On general mathematical constraints applying to the kinetics 1 of species discovery during progressive sampling and 2 to the resulting expression of the Species Accumulation Curve 3 4 5 6 8 9 10 ABSTRACT 11 The "Species Accumulation Curve" accounts for the rate of increase of the number of 12 13 recorded species during progressive sampling of an assemblage of species. Due to the usual incompleteness of samplings, the accurate extrapolation of the Species Accumulation Curve 14 15 has become an essential tool to estimate the total species richness of a sampled assemblage 16 and to predict the additional sampling effort required to obtain a given increase of sample 17 completeness. In this perspective, important efforts have been devoted to improve the accuracy of the extrapolation of the Species Accumulation Curves. Substantial progress in 18 19 this respect was achieved recently by considering a general mathematical relationship that constrains the theoretical expression of any kind of Species Accumulation Curves. Moreover, 20 21 this general relationship proves having interesting corollaries applying specifically to the detailed process of species accumulation during progressive sampling. 22 Hereafter, I first derive these correlative relationships and then I show how they link 23 together the variations of the numbers of species respectively recorded 1-, 2-, 3- ..., x- times 24 and their cumulative contributions to the Species Accumulation Curve. This, in turn, provides 25 suggestive insights regarding the remarkably regulated mechanism of species discovery and 26 accumulation along progressive sampling effort. 27 28 **Key-words:** species accumulation curve, extrapolation, estimation, species richness, 29 incomplete sampling, regulation, Jackknife estimator 30 31 32 33 34 **1. INTRODUCTION** The process of continuous discovery of new species during progressive sampling of an 35 assemblage of species is expressed graphically in term of the so called "Species 36 Accumulation Curve", also formerly designed as "Discovery Curve" or "Collector Curve" 37 [1]. The Species Accumulation Curve is the basic tool, which is systematically referred to 38 in inventories of biodiversity [2]. 39 Species Accumulation Curves are quite polymorphic, apart from some basic and intuitive 40 common traits shared by all of them (monotonic increase of the number of recorded 41 species with sampling size, at consistently decreasing rate, see Figure 1 for an example). 42 43 This is so because the detailed shape of the Species Accumulation Curves is entirely dependent upon the particular species abundance distribution within the sampled 44 assemblage of species under consideration. Accordingly, there are virtually as many 45 different shapes of Species Accumulation Curves as there are species assemblages 46

47 differing from each other by either their species richness and/or their particular

48 distribution of species abundances.

49

50

Figure 1 – Typical shape of a Species Accumulation Curve, showing the basic common features pertaining to any kind of S.A.C.: monotonic increase of the number of recorded species R(N) with sampling size N, while the rate of growth is monotonically decreasing. Here is plotted the S.A.C for a partial inventory of land snails fauna in a xerothermic grassland at 'Cersot', south Burgundy (France) [from BÉGUINOT, *unpublished data*]. Sampling size is expressed in % of the size of the actually achieved sampling. Extrapolation is estimated according to Jackknife-5 estimator, selected as being the less biased for this particular inventory (see reference [3]).

58

In spite of these causes of polymorphism, the theoretical expressions of all Species 59 Accumulation Curves are compelled to satisfy a common constraining mathematical 60 61 relationship which applies to the whole series of its successive derivatives. This constraining relationship explicitly determines the boundaries of the yet wide range of 62 polymorphism mentioned above for the Species Accumulation Curves. On a more 63 practical point of view, accounting for this constraining relationship reveals also of major 64 importance to *improve the accuracy of extrapolations* of species accumulation beyond 65 actually achieved samplings. Thereby, more precise estimations of total species richness 66 and more reliable predictions of the additional sampling effort needed to achieve a given 67 68 increase in sample completeness are made possible (details in reference [3]).

Now, coming back to more *theoretical* ground, several corollaries which can be derived
from this fundamental relationship also provide useful insights into the details of the
complex process of species discovery during progressive sampling.

Let R(N) be the number of recorded species after sampling of N individuals (N thus quantify the sampling size). Obviously, R(N) results from the additive contributions of the numbers $f_1(N)$, $f_2(N)$, $f_3(N)$,..., $f_x(N)$,... of those species respectively recorded 1, 2, 3, ..., xtimes at the end of this sampling of size N:

76

$R(N) = \Sigma_x f_x(N) \qquad (1)$

77 Thereby, the Species Accumulation Curve reveals its "composite" dependence upon the 78 whole series of the $f_x(N)$. A composite dependence which is made still more complex by

79 the fact that each function $f_x(N)$ has its own dependence upon N. Yet, this mutual

independence of the fx (N) is not total: a kind of regulation links, step by step, the 80 respective variations of the successive functions $f_x(N)$, as will be shown later. This 81

regulation, indeed, is at the hearth of the mechanism of species progressive discovery and 82

- accumulation, which plays, of course, a decisive role in shaping the Species Accumulation 83 84 Curve.
- The main purpose of this article is precisely to highlight the mathematics underlying this 85 regulation by mutual linkage between the successive fx (N). This, in turn, will provide a 86 more deep understanding of the fundamentals of Species Accumulation during 87 88 progressive sampling.

89 Preliminary: the fundamental mathematical relationship constraining 90 the theoretical expression of all Species Accumulation Curves 91

The successive derivatives $\partial^{x} R(N) / \partial N^{x}$, of the Species Accumulation Curve R(N) satisfy 92 93 the following equation:

 $[\partial^{x} R_{(N)} / \partial^{Nx}] = (-1)^{x-1} f_{x(N)} / C_{N,x}$

94 (2)with $f_{x(N)}$ as the number of species recorded x-times in the sample of size N and $C_{N,x}$ = 95

N!/X!/(N-x)! is the number of combinations of x items among N. A detailed proof of this 96 97 general theorem is provided in Appendix.

Leaving aside the very beginning of sampling (of no practical relevance here), the 98 sampling size N rapidly exceeds widely the numbers x of practical concern, so that, in 99 100 practice, the preceding equation simplifies as:

 $[\partial^{x} R_{(N)} / \partial N^{x}] = (-1)^{x-1} (x! / N^{x}) f_{x(N)}$ (3)

This relation has a general relevance because its derivation does not require any specific 102 assumption relative to the particular shape of the distribution of species abundances in 103 the sampled assemblage of species. Accordingly, equations (2), (3) actually constrain the 104 theoretical expressions of *any kind* of Species Accumulation Curves. 105

One particular consequence of this relationship is that the successive derivatives of the 106 Species Accumulation Curve have alternating signs, since the numbers $f_{x (N)}$ of species 107 108 recorded x-times are necessarily positive or nil. More precisely, the derivatives of even and odd orders are respectively negative and positive. 109

110 111

112

120

101

2. THE MATHEMATICS UNDERLYING THE REGULATION PROCESS APPLYING TO THE NUMBERS fx OF SPECIES RECORDED x-TIMES

- 113 From equation (3) it comes:
- $f_{x(N)} = (-1)^{x-1} (N^x/x!) \left[\frac{\partial^x R_{(N)}}{\partial N^x} \right]$ 114 (4)
- The derivation of equation (4) according to sample size N then gives: 115 116
 - $\left[\partial f_{x(N)}/\partial N\right] = (-1)^{x-1}/x! \left\{x. N^{x-1} \cdot \left[\partial^x R_{(N)}/\partial N^x\right] + N^x \cdot \left[\partial^{x+1} R_{(N)}/\partial N^{x+1}\right]\right\}$

117 Accounting for the expression (3), applied to
$$[\partial^x R_{(N)}/\partial N^x]$$
 and $[\partial^{x+1} R_{(N)}/\partial N^{x+1}]$, it comes:
118 $[\partial f_x(N)/\partial N] = (1/N).[x.f_x(N) - (x+1).f_{x+1}(N)]$ (5)

$$[\partial f_{x(N)}/\partial N] = (1/N) [x.f_{x(N)} - (x+1).f_{x+1(N)}]$$
(5)

which may be written as well as: 119

 $x.f_{x(N)} - N.[\partial f_{x(N)}/\partial N] = (x+1).f_{x+1(N)}$ (6)

Note that an alternative, independent demonstration of the equation (6) is provided at 121 Appendix A.2, equation A2.1. 122

As a corollary of relationship (3) above, equation (6) benefits consequently from the same 123 general relevance and, thus, is valid for all kinds of Species Accumulation Curves. 124

Equation (6) establishes a *mathematical linkage* between the variations of f_{x+1} (N) with N 125 and the variations of $f_{x (N)}$ with N. Thereby, all the $f_{x (N)}$ are ultimately *linked together* by 126

this "iterative chaining". In other words, although each function $f_{x (N)}$ has its own 127

dependence upon sampling size N, the series of $f_{x (N)}$ nevertheless admits a kind of connection which, if one may say, "propagates" from each $f_{x (N)}$ to the next one, $f_{x+1 (N)}$.

131 Mathematical "chaining" between the successive numbers f_{x (N)}

132 The consequence of this regulation may be more easily grasped graphically, by 133 considering how the maximum of each $f_{x (N)}$ is linked to the value of $f_{x+1 (N)}$ at the same 134 sample size N. When $f_{x (N)}$ reaches its maximum value, its first derivative, $\partial f_{x (N)}/\partial N$, falls 135 to zero and, accordingly, from equation (6), it comes:

(7)

 $f_{x+1(N)} = [x/(x+1)].f_{x(N)}$

Thus, when f_{x} (N) reaches its maximum, in the course of progressive sampling, the corresponding value taken by f_{x+1} (N) is then exactly [x/(x+1)] times the (maximum) value taken by f_{x} (N). By reiteration of this relationship, a kind of "linkage pattern" is generated, that constrains the relative locations of the successive curves f_{x} (N). Figure 2 exemplifies graphically this "chaining" linkage, *propagating successively, step by step*, from f_1 (N) to f_2 (N), to f_3 (N), to f_4 (N), to f_5 (N), etc...

- As a consequence, the maxima of f_{1 (N)}, of f_{2 (N)}, of f_{3 (N)}, of f_{4 (N)}, of f_{5 (N)}, ..., respectively
- succeed each other sequentially, as shown in Figure 2. The corresponding positions of
- these succeeding maxima are located along the Species Accumulation Curve at Figure 3,
- and it is worth noting that the regulating linkage between the successive $f_{x(N)}$ is such that
- 147 no peculiarity is affecting the Species Accumulation Curve at any of these locations (in
- 148 spite of the series of bumps constituted by the successive maxima of $f_{1(N)}$, $f_{2(N)}$, $f_{3(N)}$, $f_{4(N)}$, 149 $f_{5(N)}$,...)
- 150

136

151

Figure 2 – Extrapolations of the five first $f_{x(N)}$ ($f_{1(N)}$, $f_{2(N)}$, $f_{3(N)}$, $f_{4(N)}$, $f_{5(N)}$) for increasing sampling size N 152 beyond the size of the actually achieved sampling (sampling size N is expressed in % of the size of the 153 154 actually achieved sampling). Here, the maxima of $f_{1(N)}$, $f_{2(N)}$, $f_{3(N)}$, $f_{4(N)}$, $f_{5(N)}$ happens to be located at 155 sample size \approx 200%, 360%, 510%, 680%, 810%, respectively. Same inventory as in Figure 1 ; 156 extrapolations according to Jackknife-5 estimator, selected as being the less biased for this particular 157 inventory (see reference [3]). This figure highlights the "linkage pattern" between the successive 158 curves $f_{x(N)}$ imposed by the constraining relationship (7) (i.e.: $f_{x+1(N)} = [x/(x+1)] \cdot f_{x(N)}$). That is when $f_{x(N)}$ 159 reaches its maximum, the corresponding value taken by $f_{x+1(N)}$ is then exactly [x/(x+1)] times the value 160 of $f_{x(N)}$.

162 Mathematical "chaining" between the successive numbers $x.f_{x(N)}$

163 Alternatively, equation (7) may be written equivalently as:

$$x.f_{x(N)} = (x+1).f_{x+1(N)}$$
 (8)

165 Equation (8), as equation (7), stands for $\partial f_{x(N)}/\partial N = 0$, and thus stands as well for $\partial (x.f_x)$

166 (N)/ $\partial N = 0$. It follows that the curve (x+1). $f_{x+1}(N)$ *intersects* the curve x. $f_{x}(N)$ exactly when

167 the latter *reaches its maximum value* (i.e. when $\partial(x.f_{x(N)})/\partial N = 0$) : Figure 4. Keeping in

168 mind the significance of $x.f_{x(N)}$ which is the total number of recorded individuals belonging

- to either of those species recorded x-times.
- 170

161

164

171

- 173 (N), $f_{3(N)}$, $f_{4(N)}$, $f_{5(N)}$, according to Figure 2. Same inventory as in Figure 1.
- 174

175

Figure 4 - The computed variations, with increasing sampling size N, of the five first numbers $x.f_{x(N)}$ of recorded individuals belonging to species recorded x-times $(1.f_{1(N)}, 2.f_{2(N)}, 3.f_{3(N)}, 4.f_{4(N)}, 5.f_{5(N)})$. As

prescribed by the constraining equation (8), for any value of x, the curve $(x+1).f_{x+1}(N)$ intersects the

179 curve $x.f_{x(N)}$ exactly when the latter reaches its maximum value. Sampling size is expressed in % of the 180 size of the actually achieved sampling. Same inventory as in Figure 1.

181

The regularly repetitive shift from any one curve, $x.f_{x(N)}$, to the next one, $(x+1).f_{x+1(N)}$, 182 resulting from this regulating process (Figure 4) is particularly demonstrative. This, 183 indeed, likely offers the best visual evidence of the sequential linkage existing between 184 each of the $f_{x(N)}$ successively. 185 Note, incidentally, that while the cumulative addition of all the $f_{x(N)}$ leads to the number 186 R(N) of recorded species (*cf.* equation (1)); on the other hand the addition of the x.f_{x (N)} 187 leads "symmetrically" to the number N of recorded individuals: 188 189 $\Sigma_x [f_x(N)] = R(N)$ and $\Sigma_x [x.f_x(N)] = N$ (9) 190 Mathematical "chaining" between each $f_{x(N)}$ and the series of the first derivatives of 191 the preceding $f_{x(N)}$ 192 This is a third alternative way to express the inter-relationship within the series of the 193 194 $f_x(N)$. Referring once more to equation (6), that is: $x.f_{x(N)} - N.[\partial f_{x(N)}/\partial N] = (x+1).f_{x+1(N)}$ 195 let now consider the successive forms taken by this equation for increasing values of x. 196 197 It comes: $0.f_0(N) - N.[\partial f_0(N)/\partial N] = 1.f_1(N)$ 198 $1.f_{1(N)} - N.[\partial f_{1(N)}/\partial N] = 2.f_{2(N)}$ 199 $2.f_{2(N)} - N.[\partial f_{2(N)}/\partial N] = 3.f_{3(N)}$ 200 201 202 $(x - 1).f_{x-1(N)} - N.[\partial f_{x-1(N)}/\partial N] = x.f_{x(N)}$ 203 By summing these equations, the following relationship is immediately derived: 204 $f_{x(N)} = -(N/x) \sum_{i} \left[\partial f_{i(N)} / \partial N \right]$ (10)205 with the summation Σ_i extended from i = 0 to i = (x - 1)That is, namely, the number $f_{x(N)}$ of species recorded x-times in a sampling of size N is 206 207 proportional [via the factor -(N/x)] to the sum of the first derivatives (with respect to N) of the series of the preceding $f_{i(N)}$. In more practical terms, this means that the number f_x 208 (N) of species recorded x-times, in a sample of size N, is proportional to the sum of the 209 variations of the preceding $f_{x(N)}$ when sampling size increases of one observation (N \rightarrow 210 211 N+1). Another way to understand relation (10) results from re-writing it as follows: 212 $(x.f_{x(N)})/N = -\Sigma_i \left[\partial f_{i(N)}/\partial N\right]$ 213 (11)with the summation Σ_i extended from i = 0 to i = (x - 1). 214 Which means that the proportion of sampled individuals that belong to either species 215 recorded x-times $[= (x.f_{x(N)})/N]$ is equals to minus the sum of the variations of the 216 217 preceding $f_{x(N)}$ when sampling size increases of one observation. Accordingly, the relationship (10) expresses the continuous linkage between each $f_{x(N)}$ 218 and the *whole series of its predecessors*, thereby highlighting still more clearly the strong 219 "chaining" between the successive numbers $f_{x (N)}$, which together rule the kinetics of 220 species accumulation during progressive sampling. 221 222 Still another remarkable relationship may be derived from equation (10), which only involves, this time, the first derivatives of all the $f_{x(N)}$. 223 224 Let X be the recorded number of individuals belonging to the species most frequently met 225 in the sampling under consideration. In other words, X is the largest value of x for which $f_{x(N)} \neq 0$ in this particular sampling. The sum of the numbers of sampled individuals that 226 belong to anyone of those species recorded x-times $[=(x.f_{x(N)})]$ for x up to its maximum 227 228 value X is equal to N. Accordingly, the summation of equation (11) for x up to its maximum value X yields: 229 6

 $\Sigma_{x} \left[(x.f_{x(N)})/N \right] = N/N = 1 = \Sigma_{x} \left[-\Sigma_{i} \left(\partial f_{i(N)} / \partial N \right) \right]$

with the summation Σ_x extended from x = 1 to x = X and the summation Σ_i extended from i = 0 to i = (x - 1). This finally leads to:

233

230

 $1 = -\Sigma_i \left[(\partial f_{i(N)} / \partial N) \cdot (X - i) \right]$ (12)

with the summation Σ_i extended from i = 0 to i = (X - 1).

235 236

237 238 3. COMPLEMENTARY ILLUSTRATIVE EXAMPLES OF THE REGULATION PROCESS GOVERNING THE NUMBERS OF SPECIES RECORDED 1-, 2-, 3-, 4-, 5-, ... TIMES

The same trends demonstrated above on a theoretical basis, and illustrated by a first example at Figures 2 to 4, are illustrated again in the following complementary examples. We shall only consider, hereafter, the variations of $x.f_x$ (N) (i.e. the number of recorded individuals belonging to any one of species recorded x-times) as they provide the more graphically speaking feature, highlighting at best the specific "chaining" linkage, step by step, between the successive numbers f_1 (N), f_2 (N), f_3 (N), f_4 (N), f_5 (N).

3.1. Butterfly inventory on the slopes of Mount Gariwang-san (S-Korea)

Field data from reference [4]. Figure 5 relates to an inventory carried out during year 248 2015. The realised sampling size was $N_0 = 181$ individuals; the number of recorded species 249 was $R(N_0) = 39$ species and the values of the $f_{x,}$ were: $f_1 = 17.0$, $f_2 = 8.0$, $f_3 = 3.7$, $f_4 = 2.0$, $f_5 =$ 250 1.4 (values obtained after regression applied to the crude values of the $f_{x,}$ in order to 251 reduce the consequences of stochastic dispersion, as prescribed in [3].

Figure 5 - The computed variations, with increasing sampling size N, of the five first numbers $x.f_{x(N)}$ of recorded individuals belonging to any one of species recorded x-times $(1.f_{1(N)}, 2.f_{2(N)}, 3.f_{3(N)}, 4.f_{4(N)}, 5.f_{5(N)})$. Butterfly inventory on the slopes of Mount Gariwang-san (field data from LEE, KIM & KWON 2016). As prescribed by the constraining equation (8), *for all values of x*, the curve $(x+1).f_{x+1(N)}$ intersects the curve $x.f_{x(N)}$ exactly when the latter reaches its maximum value. Sampling size is expressed in % of the size of the actually achieved sampling.

261 **3.2 Butterfly inventories at Bifeng Valley (Ghansu, China)**

Field data from reference [5]. Figure 6 relates to an inventory conducted at site 1, in the upper part of the valley of Bifeng (province of Ghansu), where species richness of butterfly

fauna proves to be the highest in the valley, with $R(N_0) = 28$ recorded species for $N_0 = 68$ 264 recorded individuals. The values of the f_x , were: $f_1 = 14.0$, $f_2 = 6.0$, $f_3 = 2.6$, $f_4 = 1.5$, $f_5 = 1.2$ 265 (values obtained after regression applied to the crude values of the f_x, in order to reduce 266 the consequences of stochastic dispersion, as prescribed [3]. 267

268 269

270

271 Figure 6 - The computed variations, with increasing sampling size N, of the five first numbers $x.f_{x(N)}$ of 272 recorded individuals belonging to any one of species recorded x-times (1.f₁(N), 2.f₂(N), 3.f₃(N), 4.f₄(N), 5.f₅ 273 (N). Butterfly inventory at Bifeng valley, site 1 (field data from Li et al. 2010). As prescribed by the 274 constraining equation (8), for all values of x, the curve (x+1).f_{x+1} (N) intersects the curve x.f_x (N) exactly 275 when the latter reaches its maximum value. Sampling size is expressed in % of the size of the actually 276 achieved sampling.

277

4. THE GENERAL RELATIONSHIP GOVERNING THE DECREASING PROPOTION OF 278 **OBSERVATIONS PROVIDING NEWLY RECORDED SPECIES, WITH INCREASING** 279 SAMPLING SIZE 280

So far, we have approached the Species Accumulation Curve, R(N), in a deliberately 281 analytical manner: each new observation was considered as equally informative, whether 282 or not it gives rise to the detection of a new species. Indeed, in any case, each individual 283 observation actually plays the same kind of role: it determines a transition of the kind fx 284 285 $(N) \rightarrow f_{x+1}(N+1).$

Now, let consider, alternatively, a more usual and pragmatic approach, now paying 286 attention to those observations only giving rise to the detection of a new species and 287 neglecting accordingly all the others (in spite of their equal role in the analytical approach 288 considered previously above). In this purely "accounting" approach, the focus is put on 289 290 the proportion p(N) = R(N)/N of those observations exclusively, which have provided 291 positive records of new species. In other words, instead of paying attention to $R(N) = \Sigma_x$ 292 $f_x(N)$, as previously, the focus is placed now upon: 293

R(N) = N.p(N)(13)

294 This proportion p(N) is pragmatically interesting in that it quantifies the gradual 295 weakening of sampling efficiency, i.e. the ever-slowering rate of detection of newly 296 recorded species, as sampling is going on further.

As for the Species Accumulation Curve, the proportion p(N) of those observations providing positive records of new species is highly polymorphic and this polymorphism,

here also, is limited by a constraining relationship applying to the expression of p(N).

301 Figure 7 – Typical shape of the proportion p(N) = R(N)/N of those observations providing positive 302 records of new species. Same inventory as in Figure 1. 303 304 305 I derive below this general relationship which constrains the proportion p(N). The derivation of R(N) yields, accounting for equation (13) and then equation (3): 306 $\left[\frac{\partial R_{(N)}}{\partial N}\right] = p(N) + N \left[\frac{\partial p(N)}{\partial N}\right] = (1/N) f_{1(N)}$ 307 (14)308 Further derivations yield successively: 309 $\left[\frac{\partial^2 R_{(N)}}{\partial N^2}\right] = 2 \left[\frac{\partial p(N)}{\partial N}\right] + N \left[\frac{\partial^2 p(N)}{\partial N^2}\right] = -(2/N^2) f_{2(N)}$ (15) $\left[\frac{\partial^3 R_{(N)}}{\partial N^3}\right] = 3 \left[\frac{\partial^2 p(N)}{\partial N^2}\right] + N \left[\frac{\partial^3 p(N)}{\partial N^3}\right] = (6/N^3) f_{3(N)}$ 310 (16)and more generally: 311 $\left[\frac{\partial^{x}R_{(N)}}{\partial N^{x}}\right] = x \left[\frac{\partial^{x-1}p(N)}{\partial N^{x-1}}\right] + N \left[\frac{\partial^{x}p(N)}{\partial N^{x}}\right] = (-1)^{x-1} (x!/N^{x}) f_{x(N)}$ 312 (17)313 Now, from equations (14) and (15), it follows: $[\partial^2 p(N)/\partial N^2] = (2/N^2).p(N) - (2/N^3).(f_{1(N)} + f_{2(N)})$ 314 (18)315 Similarly, from equations (16) and (18): 316 $[\partial^3 p(N)/\partial N^3] = -(6/N^3) \cdot p(N) + (6/N^4) \cdot (f_{1(N)} + f_{2(N)} + f_{3(N)})$ (19)317 and more generally: 318 $[\partial^{x} p(N) / \partial N^{x}] = (-1)^{x} \cdot (x! / N^{x}) \cdot p(N) + (-1)^{x-1} \cdot (x! / N^{x+1}) \cdot \Sigma_{i=1 \text{to } x} [f_{i}(N)]$ (20) At last, from equations (1) and (11), it follows: 319 $[\partial^{x} p(N) / \partial N^{x}] = (-1)^{x} \cdot (x! / N^{x+1}) \cdot \Sigma_{i > x} [f_{i}(N)]$ 320 (21)Note that there is part of a formal similarity between the general relationship (21) 321 constraining the proportion p(N) of those individual observations providing positive 322 records of new species and the general relationship (3) constraining the Species 323 Accumulation Curve R(N). Among the differences, however, the main one is that all the 324 $f_i(N)$ with i > x are involved in the relationship (21) constraining the proportion p(N)325 while it is only $f_i(N)$ for i = x which contributes in the relationship (3) constraining the 326 Species Accumulation Curve R(N). 327 One particular consequence of relationship (21) is that the successive derivatives of the 328 329 the proportion p(N) of observations providing positive records of new species have

alternating signs, (as for the Species Accumulation Curve) since the numbers $f_{x (N)}$ of

334

335

species recorded x-times are necessarily positive or nil. More precisely, for the proportion p(N), the derivatives of even and odd orders are respectively positive and negative, that

is the inverse of what is valid for the Species Accumulation Curves.

5. DISCUSSION

Five main features are emerging from the theoretical treatment (and the corresponding illustrative examples), regarding the variations, with sampling size N, of the numbers $f_x(N)$ of species respectively recorded x-times during sampling. It should be well understood that these features, all derived on theoretical basis, are *focal tendencies*, towards which the empirical data obtained from real samplings actually converges. But may yet more or less slightly deviate, due to sampling stochasticity.

342 Two trends were expected, being in obvious *accordance with intuition*:

1) all the numbers $f_{x(N)}$ of species recorded x-times are first increasing, then pass by a maximum and finally decrease to zero. Also, in addition, the curves describing the variations of each $f_{x(N)}$ (and the positions of their respective maxima) are regularly shifted towards higher values of sampling size N when x takes increasing values (Figure 2);

2) the same holds true, *mutatis mutandis*, for the number $x.f_{x(N)}$ of those recorded individuals belonging to anyone of species recorded x-times, whatever the value of x.

Now, three other trends, *by no means intuitive*, were newly derived above, related to the general mathematical relationship (6) which constrains the expressions and shapes of the $f_{x(N)}$:

352 3) when $f_{x (N)}$ reaches its maximum, in the course of progressive sampling, the 353 corresponding value taken by $f_{x+1 (N)}$ is then exactly [x/(x+1)] times the maximum value 354 taken by $f_{x (N)}$ (see Figure 2) ;

4) regarding now the number $x.f_{x(N)}$ of recorded individuals belonging to anyone of those species recorded x-times, it consistently happens that the curve describing the variations of (x+1).f_{x+1 (N)} intersects the curve of $x.f_{x(N)}$ exactly when the latter reaches its maximum value (see Figures 4, 5, 6);

5) at last, the number $f_{x (N)}$ of species recorded x-times in a sampling of size N is proportional to the sum of the variations of the preceding $f_{x (N)}$, when sampling size increases by one observation.

The three latter trends have *major importance* in that they determine the "chaining linkage" between the successive numbers $f_{x (N)}$ of species recorded x-times. And this is of importance because the successive numbers $f_{x (N)}$ regulate the process of cumulative species discovery during progressive sampling.

As already stressed, the general mathematical relationship (6)

$$x.f_{x(N)} - N.[\partial f_{x(N)}/\partial N] = (x+1).f_{x+1(N)}$$

which constrains the expressions and the shapes of the $f_{x(N)}$, is a corollary of the general relationship (A2.1), derived in Appendix A.2, which, in turn, constrains the theoretical expressions of all Species Accumulation Curves R(N). Thus, to get a full understanding of the underlying process of species accumulation during sampling, it is advisable to refer to the detailed demonstration leading to equation (A2.1) in Appendix.

373 374

367

6. CONCLUSION

The increasing number of newly recorded species (i.e. the "species accumulation") during progressive sampling gives rise to a rather simple shaped "Species Accumulation Curve". This apparent simplicity, indeed, does not incite to imagine the underlying complexity of the detailed process of species discovery and progressive accumulation. In fact, each new

10

individual observation may alternatively result in one or the other of a series of different 379 consequences. More precisely, each observation of a new individual (i.e. $N \rightarrow N + 1$) will 380 contribute to increase by one unity either $f_{1(N)}$, or $f_{2(N)}$, or $f_{3(N)}$, ..., $f_{x(N)}$, ... 381 Now, although each of the numbers $f_{x(N)}$ of species recorded x-times varies with N at *its* 382 own pace and out of phase with the others (Figure 2), the process of species accumulation 383 proves to be regulated, however, due to the above mentioned "chaining linkage" between 384 the successive $f_{x(N)}$. And this indeed is at the very heart of the detailed process of species 385 accumulation during progressive sampling. A process of major practical importance since 386 it is involved in all biodiversity surveys and, more specifically, is involved in the accurate 387 extrapolation of the Species Accumulation Curve. Accurate extrapolation which, in turn, 388 conditions the precise estimate of the total species richness of a partially sampled 389 assemblage of species and the reliable prediction of the additional sampling effort 390 required to obtain a given increase in sample completeness. 391 392 393 The constraining mathematical relationships highlighted above are summarized as 394 follows : 395 * relationship applying to the Species Accumulation Curve, R(N) itself : equations (2) & (3): 396 $[\partial^{x} R_{(N)} / \partial N^{x}] = (-1)^{x-1} f_{x(N)} / C_{N,x} \approx (-1)^{x-1} (x! / N^{x}) f_{x(N)}$ 397 398 * relationship applying to the proportion of efficient observations, p(N) = R(N)/N: 399 400 equation (21): $\left[\frac{\partial^{x} p(N)}{\partial N^{x}}\right] = (-1)^{x} \cdot (x! / N^{x+1}) \cdot \Sigma_{i > x} \left[f_{i}(N)\right]$ 401 402 * relationship applying to the numbers f₁(N), f₂(N), f₃(N),..., f_x(N),... of those species 403 *respectively recorded 1, 2, 3, .., x-times* during sampling: 404 equation (6): 405 $x.f_{x(N)} - N.[\partial f_{x(N)}/\partial N] = (x+1).f_{x+1(N)}$ 406 407 and its three corollaries: equations (7), (10) and (12): 408 $f_{x+1(N)} = [x/(x+1)] f_{x(N)}$ valid when $\partial f_{x(N)}/\partial N = 0$ 409 410 $f_{x(N)} = -(N/x) \sum_{i} \left[\partial f_{i(N)} / \partial N \right]$ 411 with the sum Σ_i extended from i = 0 to i = (x - 1) 412 and, at last: 413 $-\Sigma_{i} \left[(\partial f_{i(N)} / \partial N) \cdot (X - i) \right] = 1$ 414 with X as the larger value of x for which $f_{X(N)} \neq 0$ 415 and the sum Σ_i extended from i = 0 to i = (X - 1)416 417 418 **APPENDICES** 419 A.1 - Derivation of the constraining relationship between $\partial^x R_{(N)} / \partial N^x$ and $f_{x(N)}$ 420 The shape of the theoretical Species Accumulation Curve is directly dependent upon the 421 particular Species Abundance Distribution (the "S.A.D.") within the sampled assemblage 422 of species. That means that beyond the common general traits shared by all Species 423 Accumulation Curves, each particular species assemblage give rise to a specific Species 424 Accumulation Curve with its own, unique shape, considered in detail. Now, it turns out 425 that, in spite of this diversity of particular shapes, all the Species Accumulation Curves are, 426

426 that, in spice of this diversity of particular shapes, an the species Accumulation curves are,
 427 nevertheless, *constrained by a same mathematical relationship* that rules their successive

derivatives (and, thereby, rules the details of the curve shape since the successive derivatives altogether define the local shape of the curve in any details). Moreover, it turns

- 430 out that this general mathematical constraint relates bi-univocally each derivative at
- 431 order x $\left[\frac{\partial^x R_{(N)}}{\partial N^x} \right]$ to the number, $f_{x(N)}$, of species recorded x-times in the considered
- 432 sample of size N. And, as the series of the $f_{x(N)}$ are obviously directly dependent upon the
- 433 particular Distribution of Species Abundance within the sampled assemblage of species, 434 it follows that this mathematical relationship between $\partial^{x}R_{(N)}/\partial N^{x}$ and $f_{x(N)}$, ultimately
- reflects the indirect but strict dependence of the shape of the Species Accumulation Curve
- upon the particular Distribution of the Species Abundances (the so called S.A.D.) within
 the assemblage of species under consideration. In this respect, this constraining
 relationship is central to the process of species accumulation during progressive
- 439 sampling, and is therefore at the heart of any reasoned approach to the extrapolation of440 any kind of Species Accumulation Curves.
- 441 This fundamental relationship may be derived as follows.
- Let consider an assemblage of species containing an unknown total number 'S' of species.
 Let R be the number of recorded species in a partial sampling of this assemblage
- comprising N individuals. Let p_i be the probability of occurrence of species 'i' in the sample This probability is assimilated to the relative *abundance* of species 'i' within this assemblage or to the relative *incidence* of species 'i' (its proportion of occurrences) within a set of sampled sites. The number Δ of missed species (unrecorded in the sample) is $\Delta =$ S - R.
- 449 The estimated number Δ of those species that escape recording during sampling of the 450 assemblage is a decreasing function $\Delta_{(N)}$ of the sample of size N, which depends on the
- 451 particular distribution of species abundances pi: 452 $\Delta_{(N)} = \Sigma_i (1-p_i)^N \quad (A1.1)$
- 453 with Σ_i as the operation summation extended to the totality of the 'S' species 'i' in the 454 assemblage (either *recorded* or *not*)
- The expected number f_x of species recorded *x times* in the sample, is then, according to the binomial distribution:

457 $f_x = [N!/X!/(N-x)!] \Sigma_i [(1-p_i)^{N-x} p_i^x] = C_{N,x} \Sigma_i (1-p_i)^{N-x} p_i^x$ (A1.2) 458 with $C_{N,x} = N!/X!/(N-x)!$

- We shall now derive the relationship between the successive derivatives of $R_{(N)}$, the theoretical Species Accumulation Curve and the expected values for the series of 'f_x'. According to equation (A1.2):
- 461 462

463 $\blacktriangleright f_1 = N \Sigma_i [(1-p_i)^{N-1} p_i] = N \Sigma_i [(1-p_i)^{N-1} (1-(1-p_i))] = N \Sigma_i [(1-p_i)^{N-1}] - N \Sigma_i [(1-p_i)^{N-1} (1-p_i))]$

- 464 = N $\Sigma_i [(1-p_i)^{N-1}] N \Sigma_i [(1-p_i)^N].$
- 465 Then, according to equation (A1) it comes: $f_1 = N (\Delta_{(N-1)} \Delta_{(N)}) = -N (\Delta_{(N)} \Delta_{(N-1)})$
- 466 = N $(\partial \Delta_{(N)}/\partial N)$ = N $\Delta'_{(N)}$
- 467 where $\Delta'_{(N)}$ is the first derivative of $\Delta_{(N)}$ with respect to N. Thus:
- 468

 $f_1 = -N \Delta'_{(N)}$ (= - C_{N,1} $\Delta'_{(N)}$) (A1.3)

469 Similarly:

470 \blacktriangleright f₂ = C_{N, 2} Σ_i [(1-p_i)^{N-2} p_i²] according to equation (A1.2)

 $471 = C_{N, 2} \Sigma_i \left[(1-p_i)^{N-2} \left(1 - (1-p_i^2) \right) \right] = C_{N, 2} \left[\Sigma_i \left[(1-p_i)^{N-2} \right] - \Sigma_i \left[(1-p_i)^{N-2} (1-p_i^2) \right] \right]$

472	$= C_{N, 2} \left[\Sigma_i \left[(1-p_i)^{N-2} \right] - \Sigma_i \left[(1-p_i)^{N-2} (1-p_i) (1+p_i) \right] \right] = C_{N, 2} \left[\Sigma_i \left[(1-p_i)^{N-2} \right] - \Sigma_i \left[(1-p_i)^{N-1} (1+p_i) \right] \right]$
473	= $C_{N,2} [(\Delta_{(N-2)} - \Delta_{(N-1)}) - f_1/N]$ according to equations (A2.1) and (A1.2)
474	$= C_{N,2} \left[-\Delta'_{(N-1)} - f_1/N \right] = C_{N,2} \left[-\Delta'_{(N-1)} + \Delta'_{(N)} \right] \text{ since } f_1 = -N \Delta'_{(N)} (\textit{cf. equation (A1.3)}).$
475	= $C_{N,2} [(\partial \Delta'_{(N)}/\partial N)] = [N(N-1)/2] (\partial^2 \Delta_{(N)}/\partial N^2) = [N(N-1)/2] \Delta''_{(N)}$
476	where $\Delta''_{(N)}$ is the second derivative of $\Delta_{(N)}$ with respect to N. Thus:
477	$f_2 = [N(N-1)/2] \Delta''_{(N)} = C_{N,2} \Delta''_{(N)} $ (A1.4)
478	► $f_3 = C_{N,3} \Sigma_i [(1-p_i)^{N-3} p_i^3]$ which, by the same process, yields:
479	$= C_{N,3} \left[\sum_{i} (1-p_i)^{N-3} - \sum_{i} (1-p_i)^{N-2} - \sum_{i} \left[(1-p_i)^{N-2} p_i \right] - \sum_{i} \left[(1-p_i)^{N-2} p_i^2 \right] \right]$
480	= $C_{N,3} [(\Delta_{(N-3)} - \Delta_{(N-2)}) - f_1^*/(N-1) - 2 f_2/(N(N-1))]$ according to equations (A2.1) and
481	(A1.2)
482 483 484	where f1* is the number of singletons that would be recorded in a sample of size (N - 1) instead of N. According to equations (A1.3) & (A1.4):
485	$f_1^* = -(N-1) \Delta'_{(N-1)} = -C_{N-1,1} \Delta'_{(N-1)}$ and $f_2 = [N(N-1)/2] \Delta''_{(N)} = C_{N-1,2} \Delta''_{(N)}$ (A1.5)
486	where $\Delta'_{(N-1)}$ is the first derivate of $\Delta_{(N)}$ with respect to N, at point (N-1). Then,
487	$f_{3} = C_{N,3} \left[\left(\Delta_{(N-3)} - \Delta_{(N-2)} \right) + \Delta'_{(N-1)} - \Delta''_{(N)} \right] = C_{N,3} \left[-\Delta'_{(N-2)} + \Delta'_{(N-1)} - \Delta''_{(N)} \right]$
488	$= C_{N,3} \left[\Delta''_{(N-1)} - \Delta''_{(N)} \right] = C_{N,3} \left[-\partial \Delta''_{(N)} / \partial N \right] = C_{N,3} \left[-\partial^3 \Delta_{(N)} / \partial N^3 \right] = C_{N,3} \Delta'''_{(N)}$
489	where $\Delta'''(N)$ is the third derivative of $\Delta(N)$ with respect to N. Thus :
105	
490	$f_3 = -C_{N,3} \Delta'''_{(N)}$ (A1.6)
490 491 492	$f_3 = -C_{N,3} \Delta'''_{(N)} \qquad (A1.6)$ Now, generalising for the number f_x of species recorded <i>x</i> times in the sample: $f_x = C_{N,x} \Sigma_i [(1-p_i)^{N-x} p_i^x] according to equation (A1.2),$
490 491 492 493	$f_{3} = -C_{N, 3} \Delta'''_{(N)} $ (A1.6) Now, generalising for the number f_{x} of species recorded <i>x</i> times in the sample: $f_{x} = C_{N, x} \Sigma_{i} [(1-p_{i})^{N-x} p_{i}^{x}] $ according to equation (A1.2), $= C_{N, x} \Sigma_{i} [(1-p_{i})^{N-x} (1 - (1 - p_{i}^{x}))] = C_{N, x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}^{x})]]$
490 491 492 493 494	$f_{3} = -C_{N, 3} \Delta'''_{(N)} $ (A1.6) Now, generalising for the number f_{x} of species recorded <i>x times</i> in the sample: $f_{x} = C_{N, x} \Sigma_{i} [(1-p_{i})^{N-x} p_{i}^{x}] $ according to equation (A1.2), $= C_{N, x} \Sigma_{i} [(1-p_{i})^{N-x} (1 - (1 - p_{i}^{x}))] = C_{N, x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}^{x})]]$ $= C_{N, x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i})(\Sigma_{j} p_{i}^{j})]]$
490 491 492 493 494 495	$f_{3} = -C_{N, 3} \Delta'''_{(N)} $ (A1.6) Now, generalising for the number f_{x} of species recorded <i>x times</i> in the sample: $f_{x} = C_{N, x} \Sigma_{i} [(1-p_{i})^{N-x} p_{i}^{x}] $ according to equation (A1.2), $= C_{N, x} \Sigma_{i} [(1-p_{i})^{N-x} (1 - (1 - p_{i}^{x}))] = C_{N, x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}^{x})]]$ $= C_{N, x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}) (\Sigma_{j} p_{i}^{j})]]$ with Σ_{j} as the summation from $j = 0$ to $j = x-1$. It comes:
490 491 492 493 494 495 496	$f_{3} = -C_{N, 3} \Delta'''_{(N)} $ (A1.6) Now, generalising for the number f_{x} of species recorded <i>x times</i> in the sample: $ f_{x} = C_{N, x} \Sigma_{i} [(1-p_{i})^{N-x} p_{i}^{x}] \text{ according to equation (A1.2),} $ $ = C_{N, x} \Sigma_{i} [(1-p_{i})^{N-x} (1 - (1 - p_{i}^{x}))] = C_{N, x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}^{x})]] $ $ = C_{N, x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}) (\Sigma_{j} p_{i}^{j})]] $ $ \text{with } \Sigma_{j} \text{ as the summation from } j = 0 \text{ to } j = x-1. \text{ It comes:} $ $ f_{x} = C_{N, x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x+1} (\Sigma_{j} p_{i}^{j})]] $
490 491 492 493 494 495 496 497	$f_{3} = -C_{N,3} \Delta'''_{(N)} \qquad (A1.6)$ Now, generalising for the number f_{x} of species recorded <i>x</i> times in the sample: $ f_{x} = C_{N,x} \Sigma_{i} [(1-p_{i})^{N-x} p_{i}^{x}] \text{according to equation (A1.2),} $ $ = C_{N,x} \Sigma_{i} [(1-p_{i})^{N-x} (1 - (1 - p_{i}^{x}))] = C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}^{x})]] $ $ = C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}) (\Sigma_{j} p_{i}^{j})]] $ $ \text{with } \Sigma_{j} \text{ as the summation from } j = 0 \text{ to } j = x-1. \text{ It comes:} $ $ f_{x} = C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x+1} (\Sigma_{j} p_{i}^{j})]] $ $ = C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x+1} (\Sigma_{j} p_{i}^{j})]] $
490 491 492 493 494 495 496 497 498	$f_{3} = -C_{N, 3} \Delta'''_{(N)} \qquad (A1.6)$ Now, generalising for the number f_{x} of species recorded <i>x times</i> in the sample: $f_{x} = C_{N, x} \Sigma_{i} [(1-p_{i})^{N-x} p_{i}^{x}] \text{according to equation (A1.2),}$ $= C_{N, x} \Sigma_{i} [(1-p_{i})^{N-x} (1 - (1 - p_{i}^{x}))] = C_{N, x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}^{x})]]$ $= C_{N, x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}) (\Sigma_{i} p_{i}^{j})]]$ with Σ_{i} as the summation from $j = 0$ to $j = x-1$. It comes: $f_{x} = C_{N, x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x+1} (\Sigma_{j} p_{i}^{j})]]$ $= C_{N, x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x+1} - \Sigma_{k} [(\Sigma_{i} (1-p_{i})^{N-x+1} p_{i}^{k})]]$ with Σ_{k} as the summation from $k = 1$ to $k = x-1$; that is:
490 491 492 493 494 495 496 497 498 499	$f_{3} = -C_{N,3} \Delta'''_{(N)} \qquad (A1.6)$ Now, generalising for the number f_{x} of species recorded <i>x times</i> in the sample: $f_{x} = C_{N,x} \Sigma_{i} [(1-p_{i})^{N-x} p_{i}^{x}] \text{according to equation (A1.2),}$ $= C_{N,x} \Sigma_{i} [(1-p_{i})^{N-x} (1 - (1 - p_{i}^{x}))] = C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}^{x})]]$ $= C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}) (\Sigma_{j} p_{i}^{j})]]$ with Σ_{j} as the summation from $j = 0$ to $j = x-1$. It comes: $f_{x} = C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x+1} (\Sigma_{j} p_{i}^{j})]]$ $= C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x+1} - \Sigma_{k} [(\Sigma_{i} (1-p_{i})^{N-x+1} p_{i}^{k})]]$ with Σ_{k} as the summation from $k = 1$ to $k = x-1$; that is: $f_{x} = C_{N,x} [(\Delta_{(N-x)} - \Delta_{(N-x+1)}) - \Sigma_{k} (f_{k}^{*}/C_{(N-x+1+k),k})]$ according to equations (A1.1) and
 490 491 492 493 494 495 496 497 498 499 500 	$f_{3} = -C_{N,3} \Delta'''_{(N)} \qquad (A1.6)$ Now, generalising for the number f_{x} of species recorded <i>x times</i> in the sample: $f_{x} = C_{N,x} \Sigma_{i} [(1-p_{i})^{N-x} p_{i}^{x}] \text{according to equation (A1.2),}$ $= C_{N,x} \Sigma_{i} [(1-p_{i})^{N-x} (1 - (1 - p_{i}^{x}))] = C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}^{x})]]$ $= C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}) (\Sigma_{j} p_{i}^{j})]]$ with Σ_{j} as the summation from $j = 0$ to $j = x-1$. It comes: $f_{x} = C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x+1} (\Sigma_{j} p_{i}^{j})]]$ $= C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x+1} - \Sigma_{k} [(\Sigma_{i} (1-p_{i})^{N-x+1} p_{i}^{k})]]$ with Σ_{k} as the summation from $k = 1$ to $k = x-1$; that is: $f_{x} = C_{N,x} [(\Delta_{(N-x)} - \Delta_{(N-x+1)}) - \Sigma_{k} (f_{k}^{*}/C_{(N-x+1+k),k})]$ according to equations (A1.1) and (A1.2))
 490 491 492 493 494 495 496 497 498 499 500 501 	$f_{3} = -C_{N,3} \Delta'''_{(N)} \qquad (A1.6)$ Now, generalising for the number f_{x} of species recorded <i>x times</i> in the sample: $ f_{x} = C_{N,x} \sum_{i} [(1-p_{i})^{N-x} p_{i}x] \text{according to equation (A1.2),} = C_{N,x} \sum_{i} [(1-p_{i})^{N-x} (1 - (1 - p_{i}x))] = C_{N,x} [\sum_{i} (1-p_{i})^{N-x} - \sum_{i} [(1-p_{i})^{N-x} (1 - p_{i}x)]] = C_{N,x} \sum_{i} [(1-p_{i})^{N-x} - \sum_{i} [(1-p_{i})^{N-x} (1 - p_{i})]] = C_{N,x} \sum_{i} [(1-p_{i})^{N-x} - \sum_{i} [(1-p_{i})^{N-x} (1 - p_{i})]] $ with Σ_{i} as the summation from $j = 0$ to $j = x-1$. It comes: $f_{x} = C_{N,x} \sum_{i} [(1-p_{i})^{N-x} - \sum_{i} [(1-p_{i})^{N-x+1} (\sum_{j} p_{i}^{j})]] = C_{N,x} \sum_{i} (1-p_{i})^{N-x} - \sum_{i} [(1-p_{i})^{N-x+1} - \sum_{k} [(\sum_{i} (1-p_{i})^{N-x+1} p_{i}^{k})]] $ with Σ_{k} as the summation from $k = 1$ to $k = x-1$; that is: $f_{x} = C_{N,x} [(\Delta_{(N-x)} - \Delta_{(N-x+1)}) - \sum_{k} (f_{k}^{*}/C_{(N-x+1+k),k})]$ according to equations (A1.1) and (A1.2)) where $C_{(N-x+1+k),k} = (N-x+1+k)!/k!/(N-x+1)!$ and f_{k}^{*} is the expected number of species
 490 491 492 493 494 495 496 497 498 499 500 501 502 	$f_{3} = -C_{N, 3} \Delta^{''(N)} $ (A1.6) Now, generalising for the number f _x of species recorded <i>x times</i> in the sample: $ f_{x} = C_{N, x} \Sigma_{i} [(1-p_{i})^{N-x} p_{i}x] $ according to equation (A1.2), $ = C_{N, x} \Sigma_{i} [(1-p_{i})^{N-x} (1 - (1 - p_{i}x))] = C_{N, x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}x)]] $ $ = C_{N, x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}) (\Sigma_{j} p_{i}^{j})]] $ with Σ_{j} as the summation from $j = 0$ to $j = x-1$. It comes: $ f_{x} = C_{N, x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x+1} (\Sigma_{j} p_{i}^{j})]] $ $ = C_{N, x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} (1-p_{i})^{N-x+1} - \Sigma_{k} [(\Sigma_{i} (1-p_{i})^{N-x+1} p_{i}^{k})]] $ with Σ_{k} as the summation from $k = 1$ to $k = x-1$; that is: $ f_{x} = C_{N, x} [[\Delta_{(N-x)} - \Delta_{(N-x+1)}] - \Sigma_{k} (f_{k}^{*}/C_{(N-x+1+k), k})] $ according to equations (A1.1) and (A1.2)) where $C_{(N-x+1+k), k} = (N-x+1+k)!/k!/(N-x+1)!$ and f_{k}^{*} is the expected number of species recorded k times during a sampling of size (N-x+1+k) (instead of size N).
 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 	$f_{3} = -C_{N,3} \Delta'''_{(N)} \qquad (A1.6)$ Now, generalising for the number f_{x} of species recorded x times in the sample: $ f_{x} = C_{N,x} \Sigma_{i} [(1-p_{i})^{N-x} p_{i}^{x}] \text{according to equation (A1.2),} $ $= C_{N,x} \Sigma_{i} [(1-p_{i})^{N-x} (1 - (1 - p_{i}^{x}))] = C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}^{x})]] $ $= C_{N,x} [\Sigma_{i} ((1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}) (\Sigma_{j} p_{i}^{j})]] $ with Σ_{j} as the summation from $j = 0$ to $j = x-1$. It comes: $f_{x} = C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x+1} (\Sigma_{j} p_{i}^{j})]] $ $= C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x+1} - \Sigma_{k} [(\Sigma_{i} (1-p_{i})^{N-x+1} p_{i}^{k})]] $ with Σ_{k} as the summation from $k = 1$ to $k = x-1$; that is: $f_{x} = C_{N,x} [[\Delta_{(N-x)} - \Delta_{(N-x+1)}] - \Sigma_{k} (f_{k}^{*}/C_{(N-x+1+k),k})] \text{ according to equations (A1.1) and (A1.2)} $ where $C_{(N-x+1+k),k} = (N-x+1+k)!/k!/(N-x+1)!$ and f_{k}^{*} is the expected number of species recorded k times during a sampling of size $(N-x+1+k)$ (instead of size N). The same demonstration, which yields previously the expression of f_{1}^{*} above (equation (A1.5)), applies for the f_{k}^{*} (with k up to x-1) and gives: $f_{k}^{*} = (-1)^{k} (C_{(N-x+1+k),k}) \Delta^{(k)}_{(N-x+1+k)}$ (A1.7)
 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 	$f_{3} = -C_{N,3} \Delta^{''}(N) \qquad (A1.6)$ Now, generalising for the number f_{x} of species recorded x times in the sample: $f_{x} = C_{N,x} \Sigma_{i} [(1-p_{i})^{N-x} p_{i}^{x}] according to equation (A1.2),$ $= C_{N,x} \Sigma_{i} [(1-p_{i})^{N-x} (1 - (1 - p_{i}^{x}))] = C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}^{x})]]$ $= C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}) (\Sigma_{i} p_{i}^{j})]]$ with Σ_{j} as the summation from $j = 0$ to $j = x-1$. It comes: $f_{x} = C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x+1} (\Sigma_{j} p_{i}^{j})]]$ $= C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x+1} - \Sigma_{k} [(\Sigma_{i} (1-p_{i})^{N-x+1} p_{i}^{k})]]$ with Σ_{k} as the summation from $k = 1$ to $k = x-1$; that is: $f_{x} = C_{N,x} [(\Delta_{(N-x)} - \Delta_{(N-x+1)}) - \Sigma_{k} (f_{k}^{*}/C_{(N-x+1+k),k})]$ according to equations (A1.1) and (A1.2)) where $C_{(N-x+1+k),k} = (N-x+1+k)!/k!/(N-x+1)!$ and f_{k}^{*} is the expected number of species recorded k times during a sampling of size $(N-x+1+k)$ (instead of size N). The same demonstration, which yields previously the expression of f_{1}^{*} above (equation (A1.5)), applies for the f_{k}^{*} (with k up to x-1) and gives: $f_{k}^{*} = (-1)^{k} (C_{(N-x+1+k),k}) \Delta^{(k)}_{(N-x+1+k)} $ (A1.7) where $\Delta^{(k)}_{(N-x+1+k)}$ is the k th derivate of $\Delta_{(N)}$ with respect to N, at point (N-x+1+k). Then,
 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 	$f_{3} = -C_{N,3} \Delta'''_{(N)} \qquad (A1.6)$ Now, generalising for the number f_{x} of species recorded x times in the sample: $\blacktriangleright f_{x} = C_{N,x} \Sigma_{i} [(1-p_{i})^{N-x} p_{i}^{x}] \text{according to equation (A1.2),}$ $= C_{N,x} \Sigma_{i} [(1-p_{i})^{N-x} (1 - (1 - p_{i}^{x}))] = C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}^{x})]]$ $= C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x} (1 - p_{i}) (\Sigma_{j} p_{i}^{j})]]$ with Σ_{i} as the summation from $j = 0$ to $j = x-1$. It comes: $f_{x} = C_{N,x} [\Sigma_{i} (1-p_{i})^{N-x} - \Sigma_{i} [(1-p_{i})^{N-x+1} (\Sigma_{j} p_{i}^{j})]]$ with Σ_{k} as the summation from $k = 1$ to $k = x-1$; that is: $f_{x} = C_{N,x} [[\Delta_{i} (1-p_{i})^{N-x} - \Sigma_{i} (1-p_{i})^{N-x+1} - \Sigma_{k} [(\Sigma_{i} (1-p_{i})^{N-x+1} p_{i}^{k})]]$ with Σ_{k} as the summation from $k = 1$ to $k = x-1$; that is: $f_{x} = C_{N,x} [[\Delta_{(N-x)} - \Delta_{(N-x+1)}) - \Sigma_{k} (f_{k}^{*}/C_{(N-x+1+k),k})]$ according to equations (A1.1) and (A1.2)) where $C_{(N-x+1+k),k} = (N-x+1+k)!/k!/(N-x+1)!$ and f_{k}^{*} is the expected number of species recorded k times during a sampling of size $(N-x+1+k)$ (instead of size N). The same demonstration, which yields previously the expression of f_{1}^{*} above (equation (A1.5)), applies for the f_{k}^{*} (with k up to x-1) and gives: $f_{k}^{*} = (-1)^{k} (C_{(N-x+1+k),k}) \Delta^{(k)}(N-x+1+k)$ (M1.7) where $\Delta^{(k)}_{(N-x+1+k)}$ is the k th derivate of $\Delta_{(N)}$ with respect to N, at point (N-x+1+k). Then, $f_{x} = C_{N,x} [[(\Delta_{(N-x)} - \Delta_{(N-x+1)}) - \Sigma_{k} ((-1)^{k} \Delta^{(k)}_{(N-x+1+k)})]$,

508 which finally yields :

509	$f_x = C_{N,x} \left[(-1)^x \left(\partial \Delta^{(x-1)}(N) / \partial N \right) \right] = C_{N,x} \left[(-1)^x \left(\partial^x \Delta_{(N)} / \partial N^x \right) \right].$ That is:			
510	$f_{x} = (-1)^{x} C_{N, x} \Delta^{(x)}(N) = (-1)^{x} C_{N, x} [\partial^{x} \Delta_{(N)} / \partial^{N} X] $ (A1.8)			
511 512	where $[\partial^x \Delta_{(N)}/\partial N^x]$ is the x th derivative of $\Delta_{(N)}$ with respect to N, at point N. Conversely:			
513	$\left[\frac{\partial^{x} \Delta_{(N)}}{\partial N^{x}}\right] = (-1)^{x} f_{x} / C_{N, x} \qquad (A1.9)$			
514	Note that, in practice, leaving aside the beginning of sampling, N rapidly increases much			
515	greater than x, so that the preceding equation simplifies as: $\begin{bmatrix} \partial_x A_{op} / \partial Nx \end{bmatrix} = \begin{pmatrix} -1 \\ x \end{pmatrix} \begin{bmatrix} y \\ y \end{bmatrix} \begin{pmatrix} Nx \\ x \end{bmatrix} = \begin{pmatrix} -1 \\ x \end{pmatrix} \begin{bmatrix} y \\ y \end{bmatrix} \begin{pmatrix} Nx \\ x \end{bmatrix} = \begin{pmatrix} -1 \\ x \end{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{pmatrix} -1 \\ x \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{pmatrix} -1 \\ x \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{pmatrix} -1 \\ x \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{pmatrix} -1 \\ x \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{pmatrix} -1 \\ x \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{pmatrix} -1 \\ x \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{pmatrix} -1 \\ x \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{pmatrix} -1 \\ x \end{pmatrix} \end{pmatrix} \begin{pmatrix} -1 \\ x \end{pmatrix} \begin{pmatrix} -1 \\ x \end{pmatrix} \end{pmatrix} \begin{pmatrix} -1 \\ x \end{pmatrix} \begin{pmatrix} -1 \\ x \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} -1 \\ x \end{pmatrix} \end{pmatrix} \begin{pmatrix} -1 \\ x \end{pmatrix} \end{pmatrix} \begin{pmatrix} -1 \\ x \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} -1 \\ x \end{pmatrix} \end{pmatrix} \begin{pmatrix} -1 \\ x \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} -1 \\ x \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} -1 \\ x \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} -1 \\ x $			
510	$[0^{A}\Delta(N)/0N^{A}] = (-1)^{A}(X!/N^{A}) I_{X}(N) $ (A1.10) In particular:			
518	$[\partial \Delta_{(N)} / \partial N] = f_{1(N)} / N \qquad (A1.11)$			
519	$\left[\frac{\partial^2 \Delta_{(N)}}{\partial N^2}\right] = 2 f_{2(N)}/N^2 (A1.12)$			
520	This relation (A1.9) has general relevance since it does not involve any specific			
521	assumption relative to either (i) the particular shape of the distribution of species			
522 523	species accumulation rate Accordingly this relation constrains any theoretical form of			
524	species accumulation rules. As already mentioned, the shape of the species			
525	accumulation curve is entirely defined (at any value of sample size N) by the series of the			
526	successive derivatives $[\partial^x R_{(N)}/\partial N^x]$ of the predicted number $R(N)$ of recorded species for			
527	a sample of size N: $\begin{bmatrix} 2xD_{nn} & (2Nx) \end{bmatrix} = (-1)(x-1)f_{nn} (C_{nn}) $ (A1-12)			
528 529	$[\partial^{K}(N)/\partial N^{A}] = (-1)^{(X^{-1})} I_{X}/CN, x$ (A1.13) with $[\partial^{X}R_{OD}/\partial N^{X}]$ as the x th derivative of R_{OD} with respect to N at point N and $C_{N,n} = N!/(N_{-1})^{1/2}$			
530	x)!/x! (since the number of recorded species $R_{(N)}$ is equal to the total species richness S			
531	minus the expected number of missed species $\Delta(N)$.			
532	As above, equation (A1.13) simplifies in practice as:			
533	$\partial^{x} R_{(N)} / \partial N^{x} = (-1)^{(x-1)} (x! / N^{x}) f_{x(N)}$ (A1.14)			
534	Equation (A1.13) makes quantitatively explicit the dependence of the shape of the species			
535 536	R(N) upon the shape of the distribution of species abundances in the sampled			
537	assemblage of species.			
538				
539	A2 - An alternative derivation of the relationship between $\partial^x R_{(N)}/\partial N^x$ and $f_{x(N)}$			
540	Consider a sample of size N (N individuals collected) extracted from an assemblage of S			
541	species and let G_i be the group comprising those species collected i-times and $f_{i(N)}$ their			
542	number in G_i . The number of collected individuals in group G_i is thus $1.f_i(N)$, that is a propertient if G_i . (N of all individuals collected in the sample. New each newly collected			
543 544	proportion $I.Ii_{(N)}/N$ of all individuals collected in the sample. Now, each newly collected individual will either belong to a new species (probability 1 fr /N – fr /N) or to an already			
544 545	collected species (probability $1 - f_1/N$) according to [6]. In the latter case, the proportion			
546	$i_{f(N)}/N$ of individuals within the group G_i accounts for the probability that the newly			
547	collected individual will contribute to increase by one the number of species that belong			
548	to the group G_i (that is will generate a transition $[i-1 \rightarrow i]$ under which the species to which			
549	it belongs leaves the group G_{i-1} to join the group G_i). Likewise, the probability that the			
550	newly collected individual will contribute to reduce by one the number of species that			
551	belong to the group G_i (that is will generate a transition $[i \rightarrow i+1]$ under which the species			
552	leaves the group G_i to join the group G_{i+1} is $(i+1).f_{i+1(N)}/N$.			
553	Accordingly, for $1 \ge 1$: $\frac{\partial f_{\text{env}}}{\partial N} = [i f_{\text{env}}/N - (i+1) f_{\text{env}}/N](1 - f_{\text{env}}/N) = (A2.0)$			
554	$U_{Ii(N)}/U_{IN} = [1.I_{Ii(N)}/I_{N} - (1+1).I_{I+1(N)}/I_{N}](1 - I_{1}/I_{N})$ (A2.0)			

Leaving aside the very beginning of sampling, and thus considering values of sample size 555 556 N substantially higher than f₁, it comes: $\partial f_{i(N)}/\partial N = i f_{i(N)}/N - (i+1) f_{i+1(N)}/N$ 557 (A2.1) Let consider now the Species Accumulation Curve R(N), that is the number R(N) of species 558 that have been recorded in a sample of size N. The probability that a newly collected 559 individual belongs to a still unrecorded species corresponds to the probability of the 560 transition $[0 \rightarrow 1]$, equal to i.f_{i(N)}/N with i = 1, that is: f_{1(N)}/N (as already mentioned). 561 Accordingly, the first derivative of the Species Accumulation Curve R(N) at point N is 562 $\partial R_{(N)} / \partial N = f_{1(N)} / N$ (A2.2) 563 In turn, as $f_{1(N)} = N \cdot \partial R_{(N)} / \partial N$ (from equation (A2.2)) it comes: 564 $\partial f_{1(N)}/\partial N = \partial [N(\partial R_{(N)}/\partial N)]/\partial N = N(\partial^2 R_{(N)}/\partial N^2) + \partial R_{(N)}/\partial N$ 565 On the other hand, according to equation (A2.1): 566 $\partial f_{1(N)} / \partial N = 1.f_{1(N)} / N - 2.f_{2(N)} / N = f_{1(N)} / N - 2f_{2(N)} / N$, and therefore: 567 $N(\partial^2 R_{(N)}/\partial N^2) + \partial R_{(N)}/\partial N = f_{1(N)}/N - 2f_{2(N)}/N$ 568 And as $\partial R_{(N)}/\partial N = f_{1(N)}/N$ according to equation (A2.2): 569 570 $\partial^2 R_{(N)} / \partial N^2 = -2f_{2(N)} / N^2$ (A2.3) 571 Likewise, as $f_{2(N)} = -N^2/2.(\partial^2 R_{(N)}/\partial N^2)$, it comes: 572 $\partial f_{2(N)}/\partial N = \partial \left[-N^2/2.(\partial^2 R_{(N)}/\partial N^2)\right]/\partial N = -N(\partial^2 R_{(N)}/\partial N^2) - N^2/2.(\partial^3 R_{(N)}/\partial N^3)$ 573 As $\partial f_{2(N)}/\partial N = 2f_{2(N)}/N - 3f_{3(N)}/N$, according to equation (A2.1), it comes: 574 $-N(\partial^2 R_{(N)}/\partial N^2) - N^2/2.(\partial^3 R_{(N)}/\partial N^3) = 2f_{2(N)}/N - 3f_{3(N)}/N$ 575 and as $\partial^2 R_{(N)} / \partial N^2 = -2f_{2(N)} / N^2$, according to equation (A2.3), it comes: 576 $\partial^3 R_{(N)} / \partial N^3 = + 6 f_{3(N)} / N^3$ (A2.4) More generally: 577 $\partial^{x} R_{(N)} / \partial N^{x} = (-1)^{(x-1)} (x! / N^{x}) f_{x(N)}$ 578 (A2.5) 579 580

588 589

592

587

REFERENCES

- 1. Chiarucci A, Bacaro G, Rocchini D & Fattorini L Discovering and rediscovering the sample based rarefaction formula in the ecological literature. *Community Ecology*. 590 2008; **9**(1): 121-123. 591
- 2. Gotelli NJ & Chao A Measuring and Estimating Species Richness, Species Diversity, 593 and Biotic Similarity from Sampling Data. In: Levin SA (ed.) Encyclopedia of 594 Biodiversity, second edition. 2013, Volume 5, pp. 195-211. Waltham, MA: 595 Academic Press. 596 597
- Theoretical derivation of a bias-reduced expression for the 3. Béguinot J 598 extrapolation of the Species Accumulation Curve and the associated estimation of 599 total species richness. Advances in Research. 2016 ; 7(3): 1-16. doi: 600 601 10.9734/AIR/2016/26387; hal-01367803 602

603 604 605	4.	Lee CM, Kim SS & Kwon TS Butterfly fauna in Mount Gariwang-san, Korea. Journal of Asia-Pacific Biodiversity. 2016 ; 9: 198-204.
606	5.	Li XS, Zhang YL, Fang JH, Schweiger O & Settele J - A butterfly 'hotspot' in Western
607		China, its environmental threats and conservation. Journal of Insect Conservation.
608		2010 ; doi 10.1007/s10841-010-9361-8
609		
610	6.	Lee SM & Chao A Estimating population size via sample coverage for closed
611		capture-recapture models. Biometrics. 1994 ; 50(1): 88-97.
612		