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On general mathematical constraints applying to the kinetics 1 

 of species discovery during progressive sampling and  2 

to the resulting expression of the Species Accumulation Curve 3 

 4 

 8 

 9 
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ABSTRACT 11 

The “Species Accumulation Curve” accounts for the rate of increase of the number of 12 

recorded species during progressive sampling of an assemblage of species. Due to the usual 13 

incompleteness of samplings, the accurate extrapolation of the Species Accumulation Curve 14 

has become an essential tool to estimate the total species richness of a sampled assemblage 15 

and to predict the additional sampling effort required to obtain a given increase of sample 16 

completeness. In this perspective, important efforts have been devoted to improve the 17 

accuracy of the extrapolation of the Species Accumulation Curves. Substantial progress in 18 

this respect was achieved recently by considering a general mathematical relationship that 19 

constrains the theoretical expression of any kind of Species Accumulation Curves. Moreover, 20 

this general relationship proves having interesting corollaries applying specifically to the 21 

detailed process of species accumulation during progressive sampling.  22 

Hereafter, I first derive these correlative relationships and then I show how they link 23 

together the variations of the numbers of species respectively recorded 1-, 2-, 3- …, x- times 24 

and their cumulative contributions to the Species Accumulation Curve. This, in turn, provides 25 

suggestive insights regarding the remarkably regulated mechanism of species discovery and 26 

accumulation along progressive sampling effort. 27 

 28 
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1. INTRODUCTION 34 

The process of continuous discovery of new species during progressive sampling of an 35 

assemblage of species is expressed graphically in term of the so called “Species 36 

Accumulation Curve”, also formerly designed as “Discovery Curve” or “Collector Curve” 37 

[1].  The Species Accumulation Curve is the basic tool, which is systematically referred to 38 

in inventories of biodiversity [2]. 39 

Species Accumulation Curves are quite polymorphic, apart from some basic and intuitive 40 

common traits shared by all of them (monotonic increase of the number of recorded 41 

species with sampling size, at consistently decreasing rate, see Figure 1 for an example). 42 

This is so because the detailed shape of the Species Accumulation Curves is entirely 43 

dependent upon the particular species abundance distribution within the sampled 44 

assemblage of species under consideration. Accordingly, there are virtually as many 45 

different shapes of Species Accumulation Curves as there are species assemblages 46 
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differing from each other by either their species richness and/or their particular 47 

distribution of species abundances. 48 

 49 

 50 
Figure 1 –  Typical shape of a Species Accumulation Curve, showing the basic common features 51 

pertaining to any kind of S.A.C.: monotonic increase of the number of recorded species R(N) with 52 

sampling size N, while the rate of growth is monotonically decreasing. Here is plotted the S.A.C for a 53 

partial inventory of land snails fauna in a xerothermic grassland at ‘Cersot’, south Burgundy (France) 54 

[from BÉGUINOT, unpublished data]. Sampling size is expressed in % of the size of the actually achieved 55 

sampling. Extrapolation is estimated according to Jackknife-5 estimator, selected as being the less 56 

biased for this particular inventory (see reference [3]). 57 

 58 

In spite of these causes of polymorphism, the theoretical expressions of all Species 59 

Accumulation Curves are compelled to satisfy a common constraining mathematical 60 

relationship which applies to the whole series of its successive derivatives. This 61 

constraining relationship explicitly determines the boundaries of the yet wide range of 62 

polymorphism mentioned above for the Species Accumulation Curves. On a more 63 

practical point of view, accounting for this constraining relationship reveals also of major 64 

importance to improve the accuracy of extrapolations of species accumulation beyond 65 

actually achieved samplings. Thereby, more precise estimations of total species richness 66 

and more reliable predictions of the additional sampling effort needed to achieve a given 67 

increase in sample completeness are made possible (details in reference [3]).  68 

Now, coming back to more theoretical ground, several corollaries which can be derived 69 

from this fundamental relationship also provide useful insights into the details of the 70 

complex process of species discovery during progressive sampling.  71 

Let R(N) be the number of recorded species after sampling of N individuals (N thus 72 

quantify the sampling size). Obviously, R(N) results from the additive contributions of the 73 

numbers f1(N), f2(N), f3(N),…, fx(N),… of those species respectively recorded 1, 2, 3, .., x-74 

times at the end of this sampling of size N: 75 

R(N) = Σx fx(N)         (1) 76 

Thereby, the Species Accumulation Curve reveals its “composite” dependence upon the 77 

whole series of the fx(N). A composite dependence which is made still more complex by 78 

the fact that each function fx(N) has its own dependence upon N.  Yet, this mutual 79 
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independence of the fx (N) is not total: a kind of regulation links, step by step, the 80 

respective variations of the successive functions fx(N), as will be shown later. This 81 

regulation, indeed, is at the hearth of the mechanism of species progressive discovery and 82 

accumulation, which plays, of course, a decisive role in shaping the Species Accumulation 83 

Curve.  84 

The main purpose of this article is precisely to highlight the mathematics underlying this 85 

regulation by mutual linkage between the successive fx (N). This, in turn, will provide a 86 

more deep understanding of the fundamentals of Species Accumulation during 87 

progressive sampling.  88 
 89 

Preliminary: the fundamental mathematical relationship constraining the 90 

theoretical expression of all Species Accumulation Curves 91 

The successive derivatives ∂xR(N)/∂Nx, of the Species Accumulation Curve R(N) satisfy 92 

the following equation: 93 

 [∂x R(N)/∂Nx]  =  (-1)x-1 fx (N) /CN, x      (2)  94 

with fx (N) as the number of species recorded x-times in the sample of size N and CN, x  = 95 

N!/X!/(N-x)! is the number of combinations of x items among N.  A detailed proof of this 96 

general theorem is provided in Appendix. 97 

Leaving aside the very beginning of sampling (of no practical relevance here), the 98 

sampling size N rapidly exceeds widely the numbers x of practical concern, so that, in 99 

practice, the preceding equation simplifies as: 100 

[∂x R(N)/∂Nx]  =  (– 1)x-1 (x!/Nx) fx (N)        (3) 101 

This relation has a general relevance because its derivation does not require any specific 102 

assumption relative to the particular shape of the distribution of species abundances in 103 

the sampled assemblage of species. Accordingly, equations (2), (3) actually constrain the 104 

theoretical expressions of any kind of Species Accumulation Curves. 105 

One particular consequence of this relationship is that the successive derivatives of the 106 

Species Accumulation Curve have alternating signs, since the numbers fx (N) of species 107 

recorded x-times are necessarily positive or nil. More precisely, the derivatives of even 108 

and odd orders are respectively negative and positive. 109 

 110 

2. THE MATHEMATICS UNDERLYING THE REGULATION PROCESS  APPLYING TO 111 

THE NUMBERS fx OF SPECIES RECORDED x-TIMES 112 

From equation (3) it comes: 113 

fx (N)  = (– 1)x-1 (Nx/x!) [∂x R(N)/∂Nx ]         (4) 114 

The derivation of equation (4) according to sample size N then gives: 115 

[∂fx (N)/∂N] = (– 1)x-1/x! {x. Nx-1.[∂x R(N)/∂Nx] + Nx.[∂x+1 R(N)/∂Nx+1]}          116 

Accounting for the expression (3), applied to [∂x R(N)/∂Nx] and [∂x+1 R(N)/∂Nx+1], it comes:          117 

[∂fx (N)/∂N]  =  (1/N).[ x.fx (N) – (x+1).fx+1 (N) ]      (5) 118 

which may be written as well as: 119 

x.fx (N) – N.[∂fx (N)/∂N]   =   (x+1).fx+1 (N)         (6) 120 

Note that an alternative, independent demonstration of the equation (6) is provided at 121 

Appendix A.2, equation A2.1. 122 

As a corollary of relationship (3) above, equation (6) benefits consequently from the same 123 

general relevance and, thus, is valid for all kinds of Species Accumulation Curves. 124 

Equation (6) establishes a mathematical linkage between the variations of fx+1 (N) with N 125 

and the variations of fx (N) with N. Thereby, all the fx (N) are ultimately linked together by 126 

this “iterative chaining”.  In other words, although each function fx (N) has its own 127 
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dependence upon sampling size N, the series of fx (N) nevertheless admits a kind of 128 

connection which, if one may say, “propagates” from each fx (N) to the next one, fx+1 (N). 129 
 130 

Mathematical “chaining” between the successive numbers fx (N)  131 

The consequence of this regulation may be more easily grasped graphically, by 132 

considering how the maximum of each fx (N) is linked to the value of fx+1 (N) at the same 133 

sample size N. When fx (N) reaches its maximum value, its first derivative, ∂fx (N)/∂N, falls 134 

to zero and, accordingly, from equation (6), it comes: 135 

fx+1 (N)  =  [x/(x+1)].fx (N)                  (7) 136 

Thus, when fx (N) reaches its maximum, in the course of progressive sampling, the 137 

corresponding value taken by fx+1 (N) is then exactly [x/(x+1)] times the (maximum) value 138 

taken by fx (N). By reiteration of this relationship, a kind of “linkage pattern” is generated, 139 

that constrains the relative locations of the successive curves fx (N). Figure 2 exemplifies 140 

graphically this “chaining” linkage, propagating successively, step by step, from f1 (N) to f2 141 

(N), to f3 (N), to f4 (N), to f5 (N), etc... 142 

As a consequence, the maxima of f1 (N), of f2 (N), of f3 (N), of f4 (N), of f5 (N), …, respectively 143 

succeed each other sequentially, as shown in Figure 2. The corresponding positions of 144 

these succeeding maxima are located along the Species Accumulation Curve at Figure 3, 145 

and it is worth noting that the regulating linkage between the successive fx (N) is such that 146 

no peculiarity is affecting the Species Accumulation Curve at any of these locations (in 147 

spite of the series of bumps constituted by the successive maxima of f1 (N), f2 (N), f3 (N), f4 (N), 148 

f5 (N),…) 149 
 150 

   151 
Figure 2 – Extrapolations of the five first fx (N)  (f1 (N), f2 (N), f3 (N), f4 (N), f5 (N)) for increasing sampling size N 152 

beyond the size of the actually achieved sampling (sampling size N is expressed in % of the size of the 153 

actually achieved sampling). Here, the maxima of f1 (N), f2 (N), f3 (N), f4 (N), f5 (N) happens to be located at 154 

sample size ≈ 200%, 360%, 510%, 680%, 810%, respectively. Same inventory as in Figure 1 ; 155 

extrapolations according to Jackknife-5 estimator, selected as being the less biased for this particular 156 

inventory (see reference [3]). This figure highlights the “linkage pattern” between the successive 157 

curves fx (N) imposed by the constraining relationship (7) ( i.e.: fx+1 (N)  =  [x/(x+1)].fx (N)). That is when fx (N) 158 

reaches its maximum, the corresponding value taken by fx+1 (N) is then exactly [x/(x+1)] times the value 159 

of fx (N).  160 
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 161 

Mathematical “chaining” between the successive numbers x.fx (N)  162 

Alternatively, equation (7) may be written equivalently as: 163 

x.fx (N)  =  (x+1).fx+1 (N)      (8) 164 

Equation (8), as equation (7), stands for ∂fx (N)/∂N = 0, and thus stands as well for ∂(x.fx 165 

(N))/∂N = 0. It follows that the curve (x+1).fx+1 (N) intersects the curve x.fx (N) exactly when 166 

the latter reaches its maximum value (i.e. when ∂(x.fx (N))/∂N = 0) : Figure 4. Keeping in 167 

mind the significance of x.fx (N) which is the total number of recorded individuals belonging 168 

to either of those species recorded x-times.  169 
 170 

 171 
Figure 3 – The locations, along the Species Accumulation Curve, of the successive maximum of f1 (N), f2 172 

(N), f3 (N), f4 (N), f5 (N), according to Figure 2. Same inventory as in Figure 1. 173 
 174 

  175 
Figure 4 - The computed variations, with increasing sampling size N, of the five first numbers x.fx (N) of 176 

recorded individuals belonging to species recorded x-times (1.f1 (N), 2.f2 (N), 3.f3 (N), 4.f4 (N), 5.f5 (N)). As 177 

prescribed by the constraining equation (8), for any value of x, the curve (x+1).fx+1 (N) intersects the 178 

curve x.fx (N) exactly when the latter reaches its maximum value. Sampling size is expressed in % of the 179 

size of the actually achieved sampling. Same inventory as in Figure 1. 180 
 181 
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The regularly repetitive shift from any one curve, x.fx (N), to the next one, (x+1).fx+1 (N), 182 

resulting from this regulating process (Figure 4) is particularly demonstrative. This, 183 

indeed, likely offers the best visual evidence of the sequential linkage existing between 184 

each of the fx (N) successively. 185 

Note, incidentally, that while the cumulative addition of all the fx (N) leads to the number 186 

R(N) of recorded species (cf. equation (1)) ; on the other hand the addition of the x.fx (N) 187 

leads “symmetrically” to the number N of recorded individuals: 188 

Σx [ fx(N) ]  =   R(N)    and     Σx [ x.fx(N) ]  =  N         (9) 189 
 190 

Mathematical “chaining” between each fx (N) and the series of the first derivatives of 191 

the preceding fx (N) 192 

This is a third alternative way to express the inter-relationship within the series of the 193 

fx(N). Refering once more to equation (6), that is: 194 

x.fx (N) – N.[∂fx (N)/∂N]   =   (x+1).fx+1 (N)        195 

let now consider the successive forms taken by this equation for increasing values of x.  196 

It comes: 197 

0.f0 (N) – N.[∂f0 (N)/∂N]   =   1.f1 (N)        198 

1.f1 (N) – N.[∂f1 (N)/∂N]   =   2.f2 (N)        199 

2.f2 (N) – N.[∂f2 (N)/∂N]   =   3.f3 (N)        200 

……………………………………….……………. 201 

(x – 1).fx-1 (N) – N.[∂fx-1 (N)/∂N]   =   x.fx (N)        202 

By summing these equations, the following relationship is immediately derived: 203 

fx (N)   =  – (N/x). Σi [∂fi (N)/∂N]          (10) 204 

with the summation  Σi extended from i = 0 to i = (x – 1)      205 

That is, namely, the number fx (N) of species recorded x-times in a sampling of size N is 206 

proportional [via the factor – (N/x)] to the sum of the first derivatives (with respect to N) 207 

of the series of the preceding fi (N). In more practical terms, this means that the number fx 208 

(N) of species recorded x-times, in a sample of size N, is proportional to the sum of the 209 

variations of the preceding fx (N) when sampling size increases of one observation (N  210 

N+1). 211 

Another way to understand relation (10) results from re-writing it as follows: 212 

(x.fx (N))/N  =  – Σi [∂fi (N)/∂N]         (11) 213 

with the summation  Σi extended from i = 0 to i = (x – 1).   214 

Which means that the proportion of sampled individuals that belong to either species 215 

recorded x-times [ = (x.fx (N))/N ] is equals to minus the sum of the variations of the 216 

preceding fx (N) when sampling size increases of one observation.  217 

Accordingly, the relationship (10) expresses the continuous linkage between each fx (N) 218 

and the whole series of its predecessors, thereby highlighting still more clearly the strong 219 

“chaining” between the successive numbers fx (N), which together rule the kinetics of 220 

species accumulation during progressive sampling. 221 

Still another remarkable relationship may be derived from equation (10), which only 222 

involves, this time, the first derivatives of all the fx (N). 223 

Let X be the recorded number of individuals belonging to the species most frequently met 224 

in the sampling under consideration. In other words, X is the largest value of x for which 225 

fx (N) ≠ 0 in this particular sampling. The sum of the numbers of sampled individuals that 226 

belong to anyone of those species recorded x-times [ = (x.fx (N))] for x up to its maximum 227 

value X is equal to N.  Accordingly, the summation of equation (11) for x up to its maximum 228 

value X yields: 229 
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Σx [(x.fx (N))/N] = N/N = 1 = Σx [– Σi (∂fi (N)/∂N)] 230 

with the summation  Σx extended from x = 1 to x = X and the summation  Σi extended from 231 

i = 0 to i = (x – 1).  This finally leads to: 232 

1  =  – Σi [(∂fi (N)/∂N).(X – i)]              (12) 233 

with the summation  Σi extended from i = 0 to i = (X – 1).   234 

 235 

3. COMPLEMENTARY ILLUSTRATIVE EXAMPLES OF THE REGULATION PROCESS  236 

GOVERNING THE NUMBERS OF SPECIES RECORDED 1-, 2-, 3-, 4-, 5-, … TIMES 237 
 238 

The same trends demonstrated above on a theoretical basis, and illustrated by a first 239 

example at Figures 2 to 4, are illustrated again in the following complementary examples. 240 

We shall only consider, hereafter, the variations of x.fx (N) (i.e. the number of recorded 241 

individuals belonging to any one of species recorded x-times) as they provide the more 242 

graphically speaking feature, highlighting at best the specific “chaining” linkage, step by 243 

step, between the successive numbers f1 (N), f2 (N), f3 (N), f4 (N), f5 (N). 244 
 245 

3.1. Butterfly inventory on the slopes of Mount Gariwang-san (S-Korea) 246 

Field data from reference [4]. Figure 5 relates to an inventory carried out during year 247 

2015. The realised sampling size was N0 = 181individuals; the number of recorded species 248 

was R(N0) = 39 species and the values of the fx, were: f1 = 17.0, f2 = 8.0, f3 = 3.7, f4 =2.0, f5 = 249 

1.4 (values obtained after regression applied to the crude values of the fx, in order to 250 

reduce the consequences of stochastic dispersion, as prescribed in [3]. 251 

 252 

 253 
Figure 5 - The computed variations, with increasing sampling size N, of the five first numbers x.fx (N) of 254 

recorded individuals belonging to any one of species recorded x-times (1.f1 (N), 2.f2 (N), 3.f3 (N), 4.f4 (N), 5.f5 255 

(N)). Butterfly inventory on the slopes of Mount Gariwang-san (field data from LEE, KIM & KWON 2016). 256 

As prescribed by the constraining equation (8), for all values of x, the curve (x+1).fx+1 (N) intersects the 257 

curve x.fx (N) exactly when the latter reaches its maximum value. Sampling size is expressed in % of the 258 

size of the actually achieved sampling. 259 
 260 

3.2  Butterfly inventories at Bifeng Valley (Ghansu, China) 261 

Field data from reference [5]. Figure 6 relates to an inventory conducted at site 1, in the 262 

upper part of the valley of Bifeng (province of Ghansu), where species richness of butterfly 263 
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fauna proves to be the highest in the valley, with R(N0) = 28 recorded species for N0 = 68 264 

recorded individuals. The values of the fx, were: f1 = 14.0, f2 = 6.0, f3 = 2.6, f4 =1.5, f5 = 1.2 265 

(values obtained after regression applied to the crude values of the fx, in order to reduce 266 

the consequences of stochastic dispersion, as prescribed [3]. 267 

 268 
 269 

 270 
Figure 6 - The computed variations, with increasing sampling size N, of the five first numbers x.fx (N) of 271 

recorded individuals belonging to any one of species recorded x-times (1.f1 (N), 2.f2 (N), 3.f3 (N), 4.f4 (N), 5.f5 272 

(N)). Butterfly inventory at Bifeng valley, site 1 (field data from LI et al. 2010). As prescribed by the 273 

constraining equation (8), for all values of x, the curve (x+1).fx+1 (N) intersects the curve x.fx (N) exactly 274 

when the latter reaches its maximum value. Sampling size is expressed in % of the size of the actually 275 

achieved sampling. 276 

 277 

4. THE GENERAL RELATIONSHIP GOVERNING THE DECREASING PROPOTION OF 278 

OBSERVATIONS PROVIDING NEWLY RECORDED SPECIES, WITH INCREASING 279 

SAMPLING SIZE 280 

So far, we have approached the Species Accumulation Curve, R(N), in a deliberately 281 

analytical manner: each new observation was considered as equally informative, whether 282 

or not it gives rise to the detection of a new species. Indeed, in any case, each individual 283 

observation actually plays the same kind of role: it determines a transition of the kind fx 284 

(N)  fx+1 (N +1). 285 

Now, let consider, alternatively, a more usual and pragmatic approach, now paying 286 

attention to those observations only giving rise to the detection of a new species and 287 

neglecting accordingly all the others (in spite of their equal role in the analytical approach 288 

considered previously above). In this purely “accounting” approach, the focus is put on 289 

the proportion p(N) = R (N)/N of those observations exclusively, which have provided 290 

positive records of new species. In other words, instead of paying attention to R(N) = Σx 291 

fx(N), as previously, the focus is placed now upon: 292 

R(N) = N.p(N)         (13) 293 

This proportion p(N) is pragmatically interesting in that it quantifies the gradual 294 

weakening of sampling efficiency, i.e. the ever-slowering rate of detection of newly 295 

recorded species, as sampling is going on further. 296 
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As for the Species Accumulation Curve, the proportion p(N) of those observations 297 

providing positive records of new species is highly polymorphic and this polymorphism, 298 

here also, is limited by a constraining relationship applying to the expression of p(N). 299 
 300 

 301 
Figure 7  –  Typical shape of the proportion p(N) = R (N)/N of those observations providing positive 302 

records of new species. Same inventory as in Figure 1. 303 
 304 

I derive below this general relationship which constrains the proportion p(N).   305 

The derivation of R(N) yields, accounting for equation (13) and then equation (3): 306 

[∂R(N)/∂N]   =   p(N) + N.[∂p(N)/∂N]   =  (1/N).f1 (N)                                               (14) 307 

Further derivations yield successively: 308 

 [∂2R(N)/∂N2]  =   2.[∂p(N)/∂N] + N.[∂2p(N)/∂N2] =  – (2/N2). f2 (N)                     (15) 309 

[∂3R(N)/∂N3]  =   3.[∂2p(N)/∂N2] + N.[∂3p(N)/∂N3] =  (6/N3). f3 (N)                     (16) 310 

and more generally: 311 

[∂xR(N)/∂Nx]  =   x.[∂x-1p(N)/∂Nx-1] + N.[∂xp(N)/∂Nx] = (– 1)x-1.(x!/Nx).fx (N)     (17) 312 

Now, from equations (14) and (15), it follows: 313 

[∂2p(N)/∂N2]  =  (2/N2).p(N) – (2/N3).(f1 (N) + f2 (N))                                      (18) 314 

Similarly, from equations (16) and (18): 315 

[∂3p(N)/∂N3]  =  – (6/N3).p(N) + (6/N4).(f1 (N) + f2 (N) + f3 (N))                      (19) 316 

and more generally: 317 

[∂xp(N)/∂Nx]  =  (– 1)x .(x!/Nx).p(N) + (– 1)x-1 . (x!/Nx+1). Σi=1to x [fi(N)]    (20)               318 

At last, from equations (1) and (11), it follows: 319 

[∂xp(N)/∂Nx]  =  (– 1)x.(x!/Nx+1). Σi > x [fi(N)]          (21)               320 

Note that there is part of a formal similarity between the general relationship (21) 321 

constraining the proportion p(N) of those individual observations providing positive 322 

records of new species and the general relationship (3) constraining the Species 323 

Accumulation Curve R(N). Among the differences, however, the main one is that all the 324 

fi(N) with i > x are involved in the  relationship (21) constraining the proportion p(N) 325 

while it is only fi(N) for i = x which contributes in the  relationship (3) constraining the 326 

Species Accumulation Curve R(N).    327 

One particular consequence of relationship (21) is that the successive derivatives of the 328 

the proportion p(N) of observations providing positive records of new species have 329 

alternating signs, (as for the Species Accumulation Curve) since the numbers fx (N) of 330 
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species recorded x-times are necessarily positive or nil. More precisely, for the proportion 331 

p(N), the derivatives of even and odd orders are respectively positive and negative, that 332 

is the inverse of  what is valid for the Species Accumulation Curves. 333 

 334 

5. DISCUSSION 335 

Five main features are emerging from the theoretical treatment (and the corresponding 336 

illustrative examples), regarding the variations, with sampling size N, of the numbers 337 

fx(N) of species respectively recorded x-times during sampling. It should be well 338 

understood that these features, all derived on theoretical basis, are focal tendencies, 339 

towards which the empirical data obtained from real samplings actually converges. But 340 

may yet more or less slightly deviate, due to sampling stochasticity. 341 

Two trends were expected, being in obvious accordance with intuition:  342 

        1) all the numbers fx (N) of species recorded x-times are first increasing, then pass by 343 

a maximum and finally decrease to zero. Also, in addition, the curves describing the 344 

variations of each fx (N) (and the positions of their respective maxima) are regularly shifted 345 

towards higher values of sampling size N when x takes increasing values (Figure 2) ;  346 

        2) the same holds true, mutatis mutandis, for the number x.fx (N) of those recorded 347 

individuals belonging to anyone of species recorded x-times, whatever the value of x.  348 

Now, three other trends, by no means intuitive, were newly derived above, related to the 349 

general mathematical relationship (6) which constrains the expressions and shapes of the 350 

fx (N): 351 

        3) when fx (N) reaches its maximum, in the course of progressive sampling, the 352 

corresponding value taken by fx+1 (N) is then exactly [x/(x+1)] times the maximum value 353 

taken by fx (N) (see Figure 2) ; 354 

        4) regarding now the number x.fx (N) of recorded individuals belonging to anyone of 355 

those species recorded x-times, it consistently happens that the curve describing the 356 

variations of (x+1).fx+1 (N) intersects the curve of x.fx (N) exactly when the latter reaches its 357 

maximum value (see Figures 4, 5, 6) ; 358 

        5) at last, the number fx (N) of species recorded x-times in a sampling of size N is 359 

proportional to the sum of the variations of the preceding fx (N), when sampling size 360 

increases by one observation. 361 

The three latter trends have major importance in that they determine the “chaining 362 

linkage” between the successive numbers fx (N) of species recorded x-times. And this is of 363 

importance because the successive numbers fx (N) regulate the process of cumulative 364 

species discovery during progressive sampling. 365 

As already stressed, the general mathematical relationship (6)  366 

x.fx (N) – N.[∂fx (N)/∂N]   =   (x+1).fx+1 (N) 367 

which constrains the expressions and the shapes of the fx (N), is a corollary of the general 368 

relationship (A2.1), derived in Appendix A.2, which, in turn, constrains the theoretical 369 

expressions of all Species Accumulation Curves R(N). Thus, to get a full understanding of 370 

the underlying process of species accumulation during sampling, it is advisable to refer to 371 

the detailed demonstration leading to equation (A2.1) in Appendix. 372 

 373 

6. CONCLUSION 374 

The increasing number of newly recorded species (i.e. the “species accumulation”) during 375 

progressive sampling gives rise to a rather simple shaped “Species Accumulation Curve”. 376 

This apparent simplicity, indeed, does not incite to imagine the underlying complexity of 377 

the detailed process of species discovery and progressive accumulation. In fact, each new 378 
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individual observation may alternatively result in one or the other of a series of different 379 

consequences. More precisely, each observation of a new individual (i.e. N  N + 1) will 380 

contribute to increase by one unity either f1 (N), or f2 (N), or f3 (N), …, fx (N), …   381 

Now, although each of the numbers fx (N) of species recorded x-times varies with N at its 382 

own pace and out of phase with the others (Figure 2), the process of species accumulation 383 

proves to be regulated, however, due to the above mentioned “chaining linkage” between 384 

the successive fx (N). And this indeed is at the very heart of the detailed process of species 385 

accumulation during progressive sampling.  A process of major practical importance since 386 

it is involved in all biodiversity surveys and, more specifically, is involved in the accurate 387 

extrapolation of the Species Accumulation Curve. Accurate extrapolation which, in turn,  388 

conditions the precise estimate of the total species richness of a partially sampled 389 

assemblage of species and the reliable prediction of the additional sampling effort 390 

required to obtain a given increase in sample completeness. 391 
 392 

The constraining mathematical relationships highlighted above are summarized as 393 

follows : 394 

           * relationship applying to the Species Accumulation Curve, R(N) itself :  395 

equations (2) & (3): 396 

[∂x R(N)/∂Nx]  =  (-1)x-1 fx (N) /CN, x   ≈   (– 1)x-1 (x!/Nx) fx (N)  397 
 398 

* relationship applying to the proportion of efficient observations, p(N) = R (N)/N: 399 

equation (21): 400 

[∂xp(N)/∂Nx]  =  (– 1)x.(x!/Nx+1). Σi > x [fi(N)]  401 
          402 

           * relationship applying to the numbers f1(N), f2(N), f3(N),…, fx(N),… of those species 403 

respectively recorded 1, 2, 3, .., x-times during sampling:  404 

equation (6): 405 

x.fx (N) – N.[∂fx (N)/∂N]   =   (x+1).fx+1 (N) 406 
 407 

and its three corollaries: equations (7), (10) and (12): 408 

fx+1 (N)  =  [x/(x+1)].fx (N)     valid  when   ∂fx (N)/∂N = 0      409 
   410 

fx (N)   =  – (N/x). Σi [∂fi (N)/∂N] 411 

with the sum Σi extended from i = 0 to i = (x – 1)    412 

and, at last:    413 

  – Σi [(∂fi (N)/∂N).(X – i)]  =  1   414 

with X as the larger value of x for which fX (N) ≠ 0  415 

and the sum Σi extended from i = 0 to i = (X – 1) 416 

 417 

 418 

APPENDICES 419 

A.1 - Derivation of the constraining relationship between ∂xR(N)/∂Nx   and  fx(N) 420 

The shape of the theoretical Species Accumulation Curve is directly dependent upon the 421 

particular Species Abundance Distribution (the “S.A.D.”) within the sampled assemblage 422 

of species. That means that beyond the common general traits shared by all Species 423 

Accumulation Curves, each particular species assemblage give rise to a specific Species 424 

Accumulation Curve with its own, unique shape, considered in detail. Now, it turns out 425 

that, in spite of this diversity of particular shapes, all the Species Accumulation Curves are, 426 

nevertheless, constrained by a same mathematical relationship that rules their successive 427 
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derivatives (and, thereby, rules the details of the curve shape since the successive 428 

derivatives altogether define the local shape of the curve in any details). Moreover, it turns 429 

out that this general mathematical constraint relates bi-univocally each derivative at 430 

order x  [ ∂xR(N)/∂Nx ] to the number, fx(N), of species recorded x-times in the considered 431 

sample of size N. And, as the series of the fx(N) are obviously directly dependent upon the 432 

particular Distribution of Species Abundance within the sampled assemblage of species, 433 

it follows that this mathematical relationship between ∂xR(N)/∂Nx  and fx(N), ultimately 434 

reflects the indirect but strict dependence of the shape of the Species Accumulation Curve 435 

upon the particular Distribution of the Species Abundances (the so called S.A.D.) within 436 

the assemblage of species under consideration. In this respect, this constraining 437 

relationship is central to the process of species accumulation during progressive 438 

sampling, and is therefore at the heart of any reasoned approach to the extrapolation of 439 

any kind of Species Accumulation Curves. 440 

This fundamental relationship may be derived as follows. 441 

Let consider an assemblage of species containing an unknown total number 'S' of species. 442 

Let R be the number of recorded species in a partial sampling of this assemblage 443 

comprising N individuals. Let pi be the probability of occurrence of species 'i' in the sample 444 

This probability is assimilated to the relative abundance of species ‘i' within this 445 

assemblage or to the relative incidence of species ‘i' (its proportion of occurrences) within 446 

a set of sampled sites. The number Δ of missed species (unrecorded in the sample) is Δ = 447 

S – R. 448 

The estimated number Δ of those species that escape recording during sampling of the 449 

assemblage is a decreasing function Δ(N) of the sample of size N, which depends on the 450 

particular distribution of species abundances pi: 451 

Δ(N)  = Σi (1-pi)N            (A1.1) 452 

with Σi  as the operation summation extended to the totality of the 'S' species 'i' in the 453 

assemblage (either recorded or not) 454 

The expected number fx of species recorded x times in the sample, is then, according to 455 

the binomial distribution: 456 

fx  =  [N!/X!/(N-x)!] Σi [(1-pi)N-x pix ]   = CN, x  Σi (1-pi)N-x pix        (A1.2)  457 

with CN, x  = N!/X!/(N-x)!  458 

We shall now derive the relationship between the successive derivatives of R(N), the 459 

theoretical Species Accumulation Curve and the expected values for the series of ‘fx’.  460 

According to equation (A1.2): 461 

 462 

►    f1 = N Σi [(1-pi)N-1 pi] = N Σi [(1-pi)N-1 (1- (1-pi))]  = N Σi [(1-pi)N-1] - N Σi [(1-pi)N-1(1-pi))]  463 

= N Σi [(1-pi)N-1] - N Σi [(1-pi)N].      464 

Then, according to equation (A1) it comes: f1 = N (Δ(N-1) - Δ(N))  = - N (Δ(N) - Δ(N-1))   465 

= - N (∂ Δ(N)/∂N) = - N Δ'(N)    466 

where Δ'(N) is the first derivative of  Δ(N) with respect to N.    Thus:    467 

f1  =  - N Δ'(N)     ( = - CN,1  Δ'(N)  )         (A1.3) 468 

Similarly: 469 

►   f2 = CN, 2 Σi [(1-pi)N-2 pi²]     according to equation (A1.2) 470 

= CN, 2 Σi [(1-pi)N-2 (1- (1-pi²))]   = CN, 2  [Σi [(1-pi)N-2] - Σi [(1-pi)N-2(1- pi²)]] 471 
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= CN, 2 [Σi [(1-pi)N-2] - Σi [(1-pi)N-2(1- pi)(1+ pi)]]  = CN, 2 [ Σi [(1-pi)N-2] - Σi [(1-pi)N-1(1+ pi)]] 472 

= CN, 2 [(Δ(N-2) - Δ(N-1)) - f1/N ]     according to equations (A2.1) and  (A1.2) 473 

= CN, 2 [- Δ'(N-1) - f1/N]  = CN, 2  [ - Δ'(N-1) + Δ'(N)]   since  f1 = - N Δ'(N)     (cf. equation (A1.3)). 474 

= CN, 2 [(∂ Δ'(N)/∂N)] = [N(N-1)/2] (∂² Δ(N)/∂N²) = [N(N-1)/2] Δ''(N) 475 

where Δ''(N) is the second derivative of  Δ(N) with respect to N.    Thus: 476 

f2  =  [N(N-1)/2]  Δ''(N)     =  CN, 2  Δ''(N)            (A1.4) 477 

►  f3 = CN, 3 Σi [(1-pi)N-3 pi3]   which, by the same process, yields: 478 

= CN, 3 [Σi (1-pi)N-3 - Σi (1-pi)N-2 - Σi [(1-pi)N-2 pi] - Σi [(1-pi)N-2 pi2 )]]   479 

= CN, 3 [(Δ(N-3) - Δ(N-2)) - f1*/(N-1) - 2 f2/(N(N-1))]  according to equations (A2.1) and  480 

(A1.2) 481 

where f1* is the number of singletons that would be recorded in a sample of size (N - 1) 482 

instead of N.   483 

According to equations (A1.3) & (A1.4):   484 

f1*  =  - (N-1) Δ'(N-1)  =  - CN-1, 1  Δ'(N-1)    and    f2  =  [N(N-1)/2] Δ''(N)   = CN-1, 2  Δ''(N)     (A1.5) 485 

where Δ' (N-1)  is the first derivate of  Δ(N) with respect to N, at point (N-1).   Then,   486 

f3  = CN, 3 [(Δ(N-3) - Δ(N-2)) + Δ'(N-1) - Δ''(N) ]   =  CN, 3 [ -Δ'(N-2) + Δ'(N-1) - Δ''(N) ]   487 

=  CN, 3 [ Δ''(N-1) - Δ''(N) ]  = CN,3 [ - ∂ Δ''(N)/∂N ] =  CN, 3 [ - ∂3 Δ(N)/∂N3] = CN, 3 Δ'''(N) 488 

where Δ'''(N) is the third derivative of  Δ(N) with respect to N.  Thus : 489 

f3 =  - CN, 3 Δ'''(N)              (A1.6) 490 

Now, generalising for the number fx of species recorded x times in the sample: 491 

►  fx = CN, x  Σi [(1-pi)N-x pix]    according to equation (A1.2), 492 

= CN, x Σi [(1-pi)N-x (1 - (1 - pix)) ]  = CN, x [Σi (1-pi)N-x - Σi [(1-pi)N-x (1 - pix)]]   493 

= CN, x [Σi (1-pi)N-x - Σi [(1-pi)N-x (1 - pi)( Σj pij )]]    494 

with Σj  as the summation from j = 0 to  j = x-1. It comes: 495 

fx  = CN, x [Σi (1-pi)N-x - Σi [(1-pi)N-x+1 ( Σj pij)]]   496 

= CN, x [Σi (1-pi)N-x - Σi (1-pi) N-x+1 - Σk [(Σi (1-pi) N-x+1 pik )]] 497 

 with Σk  as the summation from k = 1 to k = x-1 ; that is: 498 

fx  = CN, x [(Δ(N-x) - Δ(N-x+1)) - Σk (fk*/C(N-x+1+k), k )]  according to equations (A1.1) and  499 

(A1.2)) 500 

where C(N-x+1+k), k = (N-x+1+k)!/k!/(N-x+1)! and fk* is the expected number of species  501 

recorded k times during a sampling of size (N-x+1+k)  (instead of size N).   502 

The same demonstration, which yields previously the expression of f1* above (equation 503 

(A1.5)), applies for the fk* (with k up to x-1) and gives:    504 

fk* = (-1)k (C(N-x+1+k), k ) Δ(k)(N-x+1+k)         (A1.7) 505 

where Δ (k)(N-x+1+k)  is the kth derivate of  Δ(N) with respect to N, at point (N-x+1+k).   Then,   506 

fx  = CN, x [(Δ(N-x) - Δ(N-x+1)) - Σk ((-1)k Δ(k)(N-x+1+k) )]            , 507 
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which finally yields :  508 

fx  = CN, x [(-1)x (∂Δ(x-1)(N)/∂N) ] = CN, x [(-1)x (∂xΔ(N)/∂Nx)].   That is:  509 

fx = (-1)x CN, x Δ(x)(N)  = (-1)x CN, x [∂xΔ (N)/∂Nx]      (A1.8)  510 

where  [∂x Δ (N)/∂Nx] is the xth derivative of  Δ(N) with respect to N, at point N.    511 

Conversely: 512 

[∂x Δ(N)/∂Nx] = (-1)x fx /CN, x                   (A1.9)  513 

Note that, in practice, leaving aside the beginning of sampling, N rapidly increases much 514 

greater than x, so that the preceding equation simplifies as: 515 

[∂x Δ(N)/∂Nx] = (– 1)x (x!/Nx) fx(N)                   (A1.10) 516 

In particular: 517 

[∂Δ(N)/∂N] = f1(N)/N               (A1.11) 518 

[∂2 Δ(N)/∂N2] = 2 f2(N)/N2      (A1.12)                519 

This relation (A1.9) has general relevance since it does not involve any specific 520 

assumption relative to either (i) the particular shape of the distribution of species 521 

abundances in the sampled assemblage of species or (ii) the particular shape of the 522 

species accumulation rate. Accordingly, this relation constrains any theoretical form of 523 

species accumulation curves. As already mentioned, the shape of the species 524 

accumulation curve is entirely defined (at any value of sample size N) by the series of the 525 

successive derivatives [∂xR(N)/∂Nx] of the predicted number R(N) of recorded species for 526 

a sample of size N: 527 

[∂xR(N)/∂Nx] = (-1)(x-1) fx /CN, x                   (A1.13)  528 

with [∂xR(N)/∂Nx] as the xth derivative of  R(N) with respect to N, at point N and CN, x = N!/(N-529 

x)!/x! (since the number of recorded species R(N) is equal to the total species richness S 530 

minus the expected number of missed species Δ(N)).  531 

As above, equation (A1.13) simplifies in practice as: 532 

∂xR(N)/∂Nx  =  (– 1)(x-1) (x!/Nx) fx(N)                   (A1.14) 533 

Equation (A1.13) makes quantitatively explicit the dependence of the shape of the species 534 

accumulation curve (expressed by the series of the successive derivatives [∂xR(N)/∂Nx] of 535 

R(N)) upon the shape of the distribution of species abundances in the sampled 536 

assemblage of species. 537 

 538 

A2 - An alternative derivation of the relationship between ∂xR(N)/∂Nx  and fx(N) 539 

Consider a sample of size N (N individuals collected) extracted from an assemblage of S 540 

species and let Gi be the group comprising those species collected i-times and fi(N) their 541 

number in Gi. The number of collected individuals in group Gi is thus i.fi(N), that is a 542 

proportion i.fi(N)/N of all individuals collected in the sample. Now, each newly collected 543 

individual will either belong to a new species (probability 1.f1/N = f1/N) or to an already 544 

collected species (probability 1– f1/N), according to [6]. In the latter case, the proportion 545 

i.fi(N)/N of individuals within the group Gi accounts for the probability that the newly 546 

collected individual will contribute to increase by one the number of species that belong 547 

to the group Gi (that is will generate a transition [i-1 → i] under which the species to which 548 

it belongs leaves the group Gi-1 to join the group Gi). Likewise, the probability that the 549 

newly collected individual will contribute to reduce by one the number of species that 550 

belong to the group Gi (that is will generate a transition [i → i+1] under which the species 551 

leaves the group Gi to join the group Gi+1) is (i+1).fi+1(N)/N. 552 

Accordingly, for i > 1: 553 

 ∂fi(N)/∂N  =  [i.fi(N)/N – (i+1).fi+1(N)/N](1 – f1/N)    (A2.0) 554 
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Leaving aside the very beginning of sampling, and thus considering values of sample size 555 

N substantially higher than f1, it comes: 556 

                   ∂fi(N)/∂N  =  i.fi(N)/N – (i+1).fi+1(N)/N                 (A2.1) 557 

Let consider now the Species Accumulation Curve R(N), that is the number R(N) of species 558 

that have been recorded in a sample of size N. The probability that a newly collected 559 

individual belongs to a still unrecorded species corresponds to the probability of the 560 

transition [0 → 1], equal to i.fi(N)/N with i = 1, that is: f1(N)/N (as already mentioned).  561 

Accordingly, the first derivative of the Species Accumulation Curve R(N) at point N is   562 

∂R(N)/∂N = f1(N)/N                             (A2.2) 563 

In turn, as f1(N) = N.∂R(N)/∂N (from equation (A2.2)) it comes:                              564 

∂f1(N)/∂N = ∂[N(∂R(N)/∂N)]/∂N = N(∂2R(N)/∂N2) + ∂R(N)/∂N 565 

On the other hand, according to equation (A2.1):  566 

∂f1(N)/∂N = 1.f1(N)/N – 2.f2(N)/N  =  f1(N)/N – 2f2(N)/N, and therefore: 567 

N(∂2R(N)/∂N2) + ∂R(N)/∂N =  f1(N)/N – 2f2(N)/N 568 

And as ∂R(N)/∂N = f1(N)/N according to equation (A2.2): 569 

∂2R(N)/∂N2  =  – 2f2(N)/N2                       (A2.3) 570 

Likewise, as f2(N) = –N2/2.(∂2R(N)/∂N2), it comes: 571 

∂f2(N)/∂N  =  ∂[–N2/2.(∂2R(N)/∂N2)]/∂N  =  – N(∂2R(N)/∂N2) – N2/2.(∂3R(N)/∂N3) 572 

As ∂f2(N)/∂N = 2f2(N)/N – 3f3(N)/N,  according to equation (A2.1), it comes: 573 

– N(∂2R(N) /∂N2) – N2/2.(∂3R(N)/∂N3) = 2f2(N)/N – 3f3(N)/N 574 

and as ∂2R(N)/∂N2 = – 2f2(N)/N2, according to equation (A2.3), it comes: 575 

∂3R(N)/∂N3  =  + 6f3(N)/N3                       (A2.4) 576 

More generally: 577 

∂xR(N)/∂Nx  =  (– 1)(x-1) (x!/Nx) fx(N)                   (A2.5) 578 

 579 

 580 
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