N ; 126 
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(ii) to discloseanarrow mathematical linkagethat actually exists between all the 127 

successivefx (N) : indeed, being entirely defined by its successive derivatives∂ifx (N)/∂Ni, 128 

the shape of any fx (N), is, thereby,entirely linked to the corresponding values taken by all 129 

the following fi (N) (i.e. fori> x). 130 

 131 

3. THE THREE MAIN STAGES OF VARIATION OF THE NUMBER OF SPECIES 132 

RECORDED x-TIMES (x-TONS) ALONG PROGRESSIVE SAMPLING 133 

As might be anticipated, the number fx (N) of species recorded x-times is expected: 134 

(i)to continuouslygrow, at first,with increasing sample-size N, then  135 

(ii) to pass by a maximum (at a sampling-size N’ such that ∂fx(N)/∂N = 0) and finally 136 

(iii)todecrease andultimately reach asymptotically the zero level.  137 

Moreover, being finally asymptotic, the decreasing part of the curve is thus expected to 138 

pass by a point of inflection (at a sampling-size N” such that ∂2fx (N)/∂N2 = 0). The 139 

variation of any fx (N) with N, during progressive sampling, may thus be sequenced 140 

according to three successive stages (I, II, III), separated by two threshold values, N’ and 141 

N”, of sampling-size N. Thissuccessive steps areschematised at Figure 1. 142 

 143 

 144 

Figure 1 - Typical sketch of variation of the number fx(N) of x-tons (species recorded x-times) with 145 

increasing sampling-size N. The first derivative,∂fx(N) /∂N, falls to zero at point ‘m’(atN=N’) and the 146 

second derivative, ∂²fx(N) /∂N², falls to zero at point ‘i’ (atN=N”).Three successive stages of variation 147 

of fx(N) are thus delimited: at first, a rapid increase (stage I), then a decrease at an accelerating rate 148 

(stage II) and, at last, a decrease at a decelerating rate (“asymptotic decrease”: stage III).Points ‘m’ 149 

and ‘i’ correspond respectively to the maximum and the inflection of the curve fx(N). 150 

 151 

3.1 The sampling-size threshold at which the number of x-tonspasses by a 152 

maximum and begins to decrease 153 

When fx (N) reaches its maximum, the first derivative ∂fx (N)/∂N falls to zero and then, 154 

according to equation (4), it comes: 155 
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[ x.fx (N) – (x+1).fx+1 (N) ]/N  = 0 156 

thatis: 157 

fx+1 (N)  =  [x/(x+1)].fx (N)when ∂fx (N)/∂N = 0 (7) 158 

Thus, the number of x-tons, fx(N), reaches its maximumat a sampling-size N’ such that the 159 

number of (x+1)-tons (fx+1 (N’)) at N’ is exactly [x/(x+1)] timesthe number of x-tons (fx 160 

(N’)) at N’. Accordingly, f2 (N)  =  ½ f1 (N) when f1 (N) is at its maximum at N = N’; f3 (N)  =  2/3 161 

f2 (N) when f2 (N) is at its maximum, at N = N’; f4 (N)  =  3/4 f3 (N) when f3 (N) is at its 162 

maximum and so on.  163 

Equation (7) highlights a first – partial – link between two successive fx (N) (fx (N)and fx+1 164 

(N)). This iterative linkageeventually connects, step by step, the whole series of the fx (N). 165 

Figure 2 provides a graphical representation of this iterative connection for the five first 166 

x-tons: f1 (N), f2(N), f3 (N), f4 (N), f5 (N). 167 

In practice, the variation of the fx (N) with sampling-size N have rarely been published, 168 

which would allow to compare theory and records. To our knowledge, such records 169 

have only been carried on and published fourth[1 to 4] and for singletons and 170 

doubletons only.As expected, all these four references confirm the theoretical 171 

prediction: the recorded co-variations of f1 (N) and f2 (N)always are in fair agreement with 172 

equation (7), namely f2 (N)  =  ½ f1 (N) when f1 (N)reaches its maximum.  173 

 174 

 175 

Figure 2 – Graphical representation of the connection between the maximum value of fx (N) and the 176 

corresponding value taken by fx+1 (N) at the same sampling-size. Adapted from [5].This figure 177 

highlights the “linkage pattern” between the successive curves fx (N) imposed by the constraining 178 

relationship (7),according to which fx+1 (N)reaches exactly [x/(x+1)] times the value of fx (N) when the 179 

latter reaches its maximum, at N = N’. 180 

 181 
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3.2 The sampling-size threshold at which the number of x-tons begins its 182 

decelerating decrease (“asymptotic decrease”) 183 

After having reach its maximum value at sampling-size N’, fx (N)then enters a decreasing 184 

phase.At first, this decrease is at an accelerated pace (stage II) and then at a decreasing 185 

rate (stage III), in accordance with the final asymptotic vanish.The transition between 186 

stages II and III is characterisedby an inflection point, where ∂2fx (N)/∂N2 falls to zero. 187 

According to equation (5), it comes: 188 

[(x2 – x).fx (N) – (2x2 + 2x).fx+1 (N) + (x2 + 3x + 2).fx+2 (N)] = 0    (8) 189 

Thus, the number of x-tons,fx (N), begins its second, decelerated, asymptotic 190 

decreasewhen the sampling-size reaches a value N” such that the numbers fx (N), fx+1 191 

(N)and fx+2 (N)satisfy equation (8). 192 

 193 

3.3 The particular case of the numbers of singletons and doubletons 194 

According to equation (8), the number of singletons, f1 (N), begins its asymptotic 195 

decrease whenthe sampling-size N reaches a value such that – 4.f2 (N)+6.f3 (N) = 0. Now, 196 

from equation (7), this value of N also corresponds exactly to the step when f2 (N) 197 

reaches its maximum. Therefore, the number of singletons always enters its last, 198 

decelerated decreasing phase (step ‘i') precisely when the number of doubletons reaches 199 

its maximum value (step ‘m’). This is a new remarkable linkage between the two firstfx 200 

(N). 201 

 202 

4. A NARROW MATHEMATICAL CONNECTIONUNITESTHE SUCCESSIVE 203 

NUMBERS OF SPECIES RECORDED x-TIMES (x-TONS) 204 

 205 

4.1 Main mathematical linkage 206 

As already stated at section 2, the variations of the number fx (N) during progressive 207 

sampling are narrowly linked to the variations of all the fj (N)of higher order, i.e. for allj> 208 

x. This may be explicitly highlighted by considering the expression of the Taylor 209 

expansion of fx (N). According to the general formulation of Taylor expansion, the 210 

variations of fx (N)in a range [N–δ ,N+δ] around the sampling-size N, may be written as: 211 

fx (N + δ)  =  fx (N) + Σi=1 to ∞(∂ifx (N)/∂Ni).(δi/i!). 212 

In turn, the general relationship (6) allows to express the ithderivative,∂ifx (N)/∂Ni, in 213 

terms of the recorded values of the (i+1) numbers fx (N), fx+1 (N), fx+2 (N), fx+3 (N),… fx+i (N): 214 

∂ifx (N)/∂Ni = (1/Ni).gi(fx (N), fx+1 (N), fx+2 (N), fx+3 (N),… fx+i (N))           215 

Accordingly, the Taylor expansion of fx (N) may be written as a function of the values 216 

taken by the series of the fj (N) for j >x: 217 

fx (N + δ)  =  fx (N) + Σi=1 to X [(1/Ni).gi (fx (N), fx+1 (N), fx+2 (N), fx+3 (N),…,fx+i (N))].(δi/i!)  (9) 218 

with: 219 

-   gi  as a linear function of the fx (N), fx+1 (N), fx+2 (N), fx+3 (N),… fx+i (N), with integer 220 

coefficients  221 

-   X as the number of individuals of the most abundant species that has been recorded 222 

at the currently reached sampling-size N. 223 
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Equation (9) thus highlights the general expression of the narrow mathematical linkage 224 

that exists between all the successive fx (N) and, more precisely, between the variation of 225 

fx (N) around the current sampling-size N and the corresponding values that are taken,at 226 

sampling-size N, by the series of fi (N), for i> x. 227 

In particular, considering the Taylor expansion of fx (N) at order 2 (which is sufficient, in 228 

practice, to encompass the bulk of the local variations of fx (N)), it comes: 229 

fx(N + δ)  ≈  fx(N) + [ x.fx (N) – (x+1).fx+1 (N) ].(δ/N) 230 

+[(x2 – x).fx (N) – (2x2 + 2x).fx+1 (N)+ (x2 + 3x + 2).fx+2 (N)].(½ δ2/N2)   (10) 231 

 232 

Note that, similarly,a Taylor expansion of the Species Accumulation Curve, R(N), within 233 

a neighbourhood [N–δ , N+δ] of the sampling-size N,has already been derived[6]. The 234 

Taylor expansionof R(N) is: 235 

R(N+δ) = R(N) + Σi=1 to ∞ [∂iR(N)/∂Ni].(δi/i!) 236 

Replacing the successive derivatives by their expressions, according to equation (1) 237 

leads to: 238 

R(N+δ) = R(N) + Σi=1 to ∞ [(– 1)i-1 (i!/Ni).fi (N)].(δi/i!) 239 

that is: 240 

R(N+δ) = R(N) + Σi=1 to ∞(– 1)i-1 (δ/N)i.fi (N) 241 

In practice: 242 

R(N+δ) = R(N) + Σi=1 to X(– 1)i-1 (δ/N)i.fi (N)       (11) 243 

with X as the number of individuals of the most abundant species that have been 244 

recorded at the current sampling-size N.       245 

 246 

4.2 An additional mathematical linkage 247 

Still an additional mathematical linkage between the successive fx(N) may beunveiled 248 

by considering the intersection between fx(N) and fx+1(N), i.e. when sampling size N is 249 

such that fx+1(N) becomes equal tofx(N). From equation (4) it comes immediately: 250 

∂fx (N)/∂N  =  – fx(N)/N  for sampling size N such that fx+1(N) = fx(N)      (12) 251 

Accordingly, this demonstrates: 252 

      - that fx+1(N) intersects fx(N) when the latter has already reached its decreasing 253 

phase (since fx(N)/N is essentially positive); 254 

      - that the slope (decreasing rate) of fx(N)at this intersection pointis equal in module 255 

and opposite in sign to the ratio fx(N)/N, thus resulting graphically ina remarkable 256 

geometrical property, as shown in Figure 3, with angle IBA being equal to angle IAB (the 257 

triangle AIB is isosceles) . 258 

 259 
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 260 

Figure 3 - Typical sketch of variation, with increasing sampling-size N, of the number fx(N) of x-tons  261 

and  the number fx+1(N) of (x+1)-tons. Both curves intersect at point I. A remarkable mathematical 262 

property at the intersection between fx(N) and  fx+1(N) is that the slope (decreasing rate) of fx(N), 263 

there, is equal in module and opposite in sign to the ratio fx(N)/N. This results in a remarkable 264 

geometricalproperty: the equality of angles IAB and IBA : the triangle AIB is isosceles 265 

 266 

5. DISCUSSION 267 

The numbers f1, f2,…,fx,of singletons, doubletons, …, x-tons (species respectively 268 

recorded 1-, 2-, …, x-times) vary, of course, with sampling-size N. Each number 269 

fx(N)successively shows three phase of variation with N: a growth period (I), then an 270 

accelerated decreasing period (II) and, at last, a decelerated decreasing period (III), 271 

eventually ending asymptotically to zero (Figure 1). The thresholds values N’ and N”, 272 

which delimit these three stages, are dependent on x (the larger x, the larger are N’ and 273 

N”), but these three stages of variation along progressive sampling remain 274 

characteristic of the variation of anyfx (N), whatever the value x, that is for any x-ton. In 275 

spite of this common general scheme, each number fxvaries, however, at its own pace 276 

during progressive sampling. Yet, it has been demonstrated above that the respective 277 

variations of the different numbers fxare notentirely independent from each-other. On 278 

the contrary, a remarkable connection has been unveiledbetween them. This connection 279 

appears explicitly by consideringthe Taylor expansion of the fx (N)(equations (9) and 280 

(10)) which shows that the variations of fx (N)in a neighbourhood of N depend on the 281 

values taken by the series of the fi (N), for i> x. In other words, the variations of the 282 

number of species recorded x-times are connected to the numbers of species recorded 283 

still morefrequently. Moreover, some remarkable consequences of this connection are 284 

highlighted graphically at Figures 2 and 3.  285 

All these considerations might seem, at first, of pure speculative interest. However, they 286 

also havesubstantial practical consequences and may answer more pragmatic concerns. 287 

Usually, the degree of sampling completeness is, as logically expected, quantified by the 288 

ratio between the number of recorded species and the (estimated) total species 289 

richness of the sampled assemblage of species. According to this usual approach, the 290 
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scope is, first of all,focused on what has already been recorded. An alternative 291 

(complementary) approach, however,would consist to focus upon what is still to be 292 

recorded.That is to say, to consider first and foremost those species that are, 293 

statistically, the least abundant in the sampled assemblage. In this second perspective, it 294 

is those numbers of species only recorded few (x-tons with low values of x: singletons, 295 

doubletons,…) that are more relevantly informative. For example, it is this kind of 296 

approach that is implicitly considered in the generally acceptedview that a survey may 297 

be considered virtually complete as soon as the recorded number f1 of singletons has 298 

fallen to zero. 299 

In accordance with the preceding point of view (and for the bulk of practical surveys of 300 

biodiversity, that have not reached quasi-exhaustivity), relevant question to be 301 

addressed is:(i) what are the values and (ii) what arethe trends of variation of the 302 

numbers of singletons, doubletons, tripletons, etc … (f1(N), f2(N), f3(N), …)around the 303 

currently achieved sampling-size N0. Answering this question becomeshighly 304 

meaningful as soon as sampling progress has reached the levelwhere it is mainly the 305 

least abundant species of the sampled assemblage which contributes to f1, f2, f3, … 306 

To provide an illustration of the interest and practical significance of this 307 

proposition,four examplesareconsidered hereafter, involving four local surveys of 308 

butterfly fauna in different suburban localities around Jhansi (India)[7]. For each 309 

survey, the variations of the numbers f1(N), f2(N), f3(N), f4(N), of those species respectively 310 

recorded 1-, 2-, 3-, 4- times are computed around the correspondingachieved sampling-311 

size N0of each survey, using the Taylor expansion of fx (N) at order 2 (equation (10)). 312 

That is, the Taylor expansion (equation (10)) is implemented with the values of f1, f2, f3, 313 

f4, recorded at the end of the achieved sampling (i.e. for N = N0): Figures 4 to 7 (N.B.: 314 

more precisely and in order to reduce the influence of drawing stochasticity on the as-315 

recorded values of the numbers fx, their distribution is, at first, smoothened by 316 

regression of the as-recorded distribution of the fx versus x (see reference [7] for details 317 

on this point). 318 

Figure 4 is for butterfly survey at “Parichha Dam” (estimated sampling completeness 319 

65%): referring to Figure 1, the numbers f1, f2, f3, f4at the currently achieved sampling-320 

size N0, are at stages II, I, I, I, respectively. That is, at N0, the number of singletons begins 321 

to decrease while the numbers of doubletons, tripletons and quadrupletons are still 322 

growing. 323 

Figure 5is for butterfly survey at “Jhansi University Campus” (estimated sampling 324 

completeness 90%): referring to Figure 1, the numbers f1, f2, f3, f4, at the currently 325 

achieved sampling-size N0, are at stages III, III, II, I, respectively. That is, at N0, the 326 

numbers of singletons and doubletons have already beguntheir last asymptotic 327 

decreasing phase, while the number oftripletonshas enteredits accelerated decreasing 328 

phase and the number ofquadrupletonsis still increasing. 329 

Figure 6is for butterfly survey at “Narayan Bagh” (estimated sampling completeness 330 

92%): referring to Figure 1, the numbers f1, f2, f3, f4, at the currently achieved sampling-331 

size N0, are at stages III, III, III, II, respectively. That is, at N0, the numbers of singletons, 332 

doubletons and tripletonshave already begun their last asymptotic decreasing phase 333 

while the number of quadrupletonshas enteredits accelerated decreasing phase. 334 
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Figure 7is for butterfly survey at “Bundelkhand Institute Engeneering& Technology 335 

Campus” (quasi exhaustive survey): referring to Figure 1, the numbers f1, f2, f3, f4, at the 336 

currently achieved sampling-size N0, are at stages III, II, ≈ m, I, respectively. That is, at 337 

N0, the number of singletons has already begunits last asymptotic decreasing phase, the 338 

number of doubletons has entered its accelerated decreasing period, the number of 339 

tripletonshas just approximately reached its maximum and the number of 340 

quadrupletonsis still increasing. 341 

 342 

 343 
 344 

Figures 4, 5, 6, 7 – Variations of the numbers f1, f2, f3, f4, of species respectively recorded 1-, 2-, 3-, 4- 345 

times according to sampling-size N around the currently achieved sample-size N0. The variations of 346 

the fx(N) are computed using a Taylor expansion (equation (10)) around the size, N = N0, of the 347 

actually achieved sampling. That is, the Taylor expansion (equation (10)) is implemented with the 348 

values of f1, f2, f3, f4,as recorded at the end of the sampling carried out (i.e. for N = N0). 349 

Four surveys of butterfly fauna in different localities around the city of Jhansi (BÉGUINOT2017): 350 

- Fig 4: “Parichha Dam” : for the achieved sampling-size (N = N0) and, referring to Figure 1, the 351 

numbers f1, f2, f3, f4, are at stages II, I, I, I, respectively 352 

- Fig 5: “Jhansi Univ. Campus” : for the achieved sampling-size (N = N0) and, referring to Figure 1, the 353 

numbers f1, f2, f3, f4, are at stages III, III, II, I, respectively 354 

- Fig 6: “Narayan Bagh”: for the achieved sampling-size (N = N0) and referring to Figure 1, the 355 

numbers f1, f2, f3, f4, are at stages III, III, III, II, respectively. Other comments in the text. 356 

- Fig 7: “Bundelkhand Institute Eng. &Techn. Campus” : for the achieved sampling-size (N = N0) and 357 

referring to Figure 1, the numbers f1, f2, f3, f4, are at stages III, II, ≈ m, I, respectively 358 

 359 

Thus, as expected, there is a general trend for the numbers fx (N)to pass the successive 360 

steps of their variations (stages I, m, II, i, III) in accordance with increasing level of 361 

sampling completeness. For example, at 65% completeness (“Parichha Dam”), the 362 

numbers f1, f2, f3, f4, are at stages II, I, I, I, respectively, while, at 92% completeness 363 

(“Narayan Bagh”), the numbers f1, f2, f3, f4, havealready reached stages III, III, III, II, 364 

respectively. Yet, this correlation is rather loose, as is exemplified, by comparing “B.I.E.T. 365 

Campus” to “Narayan Bagh”: f1, f2, f3, f4, are at stages III, II, ≈ m, I, for the quasi 366 
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exhaustive  sampling of “B.I.E.T. Campus” while f1, f2, f3, f4, are at more advanced stages 367 

(III, III, III, II), for the 92% completeness sampling of “Narayan Bagh”. 368 

This loose correlation, however, is not surprising. Indeed, the degrees of advancement 369 

of the variations of the fx(N) along their successive stages are not only related to the 370 

global level of sampling completeness (R0/St) but are still dependent also upon the level 371 

of unevenness of species abundance distribution in the sampled assemblage. At any 372 

given level of sampling completeness, the more uneven is the species abundance 373 

distribution, the slower will be the degree of advancement of the fx(N) in the passage of 374 

the successive steps of their variations. 375 

To close this topic, a more laconic and synthetic presentation of the degree of 376 

advancement of the survey of the least abundant species in the sampled assemblage 377 

may simply consist in displaying the “score” of those fx(N) that have overstepped their 378 

respective maximum ‘m’ and enter their decreasing stages (II or III), at the currently 379 

reached sampling-size N0.  Thus, for the four preceding surveys, the scores are as 380 

follows:for “Parichha Dam”: f1 ; for  “Jhansi University Campus”: f1, f2, f3 ; for “Narayan 381 

Bagh”: f1, f2, f3, f4 ; for “B.I.E.T. Campus”: f1, f2. 382 

 383 

CONCLUSION 384 

Although looking quite simple, the monotonic process of species accumulation during 385 

progressive sampling is, in fact, far less trivial. Indeed, species accumulation is the 386 

cumulated result of a more convoluted underlying process, involving the non-387 

monotonic variations of each of the fx(N) (i.e. the numbers of species recorded x-times at 388 

any given sampling-size N). Moreover, although partially connected with each other, the 389 

variations of each of the fx(N) progress at different paces, in a relative independence from 390 

each other in this respect. Disclosing the respective variations of each of the fx(N)is, 391 

thus,quite a non-trivial issue, which has yet been successfully addressed above. In 392 

particular, the general expression of the variations of the fx(N) has been appropriately 393 

derived, using a Taylor expansion approach. Beyond the speculative aspects of the 394 

question - at the very heart of the detailed understanding of species accumulation rates 395 

along progressive sampling - more practical aspects have also been addressed. In 396 

particular, accounting for the variations of the low-ordersfx(N), (such as f1(N), f2(N), f3(N), 397 

f4(N)) provesespecially significant regarding the degree of advancement of ongoing 398 

surveys towards sampling exhaustivity. This is so becausethe further improvements of 399 

sampling completeness progressively involvethe recording of less and less abundant 400 

species, which primarily influence the low-ordersfx(N). The Taylor expansion of the 401 

numbers f1(N), f2(N), f3(N), f4(N), … around the currently reached sampling-size may thus 402 

cast more relevant light upon the effective progress of an ongoing survey and thus 403 

provide an additional tool to accurately evaluate sampling efficiency. 404 

 405 

 406 

APPENDICES 407 

A.1 - Derivation of the constraining relationship between ∂xR(N)/∂Nx  and  fx(N) 408 

The shape of the theoretical Species Accumulation Curve is directly dependent upon the 409 

particular Species Abundance Distribution (the “S.A.D.”) within the sampled assemblage 410 
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of species. That means that beyond the common general traits shared by all Species 411 

Accumulation Curves, each particular species assemblage give rise to a specific Species 412 

Accumulation Curve with its own, unique shape, considered in detail. Now, it turns out 413 

that, in spite of this diversity of particular shapes, all the Species Accumulation Curves 414 

are, nevertheless, constrained by a same mathematical relationship that rules their 415 

successive derivatives (and, thereby, rules the details of the curve shape since the 416 

successive derivatives altogether define the local shape of the curve in any details). 417 

Moreover, it turns out that this general mathematical constraint relates bi-univocally 418 

each derivative at order x  [∂xR(N)/∂Nx ] to the number, fx(N), of species recorded x-times 419 

in the considered sample of size N. And, as the series of the fx(N) are obviously directly 420 

dependent upon the particular Distribution of Species Abundance within the sampled 421 

assemblage of species, it follows that this mathematical relationship between ∂xR(N)/∂Nx 422 

and fx(N), ultimately reflects the indirect but strict dependence of the shape of the 423 

Species Accumulation Curve upon the particular Distribution of the Species Abundances 424 

(the so called S.A.D.) within the assemblage of species under consideration. In this 425 

respect, this constraining relationship is central to the process of species accumulation 426 

during progressive sampling, and is therefore at the heart of any reasoned approach to 427 

the extrapolation of any kind of Species Accumulation Curves. 428 

This fundamental relationship may be derived as follows. 429 

Let consider an assemblage of species containing an unknown total number 'S' of 430 

species. Let R be the number of recorded species in a partial sampling of this 431 

assemblage comprising N individuals. Let pi be the probability of occurrence of species 432 

'i' in the sample This probability is assimilated to the relative abundance of species ‘i' 433 

within this assemblage or to the relative incidence of species ‘i' (its proportion of 434 

occurrences) within a set of sampled sites. The number Δ of missed species (unrecorded 435 

in the sample) is Δ = S – R. 436 

The estimated number Δ of those species that escape recording during sampling of the 437 

assemblage is a decreasing function Δ(N) of the sample of size N, which depends on the 438 

particular distribution of species abundances pi: 439 

Δ(N)  = Σi(1-pi)N(A1.1) 440 

withΣi as the operation summation extended to the totality of the 'S' species 'i' in the 441 

assemblage (either recorded or not) 442 

The expected number fx of species recorded x times in the sample, is then, according to 443 

the binomial distribution: 444 

fx  =  [N!/X!/(N-x)!] Σi[(1-pi)N-xpix]   = CN, x  Σi(1-pi)N-xpix       (A1.2)  445 

with CN, x  = N!/X!/(N-x)!  446 

We shall now derive the relationship between the successive derivatives of R(N), the 447 

theoretical Species Accumulation Curve and the expected values for the series of ‘fx’.  448 

According to equation (A1.2): 449 

 450 

►    f1 = N Σi[(1-pi)N-1 pi] = N Σi[(1-pi)N-1 (1- (1-pi))]= N Σi[(1-pi)N-1] - N Σi[(1-pi)N-1(1-pi))]  451 

= N Σi[(1-pi)N-1] - N Σi[(1-pi)N].      452 
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Then, according to equation (A1.1) it comes: f1 = N (Δ(N-1) - Δ(N))  = - N (Δ(N) - Δ(N-1))   453 

= - N (∂ Δ(N)/∂N) = - N Δ'(N) 454 

whereΔ'(N) is the first derivative of  Δ(N) with respect to N.    Thus:    455 

f1  =  - N Δ'(N)     ( = - CN,1 Δ'(N)  )         (A1.3) 456 

Similarly: 457 

►   f2 = CN, 2Σi[(1-pi)N-2 pi²]    according to equation (A1.2) 458 

= CN, 2Σi[(1-pi)N-2 (1- (1-pi²))]   = CN, 2  [Σi[(1-pi)N-2] - Σi[(1-pi)N-2(1- pi²)]] 459 

= CN, 2 [Σi[(1-pi)N-2] - Σi[(1-pi)N-2(1- pi)(1+ pi)]]  = CN, 2 [ Σi[(1-pi)N-2] - Σi[(1-pi)N-1(1+ pi)]] 460 

= CN, 2 [(Δ(N-2) - Δ(N-1)) - f1/N ]according to equations (A2.1) and  (A1.2) 461 

= CN, 2 [- Δ'(N-1) - f1/N]  = CN, 2  [ - Δ'(N-1) + Δ'(N)]   since  f1 = - N Δ'(N)     (cf. equation (A1.3)). 462 

= CN, 2 [(∂ Δ'(N)/∂N)] = [N(N-1)/2] (∂² Δ(N)/∂N²) = [N(N-1)/2] Δ''(N) 463 

whereΔ''(N) is the second derivative of  Δ(N) with respect to N.    Thus: 464 

f2  =  [N(N-1)/2]  Δ''(N)     =  CN, 2 Δ''(N)            (A1.4) 465 

►  f3 = CN, 3Σi[(1-pi)N-3 pi3]   which, by the same process, yields: 466 

= CN, 3 [Σi(1-pi)N-3 - Σi(1-pi)N-2 - Σi[(1-pi)N-2 pi] - Σi[(1-pi)N-2 pi2 )]]   467 

= CN, 3 [(Δ(N-3) - Δ(N-2)) - f1*/(N-1) - 2 f2/(N(N-1))] according to equations (A2.1) and  468 

(A1.2) 469 

where f1* is the number of singletons that would be recorded in a sample of size (N - 1) 470 

instead of N.   471 

According to equations (A1.3) & (A1.4):   472 

f1*  =  - (N-1) Δ'(N-1)  =  - CN-1, 1 Δ'(N-1)    and    f2  =  [N(N-1)/2] Δ''(N)   = CN-1, 2 Δ''(N)     (A1.5) 473 

whereΔ'(N-1)  is the first derivate of  Δ(N) with respect to N, at point (N-1).   Then,   474 

f3  = CN, 3 [(Δ(N-3) - Δ(N-2)) + Δ'(N-1) - Δ''(N) ]   =  CN, 3 [ -Δ'(N-2) + Δ'(N-1) - Δ''(N) ]   475 

=  CN, 3 [ Δ''(N-1) - Δ''(N) ]  = CN,3 [ - ∂ Δ''(N)/∂N ] =  CN, 3 [ - ∂3Δ(N)/∂N3] = CN, 3Δ'''(N) 476 

whereΔ'''(N) is the third derivative of  Δ(N) with respect to N.  Thus : 477 

f3=  - CN, 3Δ'''(N)              (A1.6) 478 

Now, generalising for the number fx of species recorded x times in the sample: 479 

►fx = CN, xΣi[(1-pi)N-xpix]    according to equation (A1.2), 480 

= CN, xΣi[(1-pi)N-x (1 - (1 - pix)) ]  = CN, x [Σi(1-pi)N-x - Σi[(1-pi)N-x (1 - pix)]]   481 

= CN, x [Σi(1-pi)N-x - Σi[(1-pi)N-x (1 - pi)( Σj pij)]]    482 
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withΣj  as the summation from j = 0 to  j = x-1. It comes: 483 

fx  = CN, x [Σi(1-pi)N-x - Σi[(1-pi)N-x+1 ( Σj pij)]]   484 

= CN, x [Σi(1-pi)N-x - Σi(1-pi) N-x+1 - Σk [(Σi(1-pi) N-x+1pik)]] 485 

withΣk  as the summation from k = 1 to k = x-1 ; that is: 486 

fx  = CN, x [(Δ(N-x) - Δ(N-x+1)) - Σk (fk*/C(N-x+1+k), k )]  according to equations (A1.1) and  487 

(A1.2)) 488 

where C(N-x+1+k), k = (N-x+1+k)!/k!/(N-x+1)! andfk* is the expected number of species  489 

recorded k times during a sampling of size (N-x+1+k)  (instead of size N).   490 

The same demonstration, which yields previously the expression of f1* above (equation 491 

(A1.5)), applies for the fk* (with k up to x-1) and gives:    492 

fk* = (-1)k (C(N-x+1+k), k ) Δ(k)(N-x+1+k)         (A1.7) 493 

whereΔ (k)(N-x+1+k)  is the kth derivate of  Δ(N) with respect to N, at point (N-x+1+k).   Then,   494 

fx  = CN, x [(Δ(N-x) - Δ(N-x+1)) - Σk ((-1)kΔ(k)(N-x+1+k) )]            , 495 

which finally yields :  496 

fx  = CN, x [(-1)x (∂Δ(x-1)(N)/∂N) ] = CN, x [(-1)x (∂xΔ(N)/∂Nx)].   That is:  497 

fx = (-1)x CN, xΔ(x)(N)  = (-1)x CN, x [∂xΔ (N)/∂Nx]      (A1.8)  498 

where  [∂xΔ (N)/∂Nx] is the xth derivative of  Δ(N) with respect to N, at point N.    499 

Conversely: 500 

[∂x Δ(N)/∂Nx] = (-1)xfx/CN, x                   (A1.9)  501 

Note that, in practice,leaving aside the beginning of sampling,N rapidly increases much 502 

greater than x, so that the preceding equation simplifies as: 503 

[∂x Δ(N)/∂Nx] = (– 1)x(x!/Nx) fx(N)                   (A1.10) 504 

In particular: 505 

[∂Δ(N)/∂N] = f1(N)/N               (A1.11) 506 

[∂2 Δ(N)/∂N2] = 2 f2(N)/N2      (A1.12)                507 

This relation (A1.9) has general relevance since it does not involve any specific 508 

assumption relative to either (i) the particular shape of the distribution of species 509 

abundances in the sampled assemblage of species or (ii) the particular shape of the 510 

species accumulation rate. Accordingly, this relation constrains any theoretical form of 511 

species accumulation curves. As already mentioned, the shape of the species 512 

accumulation curve is entirely defined (at any value of sample size N) by the series of 513 

the successive derivatives [∂xR(N)/∂Nx] of the predicted number R(N) of recorded 514 

species for a sample of size N: 515 

[∂xR(N)/∂Nx] = (-1)(x-1)fx/CN, x                   (A1.13)  516 

with [∂xR(N)/∂Nx] as the xth derivative of  R(N) with respect to N, at point N and CN, x = 517 

N!/(N-x)!/x! (since the number of recorded species R(N) is equal to the total species 518 

richness S minus the expected number of missed species Δ(N)).  519 
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As above, equation (A1.13) simplifies in practice as: 520 

∂xR(N)/∂Nx  =  (– 1)(x-1) (x!/Nx) fx(N)                   (A1.14) 521 

Equation (A1.13) makes quantitatively explicit the dependence of the shape of the 522 

species accumulation curve (expressed by the series of the successive derivatives 523 

[∂xR(N)/∂Nx] of R(N)) upon the shape of the distribution of species abundances in the 524 

sampled assemblage of species. 525 

 526 

A2 - An alternative derivation of the relationship between ∂xR(N)/∂Nx and fx(N) 527 

Consider a sample of size N (N individuals collected) extracted from an assemblage of S 528 

species and let Gi be the group comprising those species collected i-times and fi(N) their 529 

number in Gi. The number of collected individuals in group Gi is thus i.fi(N), that is a 530 

proportion i.fi(N)/N of all individuals collected in the sample. Now, each newly collected 531 

individual will either belong to a new species (probability 1.f1/N = f1/N) or to an already 532 

collected species (probability 1– f1/N), according to [8]. In the latter case, the 533 

proportion i.fi(N)/N of individuals within the group Gi accounts for the probability that 534 

the newly collected individual will contribute to increase by one the number of species 535 

that belong to the group Gi (that is will generate a transition [i-1 → i] under which the 536 

species to which it belongs leaves the group Gi-1 to join the group Gi). Likewise, the 537 

probability that the newly collected individual will contribute to reduce by one the 538 

number of species that belong to the group Gi (that is will generate a transition [i → i+1] 539 

under which the species leaves the group Gi to join the group Gi+1) is (i+1).fi+1(N)/N. 540 

Accordingly, for i> 1: 541 

 ∂fi(N)/∂N  =  [i.fi(N)/N – (i+1).fi+1(N)/N](1 – f1/N)    (A2.0) 542 

Leaving aside the very beginning of sampling, and thus considering values of sample 543 

size N substantially higher than f1, it comes: 544 

∂fi(N)/∂N  =  i.fi(N)/N – (i+1).fi+1(N)/N                 (A2.1) 545 

Let consider now the Species Accumulation Curve R(N), that is the number R(N) of 546 

species that have been recorded in a sample of size N. The probability that a newly 547 

collected individual belongs to a still unrecorded species corresponds to the probability 548 

of the transition [0 → 1], equal to i.fi(N)/N with i = 1, that is: f1(N)/N (as already 549 

mentioned).  550 

Accordingly, the first derivative of the Species Accumulation Curve R(N) at point N is   551 

∂R(N)/∂N = f1(N)/N                             (A2.2) 552 

In turn, as f1(N) = N.∂R(N)/∂N (from equation (A2.2)) it comes:                              553 

∂f1(N)/∂N = ∂[N(∂R(N)/∂N)]/∂N = N(∂2R(N)/∂N2) + ∂R(N)/∂N 554 

On the other hand, according to equation (A2.1):  555 

∂f1(N)/∂N = 1.f1(N)/N – 2.f2(N)/N  =  f1(N)/N – 2f2(N)/N, and therefore: 556 

N(∂2R(N)/∂N2) + ∂R(N)/∂N =  f1(N)/N – 2f2(N)/N 557 

And as ∂R(N)/∂N = f1(N)/N according to equation (A2.2): 558 

∂2R(N)/∂N2  =  – 2f2(N)/N2                       (A2.3) 559 

Likewise, as f2(N) = –N2/2.(∂2R(N)/∂N2), it comes: 560 

∂f2(N)/∂N  =  ∂[–N2/2.(∂2R(N)/∂N2)]/∂N  =  – N(∂2R(N)/∂N2) – N2/2.(∂3R(N)/∂N3) 561 
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As ∂f2(N)/∂N = 2f2(N)/N – 3f3(N)/N,  according to equation (A2.1), it comes: 562 

– N(∂2R(N) /∂N2) – N2/2.(∂3R(N)/∂N3) = 2f2(N)/N – 3f3(N)/N 563 

and as ∂2R(N)/∂N2 = – 2f2(N)/N2, according to equation (A2.3), it comes: 564 

∂3R(N)/∂N3  =  + 6f3(N)/N3                       (A2.4) 565 

More generally: 566 

∂xR(N)/∂Nx  =  (– 1)(x-1) (x!/Nx) fx(N)                   (A2.5) 567 

 568 
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