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ABSTRACT  13 
 14 
In this paper we propose numerical method for the study of localized hidden oscillation in 
multidimensional fractional chaotic dynamical systems. Implementation of the algorithm is 
different from the classical method of Aizerman and Kaplan. The reconstructed mapping is 
presented.  
 15 
Keywords: chaotic system, time series, SSA – algorithm, lifting, Poincare diagram. 16 
 17 
1. INTRODUCTION  18 
 19 

The implementation of the tasks on the stability of multidimensional chaotic systems of 20 
fractional order can manifest hidden oscillation, that are not established after the transition  21 
process from the neighborhoods of the stationary states. Here a simple simulation can lead 22 
to erroneous results. 23 

Therefore, numerous results dealing with mechanisms of the generation of attractors, 24 
their localization in the phase space, and the evolution of their characteristics where 25 
obtained with the use of computer modeling well – known examples of the existence of 26 
hidden attractor in multidimensional models of automated control systems are given by 27 
counterexamples to the Aizerman and Kaplan conjecture, where the unique stable-in-small 28 
equilibrium co-exists with an orbital stable cycle [1]. 29 

Effectively verified conditions for the existence hidden orbital stable cycles in some 30 
class multidimensional systems were obtained in [1]. 31 

Thus, the is a statement  32 
 33 
2. FORMULATION OF THE PROBLEM 34 
 35 
Consider the following n-dimensional-fractional-order chaotic system [2] 36 

                                                ( )θ,X,XFXDq

0= ,                                                           (1) 37 

where n
T

R
n

x,,x,xX ∈




= K21

 denotes the n-dimensional state vector of the original 38 

system; 0X  - represents the system initial state, ( ) nT

n Rq,,q,qq ∈= K21  is a set of 39 

fractional order of the original system, and  ( ) DT

D Rθ,,θ,θθ ∈= K21  is the value of original 40 

system parameters.  41 
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Let the fractional-order derivative of the function ( )tf  in the Caputo sense is defined 42 

as [2]:  43 

                                              ( ) ( ) ( ).tfJtfD mqmq −=                                                          (2) 44 

Here, q  is the fractional order, m  is an integer that satisfies ( )tf,mqm m<≤−1  is 45 

the ordinary m th derivative of f , and µJ  is the Riemann-Liouville integral operator of order 46 

0>µ , defined by 47 

                                       ( ) ( ) ( ) ( ) ,dgttgJ
t

∫ τττ−
µ

= −µµ

0

11
Γ

                                               (3) 48 

where ( )⋅Γ  denotes the gamma function. A particularly important case in many engineering 49 

applications is 10 << q . In this situation, Eq. (2) together with Eq. (3)  50 

                               ( ) ( ) ( ) ( )∫ τττ−
−

= −t
tqq

* dft
q

tfD
01

1
Γ

.                                                (4) 51 

The operator q

*D  is often called “ q th-order Caputo differential operator” and will be 52 
used throughout the paper. 53 

Given a fractional-order hyperchaotic systems: 54 

Fractional-order Rabinovich-Fabrikant system following [3]: 55 
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where 765001.0,1.1,14.0 ≤≤−== δγα . 57 

 The fractional-order Chen system as follows [4]: 58 
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where 5.0,3,12,7,35 ===== rdcba  and 9.0=α . 60 

Let { }N

nnxx 0,2,1ˆ ==α  is the mapping of the (5-6) hyperchaotic fractional-order and (3) 61 

hyperchaotic systems. 62 

2.1. SSA Algorithm 63 

We consider a time series ( )TT y,,yY K1= . Fix ( )2/TLL ≤ , the window length, and 64 

let 1+−= LTK  [5]. 65 
 66 
Step 1. (Computing the trajectory matrix): this transfers a one-dimensional time series 67 
( )TT y,,yY K1=  into the multi-dimensional series KX,,X K1  with vectors 68 

( ) L
Liii yyX R∈′= −+ 1,,K , where 1+−= LTK . The single parameter of the embedding 69 

is the window length L , an integer such that TL ≤≤2 . The result of this step is the 70 
trajectory matrix [ ]KXX ,,K1=X , [5]: 71 
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 73 
Note that the trajectory matrix X  is a Hankel matrix, which means that all the 74 

elements along the diagonal constji =+  are equal. 75 
 76 

Step 2. Compute the matrix TXX . 77 
 78 

Step 3. Compute the eigenvalues and eigenvectors of the matrix TXX  and represent 79 

it in the form TT PPΛ=XX . Here ( )L,,diag λλ K1=Λ  is the diagonal matrix of 80 

eigenvalues of TXX  ordered so that 021 ≥≥≥≥ Lλλλ K  and ( )LP,,P,PP K21=  is 81 

the corresponding orthogonal matrix of eigen-vectors of TXX . 82 
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 83 
Step 4. (Selection of eigen-vectors): select a group of  ( )Lll ≤≤1  eigen-vectors 84 

liii P,,P,P K
21

.       85 

The grouping step corresponds to splitting the elementary matrices iX  into several 86 

groups 87 
and summing the matrices within each group. Let { }li,,iI K1=  be a group of indices 88 

li,,i K1 . Then the matrix IX  corresponding to the group I  is defined as 89 

liiI XXX ++= L
1

.                 90 

 91 
Step 5. (Reconstruction of the one-dimensional series): compute the matrix 92 

XX ∑ =
== l

k

T
iiji kk

PPx
1,

~~
  as an approximation to X . Transition to the one-dimensional 93 

series can now be achieved by averaging over the diagonals of the matrix X
~

 [5]. 94 
It is known, the singularly-spectral analysis is effective in a combination with wavelet-95 

transformation [6]. It is connected by that the signal can have a changing frequency.  96 
Further cleaned components related to the trend and noise. After the restoration of a 97 

number using wavelet-transform [6]. 98 
In this paper, for the purpose of localization and reconstruction of abnormal 99 

components of fractional dynamic chaotic multidimensional maps, it proposed the use 100 
singularly-spectral analysis in combination with lifting method [7]. 101 

Lifting methods of processing of the information make possible wavelet the 102 
stretching’s and shifts of one function.  103 

The advantage of the lifting scheme is: 104 
1. the conversion process occurs quickly; 105 
2. the set of wavelet-coefficients  occupies a volume that matches the original data; 106 
3. return transformation restores a signal very precisely. 107 

 108 
2.2. Lifting scheme  109 
 110 

Briefly, the mechanism is a follows [7]. Let the original signal js  contains j2   points. 111 

Transformation involves three steps (split-predict-update), which will yield two sets of points  112 

1−js   and  1−jd . 113 

Split 114 
From in js  shape two new not crossed sets. We note that the division of the set into 115 

two depends on the type of wavelet. For example, Lazy wavelet distinguishes 1−jeven  and 116 

1−jodd  samples.  117 

Formally it looks as [7]: 118 
                                             ( ) ( )jjj sSoddeven =−− 11, .                                                      (8) 119 

Predict  120 
Here is calculated the difference between true and predicted values and defines 121 

coefficients 1−jd  [7]: 122 

( )111 −−− −= jjj evenPoddd ,                                                      (9) 123 

where P  - the predicting operator.  124 
 125 
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Update  126 
On this step, the help of the operator U , calculate coefficients 1−js  [7]: 127 

( )111 −−− += jjj dUevens .                                                   (10) 128 

The described algorithm of transformation of data lifting-scheme is presented in figure 129 
[7]. 130 

 131 

 132 
Fig. 1 Constructing the wavelet-coefficients in the lifting-scheme. 133 

 134 
Thus, lifting schema generates two sets of coefficients 1−js   and  1−jd  , each of which 135 

is less than half the length of the initial signal.  136 
From here 1−js   reflects behavior of a signal in the big scale, and a coefficients  1−jd  137 

shows difference an initial signal from 1−js . 138 

In this paper, the realization of lifting scheme is based on the use of Haar wavelets 139 
and Doubechies [7]. 140 
 141 
The goal of the problems: 142 

I -    determine the influence on the function of fractional sawtooth at hyperchaotic  143 
systems. 144 

ii -   determine the stability systems. 145 
iii -  approximate result with subsequent reconstruction mapping. 146 
iiii - construction Poincare recurrence diagram. 147 
 148 

3. ALGORITHM 149 
 150 

Step 1. Perturbation of the system (5 - 6) as [8]: 151 








 +∨ ϕη
T

x
fracAxD i

q: , where ( )xfrac  is the fractional part. 152 

( ) [ ]xxxfrac −= , A  is amplitude, T  is the period of the wave, and ϕ  is its phase.  153 
 154 
Step 2. Determine the stability systems [8]. 155 
 156 
Step 3. Produce the singular-spectrum analysis for systems (5 - 6). 157 
 158 
Step 4. Produce signal (Step 3) reconstruction using a lifting scheme. 159 
 160 
Step 5. Construction Poincare recurrence diagrams. 161 
 162 
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4. VISUALIZATION OF SIMULATION 163 
 164 
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 170 

Fig. 2 Fractional-order chaotic Chen system; 171 
a - signal with noise, b - stability, c - signal reconstruction, 172 

d, e, f - Poincare recurrence diagrams. 173 
 174 
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Fig. 3 Fractional-order chaotic Rabinovich-Fabricant system; 182 
a - signal with noise, b - stability, c - signal reconstruction, 183 

d, e, f - Poincare recurrence diagrams. 184 
 185 
 186 

5. CONCLUSION 187 
 188 

Proposed structure of the “SSA – lifting scheme”, produced a reconstruction signal. 189 
The proposed algorithm can be used in micro – control systems. Visualizing transient 190 
implemented in MATLAB software environment. 191 

 192 
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