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ABSTRACT 11 

The “Species Accumulation Curve” accounts for the rate of increase of the number of 12 

recorded species during progressive sampling of an assemblage of species. Due to the usual 13 

incompleteness of samplings, the accurate extrapolation of the Species Accumulation Curve 14 

has become an essential tool to estimate the total species richness of a sampled assemblage 15 

and to predict the additional sampling effort required to obtain a given increase of sample 16 

completeness.In this perspective, important efforts have been devoted to improve the 17 

accuracy of the extrapolation of the Species Accumulation Curves. Substantial progressin 18 

this respect was achieved recently by considering a general mathematical relationship that 19 

constrainsthe theoretical expression of any kind of Species Accumulation Curves.Moreover, 20 

this general relationship proves having interesting corollaries applying specifically to the 21 

detailed process of species accumulation during progressive sampling.  22 

Hereafter, I first derive these correlative relationships and thenI show how they link 23 

together the variations of the numbers of species respectively recorded 1-, 2-, 3- …, x- 24 

timesand their cumulative contributions to the Species Accumulation Curve. This, in turn, 25 

provides suggestive insights regarding the remarkably regulated mechanism of species 26 

discovery and accumulation during progressive sampling effort. 27 

 28 
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1. INTRODUCTION 34 

The process of continuous discovery of new species during progressive sampling of an 35 

assemblage of species is expressed graphically in term of the so called “Species 36 

Accumulation Curve”, also formerly designed as “Discovery Curve” or “Collector Curve” 37 

[1, 2].  The Species Accumulation Curve is the basic tool which is systematicallyreferred 38 

towhen dealing withinventories of biodiversity [2 to 8]. 39 

Species Accumulation Curves are quite polymorphic,apart from some commonbasic and 40 

intuitive traits shared by all of them (monotonic increaseof the number of recorded 41 

species with sampling size, at consistently decreasing rate, see Figure 1 for an 42 

example).This polymorphism of the detailed shapeof the Species Accumulation 43 

Curvesresults from its narrow dependence upon the particular species abundance 44 

distribution within the sampled assemblage of species under consideration. Accordingly, 45 

there are virtually as many different shapes of Species Accumulation Curves as there are 46 
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species assemblages differing from each other by either theirspecies richness 47 

and/ortheir particulardistribution of species abundances. 48 

 49 

 50 
Figure 1 – Typical shape of aSpecies Accumulation Curve (S.A.C.), showing the basic common features 51 

pertaining to any kind of S.A.C.: monotonic increase of the number of recorded species R(N) with 52 

sampling size N, while the rate of growth is monotonically decreasing.Here is plotted the S.A.C for a 53 

partial inventory of land snails fauna in a xerothermic grassland at ‘Cersot’, south Burgundy (France) 54 

[from BÉGUINOT, unpublished data].Samplingsize is expressed in % of the size of the actually achieved 55 

sampling.Extrapolationis predicted according to Jackknife-5 estimator, selected as being the less 56 

biasedestimator for this particular inventory(see reference [9]). 57 

 58 

In spite of these causes of polymorphism,the theoretical expressions of all Species 59 

Accumulation Curves are compelled to satisfy a common constraining mathematical 60 

relationship which applies to the whole series of its successive derivatives. 61 

Thisconstraining relationship explicitlydetermines the boundaries oftheyet wide range 62 

of polymorphismmentioned above for the Species Accumulation Curves.On a more 63 

practical point of view, accounting for this constraining relationship also has major 64 

importance to improve the accuracy of extrapolationsof the species accumulation process 65 

beyond actually achieved sampling. Thereby, more preciseestimations of total species 66 

richness and more reliable predictionsof the additional sampling effort needed to 67 

achieve a given increase in sample completeness are made possible (details inreference 68 

[9]). 69 

Now, coming back to more theoretical ground, severalcorollaries which can be derived 70 

from this fundamental relationship also provide useful insights into the details of the 71 

complex process of species discovery during progressive sampling.  72 

Let R(N) be the number of recorded species after sampling of N individuals (N thus 73 

quantifiesthe sampling size). Obviously, R(N) results from the additive contributions of 74 

the numbers f1(N), f2(N), f3(N),…, fx(N),… of those species respectively recorded 1, 2, 3, .., 75 

x-timesat the end of this sampling of size N: 76 

R(N) = Σxfx(N)         (1) 77 

Thereby, the Species Accumulation Curvereveals its“composite”dependence uponthe 78 

whole series of the fx(N). Acomposite dependence which is made still more complex by 79 
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the fact that each function fx(N) has its own dependence upon N.  Yet, this mutual 80 

independence of the fx(N)is not total:a kind of regulation links, step by step, the 81 

respective variations of the successive functions fx(N), as will be shown later. This 82 

regulation, indeed, is at the hearth of the mechanism of species progressive discovery 83 

and accumulation, which plays,of course, a decisive role in shaping the Species 84 

Accumulation Curve.  85 

The main purpose of this article is precisely to highlight the mathematics underlying this 86 

regulation by mutual linkage between the successive fx(N). This, in turn,will provide a 87 

more deep understanding of the fundamentals of Species Accumulation process during 88 

progressive sampling.  89 

Indeed,derivingthe mathematical constraints that actually regulate the theoretical 90 

expressionofany Species Accumulation Curvesalong progressive sampling,is obviously of 91 

prime importance, not only at the theoretical level but also at more practical points of 92 

view. In particular, accounting for these mathematical constraints is necessary to 93 

reliably extrapolate the Species Accumulation Curve beyond the actually achieved 94 

sampling size of uncomplete species inventories. Extrapolation makes it possible to 95 

accurately estimate the total species richness of partially-sampled species assemblages 96 

and also to properly predict the level of additional sampling effort needed to improve 97 

the degree of sampling completeness. And this is all the more important, in practice,that 98 

dealing with incomplete inventories is now fast becoming a fairly general issue for an 99 

increasing part of local or regional biodiversity surveys worldwide, as more and more 100 

speciose and complex taxonomic groups are progressively addressed. 101 

 102 

2. METHODOLOGICAL APPROACH 103 

The fundamental mathematical relationship constraining the theoretical expression 104 

of all Species Accumulation Curves 105 

The successive derivatives ∂xR(N)/∂Nx, of the Species Accumulation Curve R(N) satisfy 106 

the following equation: 107 

 [∂x R(N)/∂Nx] = (-1)x-1fx (N)/CN, x      (2)  108 

wherefx (N)is the number of species recorded x-times in the sample of size N and CN, x  = 109 

N!/X!/(N-x)!is the number of combinations of x items among N.  A detailed proof of this 110 

general theorem is provided in Appendix. 111 

Leaving aside the very beginning of sampling (of no practical relevance here), the 112 

sampling size N rapidly widely exceedsthe numbers x of practical concern, so that, in 113 

practice, the preceding equation simplifies as: 114 

  [∂x R(N)/∂Nx]  =(– 1)x-1(x!/Nx) fx (N)        (3) 115 

This relation hasa general relevance because its derivation does not require any specific 116 

assumption relative to the particular shape of the distribution of species abundancesin 117 

the sampled assemblage of species. Accordingly,equations (2), (3) actually constrain the 118 

theoretical expressions of any kind of Species Accumulation Curves. 119 

One particular consequence of this relationship is that the successive derivatives of the 120 

Species Accumulation Curve have alternating signs, since the numbers fx (N)of species 121 

recorded x-times are necessarily positive or nil. More precisely, the derivatives of even 122 

and odd orders are respectively negative and positive. 123 

 124 

3. THE MATHEMATICS UNDERLYING THE REGULATION PROCESS  APPLYING 125 

TO THE NUMBERS fx OF SPECIES RECORDED x-TIMES 126 

From equation (3) it comes: 127 
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fx (N)= (– 1)x-1(Nx/x!) [∂x R(N)/∂Nx](4) 128 

The derivation of equation (4) according to sample size N then gives: 129 

[∂fx (N)/∂N] = (– 1)x-1/x! {x.Nx-1.[∂x R(N)/∂Nx] + Nx.[∂x+1R(N)/∂Nx+1]} 130 

Accounting for the expression (3),applied to[∂x R(N)/∂Nx] and [∂x+1R(N)/∂Nx+1], it comes:          131 

[∂fx (N)/∂N]= (1/N).[ x.fx (N) – (x+1).fx+1 (N) ]      (5) 132 

which may be written as well as: 133 

x.fx (N)–N.[∂fx (N)/∂N]   = (x+1).fx+1 (N)  (6) 134 

Note that an alternative, independent demonstration of equation (6) is provided at 135 

Appendix A.2, equation A2.1. 136 

Being a corollary of relationship (3) above, equation (6) thus benefits from the 137 

samegeneral relevance and, thus, is valid for all kinds ofSpecies Accumulation Curves. 138 

Equation (6) establishes amathematical linkage between the variations of fx+1 (N) with N 139 

and the variations of fx (N) with N. Thereby, all the fx (N) are ultimately linked together by 140 

this“iterative chaining”.  In other words, although each function fx (N) has its own 141 

dependence upon sampling size N, the series of fx (N)nevertheless admitsa kind of 142 

connection which, if one may say,“propagates” from each fx (N)to the next one, fx+1 (N). 143 
 144 

Mathematical “chaining” between the successive numbersfx (N) 145 

The consequence of this regulation may be more easily grasped graphically, by 146 

considering how the maximum of each fx (N) is linked to the value taken by fx+1 (N) at the 147 

same sample size N.When fx(N) reaches its maximum value, its first derivative, ∂fx (N)/∂N, 148 

falls to zero and,accordingly, from equation (6), it comes: 149 

fx+1 (N)  = [x/(x+1)].fx (N)                  (7) 150 

Thus, when fx(N) reaches its maximum, in the course of progressive sampling, the 151 

corresponding value taken by fx+1 (N) isthen exactly [x/(x+1)] times the (maximum) value 152 

taken by fx (N).By reiteration of this relationship, akind of “linkage pattern” is generated, 153 

that constrains the relative locations of the successive curves fx(N). Figure 2 exemplifies 154 

graphically this“chaining” linkage, propagating successively,step by step,fromf1 (N) to f2 (N), 155 

to f3 (N), to f4 (N), to f5 (N),etc... 156 

As a consequence, the respective maxima of f1 (N), of f2 (N), of f3 (N), of f4 (N), of f5 (N), …, 157 

succeed each other sequentially, as shown in Figure 2. The corresponding positions of 158 

these succeeding maxima are located along the Species Accumulation Curve at Figure 3, 159 

and it is worth noting (and even remarkable) that the regulating linkage between the 160 

successive fx (N) is such that no peculiarity is affecting the Species Accumulation Curve at 161 

any of these locations (in spite of the series of bumps constituted by the successive 162 

maxima of f1 (N), f2 (N), f3 (N), f4 (N), f5 (N),…). 163 
 164 
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 165 
Figure 2 – Extrapolations of the five first numbers fx (N)(f1 (N), f2 (N), f3 (N), f4 (N), f5 (N)) along increasing 166 

sampling size N, beyond the size of the actually achieved sampling(sampling size N is expressed in % 167 

of the size of the actually achieved sampling). Here, the maxima of f1 (N), f2 (N), f3 (N), f4 (N), f5 (N)happen to 168 

be located at sample size ≈ 200%, 360%, 510%, 680%, 810%,respectively.Same inventory as in Figure 169 

1; extrapolations according to Jackknife-5 estimator, selected as being the less biased for this 170 

particular inventory(see reference[9]).This figure highlights the “linkage pattern” between the 171 

successive curves fx (N), imposed by the constraining relationship (7) ( i.e.: fx+1 (N)  =  [x/(x+1)].fx (N)).That 172 

is when fx (N) reaches its maximum, the corresponding value taken by fx+1 (N) is then exactly [x/(x+1)] 173 

times the value of fx (N).  174 

 175 

Mathematical “chaining” between the successive numbersx.fx (N) 176 

Alternatively, equation (7) may be written equivalently as: 177 

x.fx (N)  =  (x+1).fx+1 (N)      (8) 178 

Equation (8), as equation (7), stands for ∂fx (N)/∂N = 0, and thus stands as well for ∂(x.fx 179 

(N))/∂N = 0. It follows that the curve (x+1).fx+1 (N)intersects the curve x.fx (N) exactly when 180 

the latter reaches its maximum value (i.e. when ∂(x.fx (N))/∂N = 0) : Figure 4. Keeping in 181 

mindthe significance of x.fx (N), which is the total number of recorded individuals 182 

belonging to any one of those species recorded x-times.  183 
 184 
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 185 
Figure 3–The locations,along the Species Accumulation Curve, of the successive maximum of f1 (N), f2 186 

(N), f3 (N), f4 (N), f5 (N), according to Figure 2.Same inventory as in Figure 1. 187 
 188 

 189 
Figure 4 - The computed variations, with increasing sampling size N, of the five first numbers x.fx (N) of 190 

recorded individuals belonging to any one of species recorded x-times (1.f1 (N), 2.f2 (N), 3.f3 (N), 4.f4 (N), 191 

5.f5 (N)). As prescribed by the constraining equation (8), for any value of x, the curve (x+1).fx+1 (N) 192 

intersects the curve x.fx (N) exactly when the latter reaches its maximum value. Samplingsize is 193 

expressed in % of the size of the actually achieved sampling.Same inventory as in Figure 1. 194 
 195 

The regularly repetitive shift from any one curve, x.fx (N), to the next one, (x+1).fx+1 (N), 196 

resulting from this regulating process (Figure 4) is particularly demonstrative.This, 197 

indeed, likely offers the best visual evidence of the sequential linkage existing between 198 

each of the numbers fx (N) successively. 199 

Note, incidentally, that while the cumulative addition of all the fx (N) leads to the number 200 

R(N) of recorded species (cf. equation (1)) ; on the other hand the addition of the x.fx (N) 201 

leads “symmetrically” to the number N of recorded individuals: 202 

Σx [ fx(N) ]  =   R(N)    andΣx [ x.fx(N) ]  =  N         (9) 203 
 204 
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Mathematical “chaining” between each fx (N) and the series of the first derivatives 205 

of the preceding fx (N) 206 

This is a third alternative way to express the inter-relationship within the series of the 207 

fx(N). Refering once more to equation (6), that is: 208 

x.fx (N)–N.[∂fx (N)/∂N]   =   (x+1).fx+1 (N) 209 

letnow consider the successive forms taken by this equation for increasing values of x.  210 

It comes: 211 

0.f0 (N)–N.[∂f0 (N)/∂N]   =   1.f1 (N) 212 

1.f1 (N)–N.[∂f1 (N)/∂N]   =   2.f2 (N) 213 

2.f2 (N)–N.[∂f2 (N)/∂N]   =   3.f3 (N) 214 

……………………………………….……………. 215 

(x – 1).fx-1 (N)–N.[∂fx-1 (N)/∂N]   =   x.fx (N) 216 

By summing these equations, the following relationship is immediately derived: 217 

fx (N)   =  – (N/x).Σi[∂fi (N)/∂N]      (10) 218 

with the summation  Σiextended from i = 0 to i = (x – 1) 219 

That is, namely, the number fx (N) of species recorded x-times in a sampling of size N is 220 

proportional [via the factor– (N/x)] to the sum of the first derivatives (with respect to N) 221 

of the series of the preceding fi (N). In more practical terms, this means that the number fx 222 

(N) of species recorded x-times, in a sample of size N, is proportional to the sum of the 223 

variations of the preceding fx (N) when sampling size increases of one observation (N � 224 

N+1). 225 

Another way to understand relation (10) results from re-writing it as follows: 226 

(x.fx (N))/N=–Σi[∂fi (N)/∂N]         (11) 227 

with the summation  Σiextended from i = 0 to i = (x – 1).   228 

This means that the proportion,among all sampled individuals, of those ones that belong 229 

to anyspecies recorded x-times [ = (x.fx (N))/N ] is equals to minus the sum of the 230 

variations of the preceding fx (N) when sampling size increases of one observation.  231 

Accordingly, relationships (10) or (11) both express, once again but in another way, the 232 

continuous linkage between eachfx (N) and the whole series of its predecessors, thereby 233 

highlighting still more clearly the strong “chaining” between the successive numbers fx 234 

(N), which together rule the kinetics of species accumulation during progressive 235 

sampling. 236 

Still another remarkable relationship may be derived from equation (10), which only 237 

involves, this time, the first derivatives of all the fx (N). 238 

Let X be the recorded number of individualsbelongingto the species most frequently met 239 

in the sampling under consideration. In other words, X is the largest value of x for which 240 

fx (N) ≠ 0 in this particular sampling. The sum of the numbers of sampled individuals that 241 

belong to anyone of those species recorded x-times [ = (x.fx (N))] for x up to its maximum 242 

value X is equal to N. Accordingly, the summation of equation (11) for x up to its 243 

maximum value X yields: 244 

Σx [(x.fx (N))/N] = N/N = 1 = Σx [– Σi(∂fi (N)/∂N)] 245 

with the summation  Σxextended from x = 1 to x = X and the summation  Σiextended from 246 

i = 0 to i = (x – 1).  This finally leads to: 247 

1  =  – Σi[(∂fi (N)/∂N).(X – i)]         (12) 248 

with the summation  Σiextended from i = 0 to i = (X – 1). 249 

 250 

 251 
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4. COMPLEMENTARY ILLUSTRATIVE EXAMPLES OF THE REGULATION 252 

PROCESS  GOVERNING THE NUMBERS OF SPECIES RECORDED 1-, 2-, 3-, 4-, 5-253 

, …TIMES 254 
 255 

The same trends demonstrated above on a theoretical basis, and illustrated by a first 256 

example at Figures 2 to 4, are illustrated again in the following complementary 257 

examples. I shall only consider,hereafter, the variations of x.fx (N) (i.e. the number of 258 

recorded individuals belonging to any one of species recorded x-times) as they provide 259 

the more graphically speaking feature, highlighting at bestthe specific“chaining” linkage, 260 

step by step, between the successive numbers f1 (N), f2 (N), f3 (N), f4 (N), f5 (N). 261 
 262 

4.1. Butterfly inventoryon the slopes of MountGariwang-san (S-Korea) 263 

Field data from reference [10]. Figure5 relates toan inventory carried out during year 264 

2015. The realised sampling size was N0 = 181individuals; the number of recorded 265 

species was R(N0) = 39 species and the values of the fx, were: f1= 17.0, f2= 8.0, f3= 266 

3.7,f4=2.0, f5 = 1.4 (values obtained after regression applied to the crude values of the fx, 267 

in order to reduce the consequences of stochastic dispersion, as prescribed in [9]. 268 

 269 

 270 
Figure 5 - The computed variations, with increasing sampling size N, of the five first numbers x.fx (N) of 271 

recorded individuals belonging to any one of species recorded x-times (1.f1 (N), 2.f2 (N), 3.f3 (N), 4.f4 (N), 272 

5.f5 (N)). Butterfly inventory on the slopes of Mount Gariwang-san (field data from reference [10]). As 273 

prescribed by the constraining equation (8), for all values of x, the curve (x+1).fx+1 (N) intersects the 274 

curve x.fx (N) exactly when the latter reaches its maximum value.Samplingsize is expressed in % of the 275 

size of the actually achieved sampling. 276 
 277 

3.2 Butterfly inventories at Bifeng Valley (Ghansu, China) 278 

Field data from reference[11]. Figure 6 relates to an inventory conducted at site 1, in the 279 

upper part of the valley of Bifeng (province of Ghansu), where species richness of 280 

butterfly fauna proves to be the highest in the valley, with R(N0) = 28 recorded species 281 

for N0 = 68 recorded individuals.The values of the fx, were: f1= 14.0, f2= 6.0, f3= 2.6,f4=1.5, 282 

f5 = 1.2 (values obtained after regression applied to the crude values of the fx, in order to 283 

reduce the consequences of stochastic dispersion, as prescribed in [9]. 284 

 285 
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 287 
Figure 6 - The computed variations, with increasing sampling size N, of the five first numbers x.fx (N) of 288 

recorded individuals belonging to any one of species recorded x-times (1.f1 (N), 2.f2 (N), 3.f3 (N), 4.f4 (N), 289 

5.f5 (N)). Butterfly inventory at Bifeng valley, site 1 (field data from reference [11]). As prescribed by 290 

the constraining equation (8), for all values of x, the curve (x+1).fx+1 (N) intersects the curve x.fx (N) 291 

exactly when the latter reaches its maximum value.Samplingsize is expressed in % of the size of the 292 

actually achieved sampling. 293 

 294 

5. THE GENERAL RELATIONSHIP GOVERNINGTHE DECREASING PROPORTION 295 

OF OBSERVATIONS PROVIDING NEWLY RECORDED SPECIES, WITH 296 

INCREASING SAMPLING SIZE 297 

So far, we have approached the Species Accumulation Curve,R(N), in a deliberately 298 

analytical manner: each new observation was considered as equally informative, 299 

whether or not it gives rise to the detection of a new species. Indeed, in any case, each 300 

individual observation actually plays the same kind of role: it determines a transition of 301 

the kind fx(N) �fx+1 (N +1). 302 

Now, letconsider,alternatively, a more usual and pragmatic approach, now 303 

payingattention to those observations only giving rise to the detection of a new species 304 

and neglecting, accordingly, all the other observations (in spite of their equal role in the 305 

analytical approach considered above). In this purely “accounting” approach, the focus is 306 

put on the proportion p(N) = R (N)/N of those observations exclusively, which have 307 

provided positive records of new species. In other words, instead ofpaying attention to 308 

R(N) = Σxfx(N), as previously, the focus is placed now upon: 309 

R(N) = N.p(N)         (13) 310 

This proportion p(N) is pragmatically interesting in that it quantifies the gradual 311 

weakening of sampling efficiency, i.e. the ever-slowing rate of detection of newly 312 

recorded species, as sampling is going on further. 313 

As for the Species Accumulation Curve, the proportion p(N)of those observations 314 

providing positive records of new speciesis highly polymorphic and this polymorphism, 315 

here also, is limited by a constraining relationship applying to the expression of p(N). 316 
 317 
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 318 
Figure 7 –  Typical shape of the proportion p(N) = R (N)/N of those observations providing positive 319 

records of new species. Same inventory as in Figure 1. 320 
 321 

I derive below this general relationship which constrains the proportionp(N).  322 

The derivation of R(N) yields, accounting for equation (13) and then equation (3): 323 

[∂R(N)/∂N]=p(N) + N.[∂p(N)/∂N] = (1/N).f1 (N)(14) 324 

Further derivations yield successively: 325 

 [∂2R(N)/∂N2]  =2.[∂p(N)/∂N] + N.[∂2p(N)/∂N2] =  –(2/N2).f2 (N)(15) 326 

[∂3R(N)/∂N3]  =    3.[∂2p(N)/∂N2] + N.[∂3p(N)/∂N3] =  (6/N3). f3 (N)    (16) 327 

and more generally: 328 

[∂xR(N)/∂Nx]  =   x.[∂x-1p(N)/∂Nx-1] + N.[∂xp(N)/∂Nx] = (– 1)x-1.(x!/Nx).fx (N)(17) 329 

Now, from equations (14) and (15), it follows: 330 

[∂2p(N)/∂N2] =  (2/N2).p(N) – (2/N3).(f1 (N) + f2 (N))                    (18) 331 

Similarly, from equations (16) and (18): 332 

[∂3p(N)/∂N3]  =  – (6/N3).p(N) + (6/N4).(f1 (N) + f2 (N) + f3 (N))     (19) 333 

and more generally: 334 

[∂xp(N)/∂Nx]  =  (– 1)x .(x!/Nx).p(N) + (– 1)x-1 . (x!/Nx+1).Σi=1to x [fi(N)]    (20)               335 

At last, from equations (1) and (11), it follows: 336 

[∂xp(N)/∂Nx]  =  (– 1)x.(x!/Nx+1).Σi> x [fi(N)](21) 337 

Note that there is part of a formal similarity between (i) the general relationship (21) 338 

constraining the proportion p(N) of those individual observations providing positive 339 

records ofnew species and (ii) the general relationship (3) constraining the Species 340 

Accumulation Curve R(N). Among the differences, however, the main one is that all the 341 

fi(N) with i> x are involved in the  relationship (21) constraining the proportion p(N) 342 

while it is only fi(N) for i = x which contributes in the  relationship (3) constraining the 343 

Species Accumulation Curve R(N). 344 

One particular consequence of relationship (21) is that the successive derivatives of the 345 

the proportion p(N) of observations providing positive records of new specieshave 346 

alternating signs, (as forthe Species Accumulation Curve)since the numbers fx (N)of 347 

species recorded x-times are necessarily positive or nil. More precisely, for the 348 

proportion p(N), the derivatives of even and odd orders are respectively positive and 349 

negative (that is the inverse of  what is valid for the Species Accumulation Curves). 350 
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 351 

6. DISCUSSION 352 

Fivemain features are emerging from the theoretical treatment (and the corresponding 353 

illustrative examples), regarding the variations,with sampling size N, of the numbers 354 

fx(N) of species respectively recorded x-times during sampling.It should bewell 355 

understood that these features, all derived on theoretical basis,are focal tendencies, 356 

towardswhich the empirical data,obtained fromreal samplings,actually converges (but 357 

may yet more or less slightly deviate, due to sampling stochasticity). 358 

Twotrendswere expected, being in obviousaccordance with intuition: 359 

1) all the numbers fx (N) of species recorded x-times are first increasing, then pass by a 360 

maximum and finally decrease to zero.Also, in addition, the curves describing the 361 

variations of each fx (N) (and the positions of their respective maxima) are regularly 362 

shifted towards higher values of sampling size N, when x takes increasing values (Figure 363 

2) ; 364 

2) thesame holds true, mutatis mutandis, for the numberx.fx (N) of those recorded 365 

individuals belonging to anyone of species recorded x-times, whatever the value of x.  366 

Now, three other trends, by no means intuitive,were newly derived above, related to the 367 

general mathematical relationship (6) which constrains the expressions and shapes of 368 

the fx (N): 369 

3) whenfx(N) reaches its maximum, in the course of progressive sampling, the 370 

corresponding value taken by fx+1 (N) isthen exactly [x/(x+1)] times the maximum value 371 

taken by fx (N) (see Figure 2) ; 372 

4) regarding now the number x.fx (N) of recorded individuals belonging to anyone of 373 

those species recorded x-times, it consistently happens that the curve describing the 374 

variations of (x+1).fx+1 (N)intersects the curve of x.fx (N) exactly when the latter reaches its 375 

maximum value (see Figures 4, 5, 6) ; 376 

        5) at last, the number fx (N) of species recorded x-times in a sampling of size N is 377 

proportional to the sum of the variations of the preceding fx (N), when sampling size 378 

increases by one observation. 379 

The three latter trends have major importance in that they determine the “chaining 380 

linkage” between the successive numbers fx (N) of species recorded x-times. And this is of 381 

importance becausethe successive numbers fx (N)actually regulate the process of 382 

cumulative species discovery during progressive sampling. 383 

As already stressed, the general mathematical relationship (6)  384 

x.fx (N)–N.[∂fx (N)/∂N]   =   (x+1).fx+1 (N) 385 

which constrains the expressions and the shapes of the fx (N), is a corollary of the general 386 

relationship (A2.1), derived in Appendix A.2,which, in turn, constrains the theoretical 387 

expressions of all Species Accumulation Curves R(N).Thus, to get a full understanding of 388 

the underlying process of species accumulation during sampling, it is advisable to refer 389 

to the detailed demonstration leading to equation (A2.1) in Appendix. 390 

 391 

7. CONCLUSION 392 

The increasing number of newly recorded species (i.e. the “species accumulation”) 393 

during progressive sampling gives rise to a rather simple shaped “Species Accumulation 394 

Curve”.Paradoxically, this apparent simplicitydoes not incite to imagine the underlying 395 

complexity of the detailed process of species discovery and progressive accumulation, as 396 

detailed above. In fact, each new individual observation may alternatively result in one 397 

or the other of a series of different consequences. More precisely, each observation of a 398 
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new individual (i.e. N �N + 1) will contribute to increase by one unity either f1 (N), orf2 399 

(N), orf3 (N), …,fx (N), … 400 

Now, althougheach of the numbers fx (N) of species recorded x-times varieswith N at its 401 

own pace and out of phase with the others (Figure 2), the process of species 402 

accumulation proves to be regulated, however, due to the above mentioned “chaining 403 

linkage” between the successive fx (N) (Figures 4, 5, 6). And this, indeed, is at the very 404 

heart of the detailed process of species discovery and accumulation during progressive 405 

sampling. A process of major practical importance since it is involved in all biodiversity 406 

surveys and, more specifically, it is involved in the accurate extrapolation of the Species 407 

Accumulation Curve. Accurate extrapolation which, in turn, determines the precise 408 

estimate of the total species richness of a partially sampled assemblage of species and 409 

the reliablepredictionof the additional sampling effort required to obtain a given 410 

increase in sample completeness. 411 
 412 

The constraining mathematical relationships highlighted above 413 

aresummarized as follows : 414 

* relationship applying to the Species Accumulation Curve, R(N),itself:  415 

equations (2) & (3): 416 

[∂x R(N)/∂Nx] = (-1)x-1fx (N)/CN, x≈  (– 1)x-1(x!/Nx) fx (N) 417 
 418 

* relationship applying to the proportion of efficient observations, p(N) = R 419 

(N)/N:equation (21): 420 

[∂xp(N)/∂Nx]  =  (– 1)x.(x!/Nx+1).Σi> x [fi(N)] 421 
 422 

* relationshipapplying to the numbers f1(N), f2(N), f3(N),…, fx(N),… 423 

of those species respectively recorded 1, 2, 3, .., x-times during sampling: 424 

equation (6): 425 

x.fx (N)–N.[∂fx (N)/∂N]   =   (x+1).fx+1 (N) 426 
 427 

* and its three corollaries: 428 

equations (7), (10) and (12): 429 

fx+1 (N)  = [x/(x+1)].fx (N)valid  when   ∂fx (N)/∂N = 0      430 
 431 

fx (N)   =  – (N/x).Σi[∂fi (N)/∂N] 432 

with the sumΣiextended from i = 0 to i = (x – 1) 433 

and, at last: 434 

  – Σi[(∂fi (N)/∂N).(X – i)]  =  1   435 

withX as the larger value of x for whichfX (N) ≠ 0  436 

andthe sum Σiextended from i = 0 to i = (X – 1) 437 

 438 

 439 

APPENDICES 440 

A.1 - Derivation of the constraining relationship between ∂xR(N)/∂Nxand fx(N) 441 

The shape of the theoretical Species Accumulation Curve is directly dependent upon the 442 

particular Species Abundance Distribution (the “S.A.D.”) within the sampled assemblage 443 

of species. That means that beyond the common general traits shared by all Species 444 

Accumulation Curves, each particular species assemblage give rise to a specific Species 445 

Accumulation Curve with its own, unique shape, considered in detail. Now, it turns out 446 

that, in spite of this diversity of particular shapes, all the Species Accumulation Curves 447 
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are, nevertheless, constrained by a same mathematical relationship that rules their 448 

successive derivatives (and, thereby, rules the details of the curve shape since the 449 

successive derivatives altogether define the local shape of the curve in any details). 450 

Moreover, it turns out that this general mathematical constraint relates bi-univocally 451 

each derivative at order x  [∂xR(N)/∂Nx ] to the number, fx(N), of species recorded x-times 452 

in the considered sample of size N. And, as the series of the fx(N) are obviously directly 453 

dependent upon the particular Distribution of Species Abundance within the sampled 454 

assemblage of species, it follows that this mathematical relationship between ∂xR(N)/∂Nx 455 

and fx(N), ultimately reflects the indirect but strict dependence of the shape of the Species 456 

Accumulation Curve upon the particular Distribution of the Species Abundances (the so 457 

called S.A.D.) within the assemblage of species under consideration. In this respect, this 458 

constraining relationship is central to the process of species accumulation during 459 

progressive sampling, and is therefore at the heart of any reasoned approach to the 460 

extrapolation of any kind of Species Accumulation Curves. 461 

This fundamental relationship may be derived as follows. 462 

Let consider an assemblage of species containing an unknown total number 'S' of 463 

species. Let R be the number of recorded species in a partial sampling of this assemblage 464 

comprising N individuals. Let pi be the probability of occurrence of species 'i' in the 465 

sample This probability is assimilated to the relative abundance of species ‘i' within this 466 

assemblage or to the relative incidence of species ‘i' (its proportion of occurrences) 467 

within a set of sampled sites. The number Δ of missed species (unrecorded in the 468 

sample) is Δ = S – R. 469 

The estimated number Δ of those species that escape recording during sampling of the 470 

assemblage is a decreasing function Δ(N) of the sample of size N, which depends on the 471 

particular distribution of species abundances pi: 472 

Δ(N)  = Σi(1-pi)N(A1.1) 473 

withΣi as the operation summation extended to the totality of the 'S' species 'i' in the 474 

assemblage (either recorded or not) 475 

The expected number fx of species recorded x times in the sample, is then, according to 476 

the binomial distribution: 477 

fx  =  [N!/X!/(N-x)!] Σi[(1-pi)N-xpix]   = CN, x  Σi(1-pi)N-xpix       (A1.2)  478 

with CN, x  = N!/X!/(N-x)! 479 

We shall now derive the relationship between the successive derivatives of R(N), the 480 

theoretical Species Accumulation Curve and the expected values for the series of ‘fx’.  481 

According to equation (A1.2): 482 

 483 

►    f1 = N Σi[(1-pi)N-1 pi] = N Σi[(1-pi)N-1 (1- (1-pi))]= N Σi[(1-pi)N-1] - N Σi[(1-pi)N-1(1-pi))]  484 

= N Σi[(1-pi)N-1] - N Σi[(1-pi)N].      485 

Then, according to equation (A1) it comes: f1 = N (Δ(N-1) - Δ(N))  = - N (Δ(N) - Δ(N-1))   486 

= - N (∂ Δ(N)/∂N) = - N Δ'(N) 487 

whereΔ'(N) is the first derivative of  Δ(N) with respect to N.    Thus:    488 

f1  =  - N Δ'(N)     ( = - CN,1 Δ'(N)  )         (A1.3) 489 

Similarly: 490 

►   f2 = CN, 2Σi[(1-pi)N-2 pi²]    according to equation (A1.2) 491 

= CN, 2Σi[(1-pi)N-2 (1- (1-pi²))]   = CN, 2  [Σi[(1-pi)N-2] - Σi[(1-pi)N-2(1- pi²)]] 492 
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= CN, 2 [Σi[(1-pi)N-2] - Σi[(1-pi)N-2(1- pi)(1+ pi)]]  = CN, 2 [ Σi[(1-pi)N-2] - Σi[(1-pi)N-1(1+ pi)]] 493 

= CN, 2 [(Δ(N-2) - Δ(N-1)) - f1/N ]according to equations (A2.1) and  (A1.2) 494 

= CN, 2 [- Δ'(N-1) - f1/N]  = CN, 2  [ - Δ'(N-1) + Δ'(N)]   since  f1 = - N Δ'(N)     (cf. equation (A1.3)). 495 

= CN, 2 [(∂ Δ'(N)/∂N)] = [N(N-1)/2] (∂² Δ(N)/∂N²) = [N(N-1)/2] Δ''(N) 496 

whereΔ''(N) is the second derivative of  Δ(N) with respect to N.    Thus: 497 

f2  =  [N(N-1)/2]  Δ''(N)     =  CN, 2 Δ''(N)            (A1.4) 498 

►  f3 = CN, 3Σi[(1-pi)N-3 pi3]   which, by the same process, yields: 499 

= CN, 3 [Σi(1-pi)N-3 - Σi(1-pi)N-2 - Σi[(1-pi)N-2 pi] - Σi[(1-pi)N-2 pi2 )]]   500 

= CN, 3 [(Δ(N-3) - Δ(N-2)) - f1*/(N-1) - 2 f2/(N(N-1))] according to equations (A2.1) and  501 

(A1.2) 502 

where f1* is the number of singletons that would be recorded in a sample of size (N - 1) 503 

instead of N.   504 

According to equations (A1.3) & (A1.4):   505 

f1*  =  - (N-1) Δ'(N-1)  =  - CN-1, 1 Δ'(N-1)    and    f2  =  [N(N-1)/2] Δ''(N)   = CN-1, 2 Δ''(N)     (A1.5) 506 

whereΔ'(N-1)  is the first derivate of  Δ(N) with respect to N, at point (N-1).   Then,   507 

f3  = CN, 3 [(Δ(N-3) - Δ(N-2)) + Δ'(N-1) - Δ''(N) ]   =  CN, 3 [ -Δ'(N-2) + Δ'(N-1) - Δ''(N) ]   508 

=  CN, 3 [ Δ''(N-1) - Δ''(N) ]  = CN,3 [ - ∂ Δ''(N)/∂N ] =  CN, 3 [ - ∂3Δ(N)/∂N3] = CN, 3Δ'''(N) 509 

whereΔ'''(N) is the third derivative of  Δ(N) with respect to N.  Thus : 510 

f3=  - CN, 3Δ'''(N)              (A1.6) 511 

Now, generalising for the number fx of species recorded x times in the sample: 512 

►fx = CN, xΣi[(1-pi)N-xpix]    according to equation (A1.2), 513 

= CN, xΣi[(1-pi)N-x (1 - (1 - pix)) ]  = CN, x [Σi(1-pi)N-x - Σi[(1-pi)N-x (1 - pix)]]   514 

= CN, x [Σi(1-pi)N-x - Σi[(1-pi)N-x (1 - pi)( Σj pij)]]    515 

withΣj  as the summation from j = 0 to  j = x-1. It comes: 516 

fx  = CN, x [Σi(1-pi)N-x - Σi[(1-pi)N-x+1 ( Σj pij)]]   517 

= CN, x [Σi(1-pi)N-x - Σi(1-pi) N-x+1 - Σk [(Σi(1-pi) N-x+1pik)]] 518 

withΣk  as the summation from k = 1 to k = x-1 ; that is: 519 

fx  = CN, x [(Δ(N-x) - Δ(N-x+1)) - Σk (fk*/C(N-x+1+k), k )]  according to equations (A1.1) and  520 

(A1.2)) 521 

where C(N-x+1+k), k = (N-x+1+k)!/k!/(N-x+1)! andfk* is the expected number of species  522 

recorded k times during a sampling of size (N-x+1+k)  (instead of size N).   523 

The same demonstration, which yields previously the expression of f1* above (equation 524 

(A1.5)), applies for the fk* (with k up to x-1) and gives:    525 

fk* = (-1)k (C(N-x+1+k), k ) Δ(k)(N-x+1+k)         (A1.7) 526 

whereΔ (k)(N-x+1+k)  is the kth derivate of  Δ(N) with respect to N, at point (N-x+1+k).   Then,   527 

fx  = CN, x [(Δ(N-x) - Δ(N-x+1)) - Σk ((-1)kΔ(k)(N-x+1+k) )]            , 528 
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which finally yields :  529 

fx  = CN, x [(-1)x (∂Δ(x-1)(N)/∂N) ] = CN, x [(-1)x (∂xΔ(N)/∂Nx)].   That is:  530 

fx = (-1)x CN, xΔ(x)(N)  = (-1)x CN, x [∂xΔ (N)/∂Nx]      (A1.8)  531 

where  [∂xΔ (N)/∂Nx] is the xth derivative of  Δ(N) with respect to N, at point N.    532 

Conversely: 533 

[∂x Δ(N)/∂Nx] = (-1)xfx/CN, x                   (A1.9)  534 

Note that, in practice,leaving aside the beginning of sampling,N rapidly increases much 535 

greater than x, so that the preceding equation simplifies as: 536 

[∂x Δ(N)/∂Nx] = (– 1)x(x!/Nx) fx(N)                   (A1.10) 537 

In particular: 538 

[∂Δ(N)/∂N] = f1(N)/N               (A1.11) 539 

[∂2 Δ(N)/∂N2] = 2 f2(N)/N2      (A1.12)                540 

This relation (A1.9) has general relevance since it does not involve any specific 541 

assumption relative to either (i) the particular shape of the distribution of species 542 

abundances in the sampled assemblage of species or (ii) the particular shape of the 543 

species accumulation rate. Accordingly, this relation constrains any theoretical form of 544 

species accumulation curves. As already mentioned, the shape of the species 545 

accumulation curve is entirely defined (at any value of sample size N) by the series of 546 

the successive derivatives [∂xR(N)/∂Nx] of the predicted number R(N) of recorded 547 

species for a sample of size N: 548 

[∂xR(N)/∂Nx] = (-1)(x-1)fx/CN, x                   (A1.13)  549 

with [∂xR(N)/∂Nx] as the xth derivative of  R(N) with respect to N, at point N and CN, x = 550 

N!/(N-x)!/x! (since the number of recorded species R(N) is equal to the total species 551 

richness S minus the expected number of missed species Δ(N)).  552 

As above, equation (A1.13) simplifies in practice as: 553 

∂xR(N)/∂Nx  =  (– 1)(x-1) (x!/Nx) fx(N)                   (A1.14) 554 

Equation (A1.13) makes quantitatively explicit the dependence of the shape of the 555 

species accumulation curve (expressed by the series of the successive derivatives 556 

[∂xR(N)/∂Nx] of R(N)) upon the shape of the distribution of species abundances in the 557 

sampled assemblage of species. 558 

 559 

A2 - An alternative derivation of the relationship between ∂xR(N)/∂Nx and fx(N) 560 

Consider a sample of size N (N individuals collected) extracted from an assemblage of S 561 

species and let Gi be the group comprising those species collected i-times and fi(N) their 562 

number in Gi. The number of collected individuals in group Gi is thus i.fi(N), that is a 563 

proportion i.fi(N)/N of all individuals collected in the sample. Now, each newly collected 564 

individual will either belong to a new species (probability 1.f1/N = f1/N) or to an already 565 

collected species (probability 1– f1/N), according to reference [12]. In the latter case, the 566 

proportion i.fi(N)/N of individuals within the group Gi accounts for the probability that 567 

the newly collected individual will contribute to increase by one the number of species 568 

that belong to the group Gi (that is will generate a transition [i-1 → i] under which the 569 

species to which it belongs leaves the group Gi-1 to join the group Gi). Likewise, the 570 

probability that the newly collected individual will contribute to reduce by one the 571 

number of species that belong to the group Gi (that is will generate a transition [i → i+1] 572 

under which the species leaves the group Gi to join the group Gi+1) is (i+1).fi+1(N)/N. 573 

Accordingly, for i> 1: 574 

 ∂fi(N)/∂N  =  [i.fi(N)/N – (i+1).fi+1(N)/N](1 – f1/N)    (A2.0) 575 
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Leaving aside the very beginning of sampling, and thus considering values of sample size 576 

N substantially higher than f1, it comes: 577 

∂fi(N)/∂N  =i.fi(N)/N – (i+1).fi+1(N)/N                 (A2.1) 578 

Let consider now the Species Accumulation Curve R(N), that is the number R(N) of 579 

species that have been recorded in a sample of size N. The probability that a newly 580 

collected individual belongs to a still unrecorded species corresponds to the probability 581 

of the transition [0 → 1], equal to i.fi(N)/N with i = 1, that is: f1(N)/N (as already 582 

mentioned).  583 

Accordingly, the first derivative of the Species Accumulation Curve R(N) at point N is   584 

∂R(N)/∂N = f1(N)/N                             (A2.2) 585 

In turn, as f1(N) = N.∂R(N)/∂N (from equation (A2.2)) it comes:                              586 

∂f1(N)/∂N = ∂[N(∂R(N)/∂N)]/∂N = N(∂2R(N)/∂N2) + ∂R(N)/∂N 587 

On the other hand, according to equation (A2.1):  588 

∂f1(N)/∂N = 1.f1(N)/N – 2.f2(N)/N  =  f1(N)/N – 2f2(N)/N, and therefore: 589 

N(∂2R(N)/∂N2) + ∂R(N)/∂N =  f1(N)/N – 2f2(N)/N 590 

And as ∂R(N)/∂N = f1(N)/N according to equation (A2.2): 591 

∂2R(N)/∂N2  =  – 2f2(N)/N2                       (A2.3) 592 

Likewise, as f2(N) = –N2/2.(∂2R(N)/∂N2), it comes: 593 

∂f2(N)/∂N  =  ∂[–N2/2.(∂2R(N)/∂N2)]/∂N  =  – N(∂2R(N)/∂N2) – N2/2.(∂3R(N)/∂N3) 594 

As ∂f2(N)/∂N = 2f2(N)/N – 3f3(N)/N,  according to equation (A2.1), it comes: 595 

– N(∂2R(N) /∂N2) – N2/2.(∂3R(N)/∂N3) = 2f2(N)/N – 3f3(N)/N 596 

and as ∂2R(N)/∂N2 = – 2f2(N)/N2, according to equation (A2.3), it comes: 597 

∂3R(N)/∂N3  =  + 6f3(N)/N3                       (A2.4) 598 

More generally: 599 

∂xR(N)/∂Nx  =  (– 1)(x-1) (x!/Nx) fx(N)                   (A2.5) 600 

 601 
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