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ABSTRACT 9 

The process of species accumulation during progressive sampling, although looking 10 

quite simple, results in fact from a more convoluted underlying process, involving the 11 

non-monotonic variations with sampling-size N of the numbers f1(N), f2(N), f3(N), …, fx(N) of 12 

those species currently recorded 1-, 2-, 3-, …, x-times. Moreover, although they are 13 

partially connected with each other, the fx(N) vary at different paces with increasing 14 

sampling-size N, in a relative independence from each other in this respect. 15 

Disentangling the respective variations of each of the fx(N) was a first object of the 16 

present study. In particular a general expression of the variations of the fx(N) with N is 17 

derived, using Taylor expansion procedure. Beyond the speculative aspects of the 18 

question (i.e. a more thorough understanding of the underlying mechanism of species 19 

accumulation along progressive sampling), more practical aspects are also subsequently 20 

addressed. Focusing upon the variations of the lower-orders fx(N), (i.e. f1(N), f2(N), f3(N), 21 

f4(N)) unveils especially relevant information regarding the progress of ongoing surveys 22 

towards sampling exhaustivity. This is because any further improvement of sampling 23 

completeness progressively involves the new records of less and less abundant species 24 

within the sampled assemblage. The Taylor expansion of the numbers f1(N), f2(N), f3(N), 25 

f4(N), … around the currently reached sampling-size N of an ongoing survey may thus 26 

serve as an additional tool to relevantly evaluate the degree of sampling efficiency. 27 

 28 
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 30 

1. INTRODUCTION 31 

The progressive sampling of an assemblage of objects (and, in particular, an assemblage 32 

of species) is accounted for numerically by the so-called accumulation (or discovery) 33 

curve. The “species accumulation curve” typically shows a very simple shape, 34 

monotonically increasing, at a regularly decreasing pace, all along progressive sampling. 35 

The process of species accumulation, however, is less simple than would be suggested 36 

by this simple shape. In fact, it is upon the numbers of singletons, doubletons,… x-tons, 37 

of those species respectively recorded once, twice,… x-times, that the sampling 38 

operation plays a direct role. Progressive sampling thus results, at first, in the definite – 39 

and, as will be seen below, partly coordinate – variations of the numbers of singletons, 40 

doubletons,… x-tons.  One may say, metaphorically, that sampling in act plays directly on 41 

the “keyboard” of the x-tons. In turn, the resulting regular growth of the species 42 

accumulation curve with progressive sampling is only the consequence of these 43 

combined variations of the numbers of singletons, doubletons,… x-tons.  44 
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Thinking this way might appear as a pure verbal or conceptual exercise, unnecessarily 45 

focusing upon the underlying details at the origin of the simple shape peculiar to any 46 

species accumulation curve. This, however, is not the case.  47 

Dealing with the values and variations of the numbers f1, f2, f3,…, fx, of singletons, 48 

doubletons, tripletons, …, x-tons, indeed has major practical importance, especially, as 49 

concerns the degree of advancement (completeness) of the sampling procedure. As a 50 

well-known example, most nonparametric estimators of the expected number of still 51 

unrecorded species (in particular “Chao” and the “Jackknife” series at different orders) 52 

are entirely based upon the values of the numbers fx of species currently recorded x-53 

times (considering the smallest values of x). In addition, beyond the values taken by the 54 

fx at given sampling-size, the variations of the fx with sampling-size may be highly 55 

informative about the degree of advancement of the sampling process. And this is of 56 

more particular interest when considering the fx of lowest order x, which concern the 57 

least abundant species making the bulk of those species remaining to be recorded. 58 

More specifically, the progress of sampling may be considered either: 59 

     - classically and globally, by the estimated ratio of sampling completeness (ratio R0/St 60 

between the number R0 of currently recorded species and the estimated total species 61 

richness St of the sampled assemblage of species); 62 

      - less classically and more analytically, by  examining the trend of variation, with 63 

sampling-size N,  of each of the fx (N) (focusing of course on the smallest values of x) at 64 

the current point of advancement of the considered sampling. 65 

Admittedly, both approaches are complementary rather than mutually exclusive and, in 66 

current practice, the first, classical approach is likely expected to remain paramount. 67 

Yet, departing momentarily from the entire range of species to focus more specifically 68 

on the least abundant ones – which become progressively decisive for the further 69 

improvement of completeness of an ongoing sampling – is also of substantial interest. 70 

Hereafter, I will concentrate on the determination of the trends of variations of each of 71 

the fx (N) (in practice f1, f2, f3, f4) with increasing sampling-size N. Meanwhile, essential 72 

general mathematical rules that (i) govern the variations of the fx (N) with N and (ii) 73 

establish a narrow linkage between the successive fx(N), will be highlighted. 74 

 75 

2. PRELIMINARY: THE SUCCESSIVE DERIVATIVES OF THE NUMBER OF X-TONS 76 

WITH RESPECT TO SAMPLING-SIZE N 77 

The successive derivatives, ∂xR(N)/∂Nx, of the Species Accumulation Curve R(N) satisfy 78 

the following general equation: 79 

 [∂x R(N)/∂Nx]  =  (-1)x-1 fx (N) /CN, x      (1)  80 

with R(N) as the number of currently recorded species, fx (N) as the number of x-tons and 81 

CN, x  = N!/X!/(N-x)! as the number of combinations of x items among N.  A detailed proof 82 

of this general theorem is provided in Appendix. 83 

Leaving aside the very beginning of sampling (of no practical relevance here), the 84 

sampling-size N rapidly exceeds widely the numbers x of practical concern, so that, in 85 

practice, the preceding equation simplifies as: 86 

[∂x R(N)/∂Nx]  =  (– 1)x-1 (x!/Nx).fx (N)        (2) 87 

This relation has a general relevance because its derivation does not require any specific 88 

assumption relative to the particular shape of the distribution of species abundances in 89 
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the sampled assemblage of species. Accordingly, equations (1) and (2) actually 90 

constrain the theoretical expressions of any kind of Species Accumulation Curves. 91 

From equation (2) it comes: 92 

fx (N)  = (– 1)x-1 (Nx/x!) [∂x R(N)/∂Nx ]         (3) 93 

The derivation of equation (3) according to sample size N then gives: 94 

∂fx (N)/∂N = (– 1)x-1/x! {x. Nx-1.[∂x R(N)/∂Nx] + Nx.[∂x+1 R(N)/∂Nx+1]}          95 

By applying equation (2) to the expressions of [∂x R(N)/∂Nx] and [∂x+1 R(N)/∂Nx+1], it 96 

comes:          97 

∂fx (N)/∂N  =  [ x.fx (N) – (x+1).fx+1 (N) ]/N     (4) 98 

Equation (4) thus provides the expression of the first derivative of  the number fx (N) at 99 

any given sample-size N, in terms of the recorded values taken by fx (N) and fx+1 (N) at 100 

sampling-size N.    101 

In turn, the second derivative of fx (N) is obtained by further operating a new derivation 102 

of equation (4): 103 

∂2fx (N)/∂N2  = – [ x.fx (N) – (x+1).fx+1 (N) ]/N2 + [x.∂fx (N)/∂N – (x+1).∂fx+1 (N)/∂N]/N 104 

Replacing the derivatives ∂fx (N)/∂N and ∂fx+1 (N)/∂N by their values according to 105 

equation (4) yields: 106 

∂2fx (N)/∂N2 =  107 

[– x.fx (N) + (x+1).fx+1 (N) + x2.fx (N) – (x+1).(2x+1).fx+1 (N) – (x+1).(x+2).fx+2 (N)]/N2 108 

and, finally: 109 

∂2fx (N)/∂N2  = [(x2 – x).fx (N) – (2x2 + 2x).fx+1 (N)  + (x2 + 3x + 2).fx+2 (N)]/N2      (5) 110 

Equation (5) thus provides the expression of the second derivative of  the number fx (N) 111 

at any given sample-size N, in terms of the recorded values taken by fx (N), fx+1 (N) and fx+2 112 

(N) at sampling-size N.    113 

In turn, iteratively operating new derivations of equation (5) would provide 114 

successively the derivatives of fx (N) at any higher order. As a general rule, the expression 115 

of the ith derivative of fx (N) , [∂ifx (N)/∂Ni], involves the recorded values of the (i+1) 116 

numbers fx (N), fx+1 (N), fx+2 (N), fx+3 (N),… fx+i (N), that is: 117 

∂ifx (N)/∂Ni = (1/Ni).gi(fx (N), fx+1 (N), fx+2 (N), fx+3 (N),… fx+i (N))          (6) 118 

where gi(fx (N), fx+1 (N), fx+2 (N), fx+3 (N),… fx+i (N)) is a linear function, with integer coefficients, 119 

of fx (N), fx+1 (N), fx+2 (N), fx+3 (N),… fx+i (N). 120 

As they result from relationship (2) above, equations (4), (5) and (6) – defining ∂fx 121 

(N)/∂N, ∂2fx (N)/∂N2 and, more generally, ∂ifx (N)/∂Ni – thereby all benefit from the same 122 

general relevance and, thus, are valid for all kinds of Species Accumulation Curves. 123 

As shown below, the possibility of defining the successive derivatives of fx (N) in terms of 124 

the (easily recorded) values of the fi (N) at sampling-size N has important practical 125 

consequences. This makes possible: 126 

      (i) to characterize quantitatively the main successive stages of variation of the fx (N) 127 

along increasing sampling-size N ; 128 

      (ii) to unveil a narrow mathematical linkage that actually exists between all the 129 

successive fx (N) : indeed, being entirely defined by its successive derivatives ∂ifx (N)/∂Ni, 130 

the shape of any fx (N), is, thereby, entirely linked to the corresponding values taken by 131 

all the following fi (N) (i.e. for i > x). 132 

 133 

3. THE THREE MAIN STAGES OF VARIATION OF THE NUMBER OF SPECIES 134 

RECORDED x-TIMES (x-TONS) ALONG PROGRESSIVE SAMPLING 135 
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As might be anticipated, the number fx (N) of species recorded x-times is expected:  136 

      (i)  to continuously grow, at first, with increasing sample-size N, then  137 

      (ii)  to pass by a maximum (at a sampling-size N’ such that ∂fx (N)/∂N = 0) and finally  138 

      (iii)  to decrease and ultimately reach asymptotically the zero level.  139 

Moreover, being finally asymptotic, the decreasing part of the curve is thus expected to 140 

pass by a point of inflection (at a sampling-size N” such that ∂2fx (N)/∂N2 = 0). The 141 

variation of any fx (N) with N, during progressive sampling, may thus be sequenced 142 

according to three successive stages (I, II, III), separated by two threshold values N’ and 143 

N” of sampling-size N. This successive steps are schematised at Figure 1. 144 

 145 

     146 
 147 
Figure 1 - Typical sketch of variation of the number fx(N) of x-tons (species recorded x-times) with 148 

increasing sampling-size N. The first derivative, ∂fx(N) /∂N, falls to zero at point ‘m’ (at N=N’) and the 149 

second derivative, ∂²fx(N) /∂N², falls to zero at point ‘i’ (at N=N”). Three successive stages of 150 

variation of fx(N) are thus delimited: at first, a rapid increase (stage I), then a decrease at an 151 

accelerating rate (stage II) and, at last, a decrease at a decelerating rate (“asymptotic decrease”: 152 

stage III). Points ‘m’ and ‘i’ correspond respectively to the maximum and the inflection of the curve 153 

fx(N). 154 

 155 

3.1 The sampling-size threshold at which the number of x-tons passes by a 156 

maximum and begins to decrease 157 

When fx (N) reaches its maximum, the first derivative ∂fx (N)/∂N falls to zero and then, 158 

according to equation (4), it comes: 159 

 [ x.fx (N) – (x+1).fx+1 (N) ]/N  = 0 160 

that is: 161 

fx+1 (N)  =  [x/(x+1)].fx (N)     when ∂fx (N)/∂N = 0        (7) 162 

Thus, the number of x-tons, fx(N), reaches its maximum at a sampling-size N’ such that 163 

the number of (x+1)-tons (fx+1 (N’)) at N’ is exactly [x/(x+1)] times the number of x-tons 164 

(fx (N’)) at N’. Accordingly, f2 (N)  =  ½ f1 (N) when f1 (N) is at its maximum; f3 (N)  =  2/3 f2 (N) 165 

when f2 (N) is at its maximum; f4 (N)  =  3/4 f3 (N) when f3 (N) is at its maximum and so on.  166 
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Equation (7) highlights a first – partial – link between two successive fx (N) (fx (N) and.fx+1 167 

(N)). This iterative linkage eventually connects, step by step, the whole series of the fx (N). 168 

Figure 2 provides a graphical representation of this iterative connection for the five first 169 

x-tons: f1 (N), f2(N), f3 (N), f4 (N), f5 (N). 170 

In practice, the variation of the fx (N) with sampling-size N have rarely been published, 171 

which would allow to compare theory and records. To my knowledge, such records 172 

have only been carried on and published fourth [1 to 4] and for singletons and 173 

doubletons only. According to these four references, the recorded co-variations of f1 (N) 174 

and f2 (N) are, as expected, in fair agreement with the theoretical prediction from 175 

equation (7), namely f2 (N)  =  ½ f1 (N) when f1 (N) reaches its maximum.  176 

 177 

     178 
 179 
Figure 2 – Graphical representation of the connection between the maximum value of fx (N) and the 180 

corresponding value taken by fx+1 (N) at the same sampling-size. Adapted from [5]. This figure 181 

highlights the “linkage pattern” between the successive curves fx (N) imposed by the constraining 182 

relationship (7) according to which fx+1 (N) reaches exactly [x/(x+1)] times the value of fx (N) when the 183 

latter reaches its maximum  184 

 185 

3.2 The sampling-size threshold at which the number of x-tons begins its 186 

decelerating decrease (“asymptotic decrease”) 187 

After having reach its maximum value at sampling-size N’, fx (N) then enters a decreasing 188 

phase. At first, this decrease is at an accelerated pace (stage II) and then at a decreasing 189 

rate (stage III), in accordance with the final asymptotic vanish. The transition between 190 

stages II and III is characterised by an inflection point, where ∂2fx (N)/∂N2 falls to zero. 191 

According to equation (5), it comes: 192 

 [(x2 – x).fx (N) – (2x2 + 2x).fx+1 (N) + (x2 + 3x + 2).fx+2 (N)] = 0         (8) 193 

Thus, the number of x-tons, fx (N), begins its second, decelerated, asymptotic decrease 194 

when the sampling-size reaches a value N” such that the numbers fx (N), fx+1 (N) and fx+2 (N) 195 

satisfy equation (8). 196 
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 197 

3.3 The particular case of the numbers of singletons and doubletons 198 

According to equation (8), the number of singletons, f1 (N), begins its asymptotic 199 

decrease when the sampling-size N reaches a value such that – 4.f2 (N) + 6.f3 (N) = 0. Now, 200 

from equation (7), this value of N also corresponds exactly to the step when f2 (N) 201 

reaches its maximum. Therefore, the number of singletons always enters its last, 202 

decelerated decreasing phase (step ‘i') precisely when the number of doubletons reaches 203 

its maximum value (step ‘m’). 204 

 205 

4. A NARROW MATHEMATICAL CONNECTION UNITES THE SUCCESSIVE 206 

NUMBERS OF SPECIES RECORDED x-TIMES (x-TONS) 207 
 208 

4.1 Main mathematical linkage 209 

As already stated at section 2, the variations of the number fx (N) during progressive 210 

sampling are narrowly linked to the variations of all the fj (N) of higher order, i.e. for j > x.  211 

This may be explicitly highlighted by considering the expression of the Taylor expansion 212 

of fx (N).  According to the general formulation of Taylor expansion, the variations of fx (N) 213 

in a range [N–δ , N+δ] of the sampling-size N, may be written as: 214 

fx (N + δ)  =  fx (N) + Σi=1 to ∞ (∂ifx (N)/∂Ni).(δi/i!). 215 

In turn, the general relationship (6) allows to express the ith derivative, ∂ifx (N)/∂Ni, in 216 

terms of the recorded values of the (i+1) numbers fx (N), fx+1 (N), fx+2 (N), fx+3 (N),… fx+i (N): 217 

∂ifx (N)/∂Ni = (1/Ni).gi(fx (N), fx+1 (N), fx+2 (N), fx+3 (N),… fx+i (N))           218 

Accordingly, the Taylor expansion of fx (N) may be written as a function of the values 219 

taken by the series of the fj (N) for j > x: 220 

fx (N + δ)  =  fx (N) + Σi=1 to X [(1/Ni).gi (fx (N), fx+1 (N), fx+2 (N), fx+3 (N),…, fx+i (N)) ].(δi/i!)       (9) 221 

with: 222 

    -   gi  as a linear function of the fx (N), fx+1 (N), fx+2 (N), fx+3 (N),… fx+i (N), with integer 223 

coefficients  224 

    -   X as the number of individuals of the most abundant species that has been recorded 225 

at the currently reached sampling-size N.       226 

Equation (9) thus highlights the general expression of the narrow mathematical linkage 227 

that exists between all the successive fx (N) and, more precisely, between the variation of 228 

fx (N) around the current sampling-size N and the corresponding values that are taken, at 229 

sampling-size N, by the series of fi (N), for i > x. 230 

In particular, considering the Taylor expansion of fx (N) at order 2 (which is sufficient, in 231 

practice, to encompass the bulk of the local variations of fx (N)), it comes: 232 

fx (N + δ)  ≈  fx (N) + [ x.fx (N) – (x+1).fx+1 (N) ].(δ/N) 233 

                       + [(x2 – x).fx (N) – (2x2 + 2x).fx+1 (N) + (x2 + 3x + 2).fx+2 (N)].(½ δ2/N2)        (10) 234 
 235 

Note that, similarly, a Taylor expansion of the Species Accumulation Curve, R(N), within 236 

a neighbourhood [N–δ , N+δ] of the sampling-size N, has already been derived [6]. The 237 

Taylor expansion of R(N) is: 238 

R(N+δ) = R(N) + Σi=1 to ∞ [∂iR(N)/∂Ni].(δi/i!) 239 

Replacing the successive derivatives by their expressions, according to equation (1) 240 

leads to: 241 

R(N+δ) = R(N) + Σi=1 to ∞ [(– 1)i-1 (i!/Ni).fi (N)].(δi/i!) 242 
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that is: 243 

R(N+δ) = R(N) + Σi=1 to ∞ (– 1)i-1 (δ/N)i.fi (N)         244 

In practice: 245 

R(N+δ) = R(N) + Σi=1 to X (– 1)i-1 (δ/N)i.fi (N)          (11) 246 

with X as the number of individuals of the most abundant species that have been 247 

recorded at the current sampling-size N.       248 
 249 

4.2 An additional mathematical linkage 250 

Still an additional mathematical linkage between the successive fx(N) may be unveiled 251 

by considering the intersection between fx(N) and fx+1(N), i.e. when sampling size N is 252 

such that fx+1(N) becomes equal to fx(N). From equation (4) it comes immediately: 253 

∂fx (N)/∂N  =  – fx(N)/N    for sampling size N such that fx+1(N) = fx(N)           (12) 254 

Accordingly, this demonstrates: 255 

      - that fx+1(N) intersects fx(N) when the latter has already reached its decreasing 256 

phase (since fx(N)/N is essentially positive); 257 

      - that the slope (decreasing rate) of fx(N) at this intersection point is equal in module 258 

and opposite in sign to the ratio fx(N)/N, thus resulting graphically in a remarkable 259 

geometrical property, as shown in Figure 3, with angle IBA being equal to angle IAB (the 260 

triangle AIB is isosceles) . 261 

 262 

   263 
 264 
Figure 3 - Typical sketch of variation, with increasing sampling-size N, of the number fx(N) of x-tons  265 

and  the number fx+1(N) of (x+1)-tons. Both curves intersect at point I. A remarkable mathematical 266 

property at the intersection between fx(N) and  fx+1(N) is that the slope (decreasing rate) of fx(N), 267 

there, is equal in module and opposite in sign to the ratio fx(N)/N. This results in a remarkable 268 

geometrical property: the equality of angles IAB and IBA : the triangle AIB is isosceles 269 

 270 

5. DISCUSSION 271 

The numbers f1, f2,…, fx, of singletons, doubletons, …, x-tons (species respectively 272 

recorded 1-, 2-, …, x-times) vary, of course, with sampling-size N. Each number fx(N) 273 

successively shows three phase of variation with N: a growth period (I), then an 274 

accelerated decreasing period (II) and, at last, a decelerated decreasing period (III), 275 
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eventually ending asymptotically to zero (Figure 1). The thresholds values N’ and N”, 276 

which delimit these three stages, are dependent on x (the larger x, the larger are N’ and 277 

N”), but these three stages of variation along progressive sampling remain 278 

characteristic of the variation of any fx (N), whatever the value x, that is for any x-ton. In 279 

spite of this common general scheme, each number fx varies, however, at its own pace 280 

during progressive sampling. Yet, it has been demonstrated above that the respective 281 

variations of the different numbers fx are not entirely independent from each-other. On 282 

the contrary, a remarkable connection has been unveiled between them. This 283 

connection appears explicitly by considering the Taylor expansion of the fx (N) 284 

(equations (9) and (10)) which shows that the variations of fx (N) in a neighbourhood of 285 

N depend on the values taken by the series of the fi (N), for i > x. In other words, the 286 

variations of the number of species recorded x-times are connected to the numbers of 287 

species recorded still more frequently. Moreover, some remarkable consequences of 288 

this connection are highlighted graphically at Figures 2 and 3.  289 

All these considerations might seem, at first, of pure speculative interest. However, they 290 

also have substantial practical consequences and may answer more pragmatic concerns. 291 

Usually, the degree of sampling completeness is, quite naturally, quantified by the ratio 292 

between the number of recorded species and the (estimated) total species richness of 293 

the sampled assemblage of species. According to this usual approach, the scope is, first 294 

of all, focused on what has already been recorded. An alternative (complementary) 295 

approach would consist to focus upon what is still to be recorded.  That is to say, to 296 

consider first and foremost those species that are, statistically, the least abundant in the 297 

sampled assemblage. In this second perspective, it is the numbers of species only 298 

recorded few (x-tons with low values of x: singletons, doubletons,…) that are more 299 

relevantly informative. For example, it is this kind of approach which is implicit in the 300 

admittedly common opinion that a survey may be considered virtually complete as soon 301 

as the number f1 of singletons has fallen to zero.  302 

In accordance with the preceding point of view (and for the bulk of practical surveys of 303 

biodiversity, that have not reached quasi-exhaustivity), a relevant question to be 304 

addressed is: what about (i) the levels and (ii) the trends of variation of the numbers of 305 

singletons, doubletons, tripletons, etc … (f1(N), f2(N), f3(N), …) at the currently achieved 306 

sampling-size N. Answering this question would reveal highly meaningful, as soon as 307 

sampling progress has reached the level where the still unrecorded species mainly 308 

concern the least-abundant species of the sampled assemblage.   309 

To provide an illustration of the interest and practical significance of this proposition, 310 

four examples are considered hereafter, involving four local surveys of butterfly fauna 311 

in different suburban localities around Jhansi (India) [7]. For each survey, the variations 312 

of the numbers f1(N), f2(N), f3(N), f4(N), of those species respectively recorded 1-, 2-, 3-, 4- 313 

times are computed around the achieved sampling-size N0, using the Taylor expansion 314 

of fx (N) at order 2 (equation (10)): Figures 4 to 7. 315 

Figure 4 is for butterfly survey at “Parichha Dam” (estimated sampling completeness 316 

65%): referring to Figure 1, the numbers f1, f2, f3, f4, at the currently achieved sampling-317 

size N0, are at stages II, I, I, I, respectively. That is, at N0, the number of singletons begins 318 

to decrease while doubletons, tripletons and quadrupletons are still growing. 319 

Figure 5 is for butterfly survey at “Jhansi University Campus” (estimated sampling 320 

completeness 90%): referring to Figure 1, the numbers f1, f2, f3, f4, at the currently 321 
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achieved sampling-size N0, are at stages III, II, II, I, respectively. That is, at N0, the 322 

number of singletons has already begun its last asymptotic decreasing phase, the 323 

numbers of doubletons and tripletons are in their accelerated decreasing phase, while 324 

the number of quadrupletons is still increasing. 325 

Figure 6 is for butterfly survey at “Narayan Bagh” (estimated sampling completeness 326 

92%): referring to Figure 1, the numbers f1, f2, f3, f4, at the currently achieved sampling-327 

size N0, are at stages III, III, II, II, respectively. That is, at N0, the numbers of singletons 328 

and doubletons have already begun their last asymptotic decreasing phase while the 329 

numbers of tripletons and quadrupletons are in their accelerated decreasing phase. 330 

Figure 7 is for butterfly survey at “Bundelkhand Institute Engeneering & Technology 331 

Campus” (quasi exhaustive survey): referring to Figure 1, the numbers f1, f2, f3, f4, at the 332 

currently achieved sampling-size N0, are at stages III, II, ≈ m, I, respectively. That is, at 333 

N0, the number of singletons has already begun its last asymptotic decreasing phase, the 334 

number of doubletons has entered its accelerated decreasing period, the number of 335 

tripletons has just approximately reached its maximum and the number of 336 

quadrupletons is still increasing. 337 

 338 

         339 
 340 
Figures 4, 5, 6, 7 – Variations of the numbers f1, f2, f3, f4, of species respectively recorded 1-, 2-, 3-, 4- 341 

times according to sampling-size N around the currently achieved sample-size N0. The variations of 342 

the fx(N) are computed using Taylor expansion around N = N0 (equation (10)).  343 

Four surveys of butterfly fauna in different localities around the city of Jhansi (BÉGUINOT 2017): 344 

- Fig 4: “Parichha Dam” : for the achieved sampling-size (N = N0) and, referring to Figure 1, the 345 

numbers f1, f2, f3, f4, are at stages II, I, I, I, respectively  346 

- Fig 5: “Jhansi Univ. Campus” : for the achieved sampling-size (N = N0) and, referring to Figure 1, the 347 

numbers f1, f2, f3, f4, are at stages III, II, II, I, respectively 348 

- Fig 6: “Narayan Bagh” : for the achieved sampling-size (N = N0) and referring to Figure 1, the 349 

numbers f1, f2, f3, f4, are at stages III, III, II, II, respectively. Other comments in the text. 350 

- Fig 7: “Bundelkhand Institute Eng. & Techn. Campus” : for the achieved sampling-size (N = N0) and 351 

referring to Figure 1, the numbers f1, f2, f3, f4, are at stages III, II, ≈ m, I, respectively 352 
 353 

Thus, as expected, there is a global trend for the numbers fx (N) passing the successive 354 

steps of their variations (stages I, m, II, i, III) in accordance with increasing level of 355 

sampling completeness. For example, at 65% completeness (“Parichha Dam”), the 356 

numbers f1, f2, f3, f4, are at stages II, I, I, I, respectively, while, at 92% completeness 357 
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(“Narayan Bagh”), the numbers f1, f2, f3, f4, have already reached stages III, III, II, II, 358 

respectively. Yet, this correlation is rather loose, as is exemplified, by comparing “B.I.E.T. 359 

Campus” to “Narayan Bagh”: f1, f2, f3, f4, are at stages III, II, ≈ m, I, for the quasi 360 

exhaustive  sampling of “B.I.E.T. Campus” while f1, f2, f3, f4, are at more advanced stages 361 

(III, III, II, II), for the 92% completeness sampling of “Narayan Bagh”. 362 

This loose correlation, however, is not surprising. Indeed, the degrees of advancement 363 

of the fx(N) along the successive stages of their variations are not only related to the 364 

global level of sampling completeness (R0/St) but are still dependent also upon the level 365 

of unevenness of species abundance distribution in the sampled assemblage. At any 366 

given level of sampling completeness, the more uneven is the species abundance 367 

distribution, the slower will be the degree of advancement of the fx(N) in the passage of 368 

the successive steps of their variations. 369 

To close this topic, a more laconic and synthetic presentation of the degree of 370 

advancement of the survey of the least abundant species in the sampled assemblage 371 

may simply consist in displaying the “score” of those fx(N) that have overstepped their 372 

respective maximum ‘m’ and enter their decreasing stages (II or III), at the currently 373 

reached sampling-size N0.  Thus, for the four preceding surveys, the scores are as 374 

follows: for “Parichha Dam”: f1 ; for  “Jhansi University Campus”: f1, f2, f3 ; for “Narayan 375 

Bagh”: f1, f2, f3, f4 ; for “B.I.E.T. Campus”: f1, f2. 376 

 377 

CONCLUSION 378 

Although looking quite simple, the monotonic process of species accumulation during 379 

progressive sampling is, in fact, far less trivial. Indeed, species accumulation is the 380 

cumulated result of a more convoluted underlying process, involving the non-381 

monotonic variations of each of the fx(N) (i.e. the numbers of species recorded x-times at 382 

any given sampling-size N). Moreover, although partially connected with each other, the 383 

variations of each of the fx(N) progress at different paces, in a relative independence from 384 

each other in this respect. Disentangling the respective variations of each of the fx(N) is, 385 

thus, quite a non-trivial issue, which has been successfully addressed above. In 386 

particular the general expression of the variations of the fx(N) has been appropriately 387 

derived, using a Taylor expansion approach. Beyond the speculative aspects of the 388 

question - at the very heart of the detailed understanding of species accumulation rates 389 

along progressive sampling - more practical aspects have also been addressed. In 390 

particular, considering the variations of the low-orders fx(N), (such as f1(N), f2(N), f3(N), f4(N)) 391 

proves especially significant regarding the degree of advancement of ongoing surveys 392 

towards sampling exhaustivity. This is so because further improvement of sampling 393 

completeness progressively involves less and less abundant species of the sampled 394 

assemblage, which primarily influence the low-orders fx(N). The Taylor expansion of the 395 

numbers f1(N), f2(N), f3(N), f4(N), … around the currently reached sampling-size may thus 396 

cast more relevant light upon the effective progress of an ongoing survey and thus 397 

provide an additional tool to accurately evaluate sampling efficiency. 398 

 399 

 400 

APPENDICES 401 

A.1 - Derivation of the constraining relationship between ∂xR(N)/∂Nx   and  fx(N) 402 
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The shape of the theoretical Species Accumulation Curve is directly dependent upon the 403 

particular Species Abundance Distribution (the “S.A.D.”) within the sampled assemblage 404 

of species. That means that beyond the common general traits shared by all Species 405 

Accumulation Curves, each particular species assemblage give rise to a specific Species 406 

Accumulation Curve with its own, unique shape, considered in detail. Now, it turns out 407 

that, in spite of this diversity of particular shapes, all the Species Accumulation Curves 408 

are, nevertheless, constrained by a same mathematical relationship that rules their 409 

successive derivatives (and, thereby, rules the details of the curve shape since the 410 

successive derivatives altogether define the local shape of the curve in any details). 411 

Moreover, it turns out that this general mathematical constraint relates bi-univocally 412 

each derivative at order x  [ ∂xR(N)/∂Nx ] to the number, fx(N), of species recorded x-times 413 

in the considered sample of size N. And, as the series of the fx(N) are obviously directly 414 

dependent upon the particular Distribution of Species Abundance within the sampled 415 

assemblage of species, it follows that this mathematical relationship between ∂xR(N)/∂Nx  416 

and fx(N), ultimately reflects the indirect but strict dependence of the shape of the 417 

Species Accumulation Curve upon the particular Distribution of the Species Abundances 418 

(the so called S.A.D.) within the assemblage of species under consideration. In this 419 

respect, this constraining relationship is central to the process of species accumulation 420 

during progressive sampling, and is therefore at the heart of any reasoned approach to 421 

the extrapolation of any kind of Species Accumulation Curves. 422 

This fundamental relationship may be derived as follows. 423 

Let consider an assemblage of species containing an unknown total number 'S' of 424 

species. Let R be the number of recorded species in a partial sampling of this 425 

assemblage comprising N individuals. Let pi be the probability of occurrence of species 426 

'i' in the sample This probability is assimilated to the relative abundance of species ‘i' 427 

within this assemblage or to the relative incidence of species ‘i' (its proportion of 428 

occurrences) within a set of sampled sites. The number Δ of missed species (unrecorded 429 

in the sample) is Δ = S – R. 430 

The estimated number Δ of those species that escape recording during sampling of the 431 

assemblage is a decreasing function Δ(N) of the sample of size N, which depends on the 432 

particular distribution of species abundances pi: 433 

Δ(N)  = Σi (1-pi)N            (A1.1) 434 

with Σi  as the operation summation extended to the totality of the 'S' species 'i' in the 435 

assemblage (either recorded or not) 436 

The expected number fx of species recorded x times in the sample, is then, according to 437 

the binomial distribution: 438 

fx  =  [N!/X!/(N-x)!] Σi [(1-pi)N-x pix ]   = CN, x  Σi (1-pi)N-x pix        (A1.2)  439 

with CN, x  = N!/X!/(N-x)!  440 

We shall now derive the relationship between the successive derivatives of R(N), the 441 

theoretical Species Accumulation Curve and the expected values for the series of ‘fx’.  442 

According to equation (A1.2): 443 

 444 

►    f1 = N Σi [(1-pi)N-1 pi] = N Σi [(1-pi)N-1 (1- (1-pi))]  = N Σi [(1-pi)N-1] - N Σi [(1-pi)N-1(1-445 

pi))]  = N Σi [(1-pi)N-1] - N Σi [(1-pi)N].      446 

Then, according to equation (A1) it comes: f1 = N (Δ(N-1) - Δ(N))  = - N (Δ(N) - Δ(N-1))   447 
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= - N (∂ Δ(N)/∂N) = - N Δ'(N)    448 

where Δ'(N) is the first derivative of  Δ(N) with respect to N.    Thus:    449 

f1  =  - N Δ'(N)     ( = - CN,1  Δ'(N)  )         (A1.3) 450 

Similarly: 451 

►   f2 = CN, 2 Σi [(1-pi)N-2 pi²]     according to equation (A1.2) 452 

= CN, 2 Σi [(1-pi)N-2 (1- (1-pi²))]   = CN, 2  [Σi [(1-pi)N-2] - Σi [(1-pi)N-2(1- pi²)]] 453 

= CN, 2 [Σi [(1-pi)N-2] - Σi [(1-pi)N-2(1- pi)(1+ pi)]]  = CN, 2 [ Σi [(1-pi)N-2] - Σi [(1-pi)N-1(1+ pi)]] 454 

= CN, 2 [(Δ(N-2) - Δ(N-1)) - f1/N ]     according to equations (A2.1) and  (A1.2) 455 

= CN, 2 [- Δ'(N-1) - f1/N]  = CN, 2  [ - Δ'(N-1) + Δ'(N)]   since  f1 = - N Δ'(N)     (cf. equation (A1.3)). 456 

= CN, 2 [(∂ Δ'(N)/∂N)] = [N(N-1)/2] (∂² Δ(N)/∂N²) = [N(N-1)/2] Δ''(N) 457 

where Δ''(N) is the second derivative of  Δ(N) with respect to N.    Thus: 458 

f2  =  [N(N-1)/2]  Δ''(N)     =  CN, 2  Δ''(N)            (A1.4) 459 

►  f3 = CN, 3 Σi [(1-pi)N-3 pi3]   which, by the same process, yields: 460 

= CN, 3 [Σi (1-pi)N-3 - Σi (1-pi)N-2 - Σi [(1-pi)N-2 pi] - Σi [(1-pi)N-2 pi2 )]]   461 

= CN, 3 [(Δ(N-3) - Δ(N-2)) - f1*/(N-1) - 2 f2/(N(N-1))]  according to equations (A2.1) and  462 

(A1.2) 463 

where f1* is the number of singletons that would be recorded in a sample of size (N - 1) 464 

instead of N.   465 

According to equations (A1.3) & (A1.4):   466 

f1*  =  - (N-1) Δ'(N-1)  =  - CN-1, 1  Δ'(N-1)    and    f2  =  [N(N-1)/2] Δ''(N)   = CN-1, 2  Δ''(N)     (A1.5) 467 

where Δ' (N-1)  is the first derivate of  Δ(N) with respect to N, at point (N-1).   Then,   468 

f3  = CN, 3 [(Δ(N-3) - Δ(N-2)) + Δ'(N-1) - Δ''(N) ]   =  CN, 3 [ -Δ'(N-2) + Δ'(N-1) - Δ''(N) ]   469 

=  CN, 3 [ Δ''(N-1) - Δ''(N) ]  = CN,3 [ - ∂ Δ''(N)/∂N ] =  CN, 3 [ - ∂3 Δ(N)/∂N3] = CN, 3 Δ'''(N) 470 

where Δ'''(N) is the third derivative of  Δ(N) with respect to N.  Thus : 471 

f3 =  - CN, 3 Δ'''(N)              (A1.6) 472 

Now, generalising for the number fx of species recorded x times in the sample: 473 

►  fx = CN, x  Σi [(1-pi)N-x pix]    according to equation (A1.2), 474 

= CN, x Σi [(1-pi)N-x (1 - (1 - pix)) ]  = CN, x [Σi (1-pi)N-x - Σi [(1-pi)N-x (1 - pix)]]   475 

= CN, x [Σi (1-pi)N-x - Σi [(1-pi)N-x (1 - pi)( Σj pij )]]    476 

with Σj  as the summation from j = 0 to  j = x-1. It comes: 477 

fx  = CN, x [Σi (1-pi)N-x - Σi [(1-pi)N-x+1 ( Σj pij)]]   478 

= CN, x [Σi (1-pi)N-x - Σi (1-pi) N-x+1 - Σk [(Σi (1-pi) N-x+1 pik )]] 479 

 with Σk  as the summation from k = 1 to k = x-1 ; that is: 480 
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fx  = CN, x [(Δ(N-x) - Δ(N-x+1)) - Σk (fk*/C(N-x+1+k), k )]  according to equations (A1.1) and  481 

(A1.2)) 482 

where C(N-x+1+k), k = (N-x+1+k)!/k!/(N-x+1)! and fk* is the expected number of species  483 

recorded k times during a sampling of size (N-x+1+k)  (instead of size N).   484 

The same demonstration, which yields previously the expression of f1* above (equation 485 

(A1.5)), applies for the fk* (with k up to x-1) and gives:    486 

fk* = (-1)k (C(N-x+1+k), k ) Δ(k)(N-x+1+k)         (A1.7) 487 

where Δ (k)(N-x+1+k)  is the kth derivate of  Δ(N) with respect to N, at point (N-x+1+k).   Then,   488 

fx  = CN, x [(Δ(N-x) - Δ(N-x+1)) - Σk ((-1)k Δ(k)(N-x+1+k) )]            , 489 

which finally yields :  490 

fx  = CN, x [(-1)x (∂Δ(x-1)(N)/∂N) ] = CN, x [(-1)x (∂xΔ(N)/∂Nx)].   That is:  491 

fx = (-1)x CN, x Δ(x)(N)  = (-1)x CN, x [∂xΔ (N)/∂Nx]      (A1.8)  492 

where  [∂x Δ (N)/∂Nx] is the xth derivative of  Δ(N) with respect to N, at point N.    493 

Conversely: 494 

[∂x Δ(N)/∂Nx] = (-1)x fx /CN, x                   (A1.9)  495 

Note that, in practice, leaving aside the beginning of sampling, N rapidly increases much 496 

greater than x, so that the preceding equation simplifies as: 497 

[∂x Δ(N)/∂Nx] = (– 1)x (x!/Nx) fx(N)                   (A1.10) 498 

In particular: 499 

[∂Δ(N)/∂N] = f1(N)/N               (A1.11) 500 

[∂2 Δ(N)/∂N2] = 2 f2(N)/N2      (A1.12)                501 

This relation (A1.9) has general relevance since it does not involve any specific 502 

assumption relative to either (i) the particular shape of the distribution of species 503 

abundances in the sampled assemblage of species or (ii) the particular shape of the 504 

species accumulation rate. Accordingly, this relation constrains any theoretical form of 505 

species accumulation curves. As already mentioned, the shape of the species 506 

accumulation curve is entirely defined (at any value of sample size N) by the series of 507 

the successive derivatives [∂xR(N)/∂Nx] of the predicted number R(N) of recorded 508 

species for a sample of size N: 509 

[∂xR(N)/∂Nx] = (-1)(x-1) fx /CN, x                   (A1.13)  510 

with [∂xR(N)/∂Nx] as the xth derivative of  R(N) with respect to N, at point N and CN, x = 511 

N!/(N-x)!/x! (since the number of recorded species R(N) is equal to the total species 512 

richness S minus the expected number of missed species Δ(N)).  513 

As above, equation (A1.13) simplifies in practice as: 514 

∂xR(N)/∂Nx  =  (– 1)(x-1) (x!/Nx) fx(N)                   (A1.14) 515 

Equation (A1.13) makes quantitatively explicit the dependence of the shape of the 516 

species accumulation curve (expressed by the series of the successive derivatives 517 

[∂xR(N)/∂Nx] of R(N)) upon the shape of the distribution of species abundances in the 518 

sampled assemblage of species. 519 

 520 

A2 - An alternative derivation of the relationship between ∂xR(N)/∂Nx  and fx(N) 521 

Consider a sample of size N (N individuals collected) extracted from an assemblage of S 522 

species and let Gi be the group comprising those species collected i-times and fi(N) their 523 

number in Gi. The number of collected individuals in group Gi is thus i.fi(N), that is a 524 
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proportion i.fi(N)/N of all individuals collected in the sample. Now, each newly collected 525 

individual will either belong to a new species (probability 1.f1/N = f1/N) or to an already 526 

collected species (probability 1– f1/N), according to [8]. In the latter case, the 527 

proportion i.fi(N)/N of individuals within the group Gi accounts for the probability that 528 

the newly collected individual will contribute to increase by one the number of species 529 

that belong to the group Gi (that is will generate a transition [i-1 → i] under which the 530 

species to which it belongs leaves the group Gi-1 to join the group Gi). Likewise, the 531 

probability that the newly collected individual will contribute to reduce by one the 532 

number of species that belong to the group Gi (that is will generate a transition [i → i+1] 533 

under which the species leaves the group Gi to join the group Gi+1) is (i+1).fi+1(N)/N. 534 

Accordingly, for i > 1: 535 

 ∂fi(N)/∂N  =  [i.fi(N)/N – (i+1).fi+1(N)/N](1 – f1/N)    (A2.0) 536 

Leaving aside the very beginning of sampling, and thus considering values of sample 537 

size N substantially higher than f1, it comes: 538 

                   ∂fi(N)/∂N  =  i.fi(N)/N – (i+1).fi+1(N)/N                 (A2.1) 539 

Let consider now the Species Accumulation Curve R(N), that is the number R(N) of 540 

species that have been recorded in a sample of size N. The probability that a newly 541 

collected individual belongs to a still unrecorded species corresponds to the probability 542 

of the transition [0 → 1], equal to i.fi(N)/N with i = 1, that is: f1(N)/N (as already 543 

mentioned).  544 

Accordingly, the first derivative of the Species Accumulation Curve R(N) at point N is   545 

∂R(N)/∂N = f1(N)/N                             (A2.2) 546 

In turn, as f1(N) = N.∂R(N)/∂N (from equation (A2.2)) it comes:                              547 

∂f1(N)/∂N = ∂[N(∂R(N)/∂N)]/∂N = N(∂2R(N)/∂N2) + ∂R(N)/∂N 548 

On the other hand, according to equation (A2.1):  549 

∂f1(N)/∂N = 1.f1(N)/N – 2.f2(N)/N  =  f1(N)/N – 2f2(N)/N, and therefore: 550 

N(∂2R(N)/∂N2) + ∂R(N)/∂N =  f1(N)/N – 2f2(N)/N 551 

And as ∂R(N)/∂N = f1(N)/N according to equation (A2.2): 552 

∂2R(N)/∂N2  =  – 2f2(N)/N2                       (A2.3) 553 

Likewise, as f2(N) = –N2/2.(∂2R(N)/∂N2), it comes: 554 

∂f2(N)/∂N  =  ∂[–N2/2.(∂2R(N)/∂N2)]/∂N  =  – N(∂2R(N)/∂N2) – N2/2.(∂3R(N)/∂N3) 555 

As ∂f2(N)/∂N = 2f2(N)/N – 3f3(N)/N,  according to equation (A2.1), it comes: 556 

– N(∂2R(N) /∂N2) – N2/2.(∂3R(N)/∂N3) = 2f2(N)/N – 3f3(N)/N 557 

and as ∂2R(N)/∂N2 = – 2f2(N)/N2, according to equation (A2.3), it comes: 558 

∂3R(N)/∂N3  =  + 6f3(N)/N3                       (A2.4) 559 

More generally: 560 

∂xR(N)/∂Nx  =  (– 1)(x-1) (x!/Nx) fx(N)                   (A2.5) 561 

 562 
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