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Computational Approach for the Solution of Some Electric Circuit
Problems

ABSTRACT

This paper presents the derivation and implememtadf a computational approach for the solution of
some electric circuit problems. The one-step coatprial hybrid block method was developed using
Legendre polynomial of degree six as our basistfonwia interpolation and collocation techniquébe
computational method developed was applied on spraetical problems in electricity to generate
graphical results and also interpret the naturébexe results. The paper went further to analygééasic
properties of the computational method derived.ni-tthve graphical results obtained, the computed
solutions converge toward the exact solutions.
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1. INTRODUCTION

Classic application of differential equatiossfound in many areas of science and technologgy Th
can be used for modeling of physical, technicdbiotogical processes such as in the study of actrede
circuit consisting of a resistor, an inductor andapacitor driven by an electromotive force (entf),
gravitational equilibrium of a star, chemical reawes$ kinetic, in psychology, in models of the leagnof
a task involves the equation, in vibrating striregsl propagation of waves, among others. The main
guestions of modern technology are how to increhseaccuracy of calculations considering short
computational time and how to decrease necessahematical operations.

This paper presents a computational approach ®isthution of some electric circuit problems of the
form,

y'=f(xy) y@=n, f:0x0 -0 (1)
The following standard theorem lays down sufficieonditions for a unique solution of (1) to exise
shall always assume that the hypotheses of thiseheare satisfied.
Theorem 1.1[1]
Let f(x,y), where f :0x0 - [, be defined and continuous for ¢k, y) in the regionD defined

by a<x<b, —o<y<o,6 wherea and b are finite and let there exist a constantsuch that,

IO y) = F Oy <Ly -y )
holds for every(X,y), (X,y*) D . Then, forp 00 there exists a unique solutioy(x) of the problem
(1), where y(X) is continuous and differentiable for dlk, y*) 0D . The requirement (2) is known as

Lipchitz condition and the constaht as a Lipchitz constant.

It is important to note that, researcheasehproposed different computational methods fer th
solution of problems of the form (1) ranging fromegictor-corrector methods to hybrid methods. Despi
the successes recorded by the predictor-correatiiads, its major setbacks are that the predieti@$n
reducing order of accuracy, high cost of developegarate predictor for the corrector, high cost of
human and computer time involved in the execufidh,[3]. Block methods were later proposed to eart
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for some of the setbacks of the predictor-corregtethods. It is important to state that Milne irb39irst
developed block method to serve as a predictor poedictor-corrector algorithm before it was later
adopted as a full method. Block method has the radge of generating simultaneous numerical
approximations at different grid points within timerval of integration, [4]. Another advantagebbdck
method is the fact that it is less expensive imgeof the number of function evaluations compacethé¢
linear multistep and the Runge-Kutta methods. Bgomsetback however is that the order of interjmba
points must not exceed the order of the differémtguations, thus when equations of lower order are
developed, the accuracy of the developed methaedaced. This led to the development of hybrid
methods which permit the incorporation of functiemaluation at off-step points which affords the
opportunity of circumventing the "Dahlquist ZeraaBility Barrier" and it is actually possible to abt
convergent k-step methods with ordéic +1 up to k =7. The method is also useful in reducing the step
number of a method and still remain zero-stable, &4, [6], [7] and [8].
Definition 1.1 [9]
Legendre polynomial of degra® or Legendre function of the first kind is definkeyl
& (2n-2r)! o
¥ (X) Z( ) 2rr!(n—r)!(n—2r)!x ®)

r=0

n/2,if niseven

where R = {(n—l)/Z, if nisodd

}. In particular,y,(X) =1, y, (X) = X, Y, (x)=(3><2 - :I)/ 2,..

2. ANOVERVIEW OF ELECTRIC CIRCUITS

Description of circuits using differential edioas is very convenient for the electrical cirsuit
behavior analysis. Electrical circuits are desatibg differential equations for time-dependent aedata
(capacitors, inductances) together with equatiamslihear and non-linear time-independent elements
(resistors, diodes and transistors). Well-known @hamd Kirchhoff's laws are part of the electronic
circuit description.

Equations of the form (1) are applicable tdesecircuits containing an electromotive force|stss,
inductors and capacitors. It is important to nbi& the emf or voltage denoted by E is measurealin
(V), current,i, is measured in ampere, chargg,is measured in coulomb, resistance, R, is medsuore
ohm ), inductance, L, is measured in Henry (H) and cégace, C, is measured in Farad.

Electromotive force (for example, a batterygenerator) produces a flow of current in a closeclit
and that this current produces a so called voltligp across each resistor, inductor and capa&jor [

We state below the three important laws coringrrvoltage drop across resistor, inductor and
capacitor.

Law 1

The voltage drofE; across a resistor is given by,

Er =R 4)
where R is a constant of proportionality callesisance and the current.
Law 2
The voltage drogE, across an inductor is given by,

di
E =L|— 5
L ( dt} ®)

where L is a constant of proportionality calleduntance.
Law 3

The voltage droge. across a capacitor is given by,



-4
=C (6)

where C is a constant of proportionality called am@ance and( is instantaneous charge on the

capacitor.

The fundamental law in the study of electric citsus the following.

Law 4 (The Kirchhoff's Voltage Law)

The sum of the voltage drops across resistorsiciods and capacitors is equal to the total eleuttive
force in a closed circuit.

Thus, the relationship between Law 4 and Laws t3ais,

L(ﬂj +Ri+3 = (7)
dt C
containing two dependent variablesand g. But, we also have,
H 2
i:%,sothatﬂ:d—gJI (8)
dt dt dt

Using (8), (7) takes the form,

2
L ﬂ +R(%j+ﬂ=|§ (9)
dt? dt) C

which is a second-order linear differential eqomtin the single independent varialde So we can
obtain g from (9). Now differentiating (7) with respect togives,

L(d—zzlj + R(ﬂj + (1} = E (10)
dt dt C dt

which is a second order linear differential equratin the single dependent variabhleSo we can obtain
i from (10). We now consider two very special caseghich the problem reduces to a first-order linea
differential equation.

Case 1: If the circuit contains no capacitort{sat C=0), then (7) reduces to,

L(ﬂj +Ri=E (11)
dt
Case2: If the circuit contains no inductor ttsat L=0), then (9) reduces to,
R(%J +9-E (12)
d/) C

3. DERIVATION OF THE COMPUTATIONAL METHOD
We shall derive a computational one-step hybriadlblmethod of the form,

A®Y, = Ey, +hdf (y,) + hbF(Y,,) (13)
using the first six terms of Legendre polynomsioar basis function. This is given by,
Yo(X) =9+ 22x+ 6 - 106° - 248"+ 126+ 23f (14)

Equation (14) is interpolated at poink,,S=0 and its first derivative is collocated at

: 1 , , . ,
pomtsxnﬂ,rzo(gjl, where s and r are the numbers of interpolatiod abollocation points

respectively. This leads to the system of equatidnise form,
where



.
A=[a, a &, a; a, a; aﬁ]T U=y, f, £, f, fn+§ fn+3 fn+l:|
5 5 5

and

n+= n+= n+= n+=
5 5 5 5

X=| 022 13& , -30&°, - 98¢®, 630, 1386,

n+= n+= n+—= n+—
5 5 5 5
n+> n+> n+> n+=
5 5 5

5

n+= n+- n+— n+—
5 5

9 2, 69¢ -108° - 248 126 = 23f
0 22 13% -30&2 - 98@ 63 1388
0 22 13& , - 308°, - 98%°, 630, 1386,

0 22 13& , - 308°, - 98, 630x', 1386&°,
022 13& , -308°, - 980°, 63¢, 1386,

| 0 22 13&,, - 30&n2+1 B 98@& 63q‘+1 138@1_

Solving (15) for a;'s, ] =0(1)6 and substituting into the basis function gives amtinuous linear

multistep method of the form,

V09 = @9, +hY 4,091, 1 =0 £ 1.
where |

a,=1

1
o= 288

ﬁl:22—858(25(16—84@5+ 1066'- 616+ 144 )

(125a° - 4500° + 6375 — 4500+ 1644 28

5
:—%(25(16—78@% 886'- 428+ 12 )

5

Bs :2%58(2506— 72@°+ 7368'- 31%+ 48 )

5
By = '%(25(16 — 66@°+ 618 —244°+ 362)

5

@:%(125&6—3000% 2625 - 1000+ 142 )

(16)
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X=X
t= L, a(t) and B(t) are continuous functions. Evaluating (16)t&té(—;jl, gives a discrete

h
computational block method of the form (13), where

n+—

T
Ym = |:yn+1 y 2 yn+§ yn+:1 yn+ 1:| ’ yn = |:yn—4 yn_§ yn—
5 5 5

5 5 5
T T
F(Ym){fml fofaf, fnﬂ} ,f(yn){fn_“ faf,f, fn}
5 5 5 5 5 5
0 0 19
288
1000 0 (00001 0 0 14
01000 00001 225
A”=100100 00001 d={0 0 %
00010 00001 4
00001 100001 00 275
I 288




1427 -133 241 - 173 3
7200 1200 3600 7200 800
43 7 7 -1 1
150 225 225 75 4500
| 219 57 57 -21 3
800 400 400 800 800
64 8 64 14
225 75 225 225
25 25 25 25 19
96 144 144 96 288

It is important to note here that the computationathod developed above is implicit in nature, nregan
, . . . : , .11
that it requires some starting values before it lmanmplemented. Starting values fg, ;, | :g(gjl

are predicted using the Taylor series up to theroofleach individual scheme.

4. ANALYSISOF BASIC PROPERTIESOF THE COMPUTATIONAL METHOD
In this section, we shall analyze the basipertes of the computational method derived.

4.1. Order of Accuracy and Error Constant
The block method (13) is said to be of unifaoturate ordermp, if p is the largest positive integer

for which Co =C1=Cz = ...=Ep =0 but6p+1 #0, [1]. It is the largest positive integgy that quantifies
the rate of convergence of a numerical approximatb a differential equation to that of the exact
solution. On the other hand, the error constatihésaccumulated error when the order of a methasd ha

been computed. Thus_;o =C1=C2=Cs=C4=Cs5=C6=0

cr=[-1.83x10" - 1.2% 10 - 1.66 10 - 1.88 T0- 2:017ip

Therefore, our computational method is of unifoirthsorder.

4.2. Root Condition and Zero Stability

Definition 4.1 [1]: The block method (13) is said to satisfy reonhdition, if the rootsz, s = 12,...,K of
the first characteristic polynomigh(z) defined by p(z) = detzA® - E) satisfies|zs| <1 and every
root satisfying|zs| =1 have multiplicity not exceeding the order of thfedential equation. The method

(13) is said to be zero-stable if it satisfies thet condition. Moreover, ab - 0,0(z)=2z"* (z- 1),

where 1 is the order of the matrice&® and E , see [10] for details.
We shall now verify whether or not the computationathod derived satisfies root condition.



10000 [0000]
01000 [0O0O0O0]

p(2)=]z/0 0100/~ 0000 ] (18)
00010 |0000]
00001 {0000

p(2=2(z-1)=0=>2z=2,=2,=2,=0,z =1

Thus, the computational method (13) is said tsBatbot condition.
Theorem 4.1 [1]
The necessary and sufficient condition for the méthiven by (13) to be zero-stable is that it fiassthe
root condition.
It is important to note that the main consequericm-stability is to control the propagation béterror
as the integration proceeds.
4.3. Consistency

The computational method (13) is consistentesiit has orderp=6=1. According to [11],

consistency controls the magnitude of the locahdation error committed at each stage of the
computation.
4.4.Convergence
The computational method (13) is convergentdiysequence of Dahlquist theorem below.
Theorem 4.2 [12]
The necessary and sufficient conditions that aieootis LMM be convergent are that it be consistent
and zero-stable.

4.5. Symmetry
According to [13], a linear multistep metho@)lis symmetric if,
a =a,_.
AR :O(D(Ej for even k (19)
ﬁj = ﬁk—j 2
and
a. =-a,_.
{ : k'}, j=0(1)k for odd k (20)
ﬁj = _ﬁk—j

The newly derived computational method is symmetgiicce from equation (17), it is clear that the
condition in equation (20) holds becaySe=-24,, B, =-8, and B,=-0..
5 5 5 5
4.6.Region of Absolute Stability
Definition 4.3 [1]
The linear multistep method (16) is said to haagian of absolute stabilityr, , whereR, is a region of

the complexﬁ-plane, if it is absolutely stable for 0 R, . The intersection oR, with the real axis is

called the interval of absolute stability.
In plotting the stability region, we shall adopéthoundary locus method. The stability polynomfahe
newly derived computational method is given by,



H(W)=—h5( 1 W’ + ! W4j—h4( 137 w*— 137 W5j—h3(—3ws+—sw4j
18750 18750 112500 112500 200 200 (21)

e[ 2wt = 2 e o hf D A we-we
150 150 2 2
The stability region is shown in Figure 1.
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Figure 1: Region of Absolute Stability for the GQmuational Method

According to [11], stiff and oscillatory algtrms have unbounded RAS. Also, the author in [1]
showed that the stability region for L-stable schemust encroach into the positive half of the demp
plane. Thus, the stability region in the Figure Listable

5. IMPLEMENTATION, NUMERICAL EXPERIMENTSAND DISCUSSION OF RESULTS
5.1. Implementation

The computational method (13) was derived usivg Scientific Work Place 5.5 and the graphical

results were generated with the aid of MATLAB 20p@agramming language.

5.2. Numerical Experiments

Two important problems in electricity shall be colesed. These problems have been successfully
modeled into first-order initial value problem difet form (1) and the computational method developed
shall be applied on them. Graphical results shalbbnerated in order to interprete the nature edéeh
problems.

Problem 5.1:

A circuit has in series an emf given by E=1086t V, a resistor of X0 and an inductor of 0.5H. If
the initial current is 0, find the current at tirhes O.

Source: [9]

Applying Laws 1,2 and 4 earlier stated, the défdial equation modeling this problem is given bg t
first-order linear equation,

%+ 20i = 200sin 40 (22)
Since the initial current is 0, the initial condit is,

i(0)=0 (23)
It is important to note that, the Integrating Fadgtd-) of (22) is,

| F =™ =g (24)

Hence, its solution is,
ie™™ =j{(2003in 40 xe®}dt+C = zogie20 sin 46t +C (25)



But from integral calculus,

je""x sinbxdx={eax(a sinbx—-b co@x)} 1€ +b? (26)
Hence,

&2 sin 4t = " (200sin 46— 40cos4) e ( sin4® 2cos) 1)

20° + 40 100
Equation (25) reduces to,

ie”* =2e*® (sin4@ - 2cos4Q+C
Or

i =2(sin4Q - 2cos4Q+Ce™* (28)
Applying the initial condition=0 whent =0, equation (28) gives C=4. Hence, (28) becomes,

i =2(sin4@- 2cos4Q+ &> (29)
We then transform (29) into a "phase-angletnfais follows,

sin4Q - 2cos40= f{%) sin 46 (%) cosz}(t J 5 §in 40) (30)
where

cosp= 1 and sinp= 2 (31)

V5 J5

From (31),¢=-1.11radians. Hence,

sin4@ - 2cos40=+ 5sih 46 1)
Therefore, (29) transforms to

i(t)=%5sin(4@- 1.1)+ &** (32)
The graph of the currerit, as a function of timet,, is shown in Figure 2 for Problem 5.1.

Problem 5.2:

A 12V battery is connected to a series cirguitvhich the inductance is (1/2) H and the resistais
10Q. Determine the currentif 1(0) =0 at timet >0.

Source:[9]
If a circuit has in series an emf E volt, a resif onm and an inductor L henries, then the ctirrein
amperes at timg is given by,

L(ﬂj +Ri=E (33)
dt
Thus, the initial value problem modeling theldem is given by,

%+20i = 24,i (0)= C (34)
The I.F of (34) is,

2% — g0 (35)
and the solution is given by,

. 6

ie”® = [(24e™ dt+C:(—j “+C 36

J(24) - (36)

Thus,



. 6 20t
i=|=|+e 37
(5} (37)
Sincei(0) = 0, puttingi =0 andt =0 in (37), we getC = —(6/5) , thus (37) reduces to,

i(t) = (g} (1-e™) (38)

The graph of the currerit, as a function of timet, is shown in Figure 3 for Problem 5.2.
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Figure 3: Graphical Riesfor Problem 5.2

5.3. Discussion of Results

We considered two numerical examples in thigepaFor problem 5.1 (see Figure 2), the current is
presented as the sum of sinusoidal term and annexgial term. The exponential term becomes very
small in a short time that its effect is soon gradly negligible; it is the transient term. Thadter a short
time, essentially all that remains is the sinudoidem; it is the steady current. Observe thaipisiod
(n/2) is the same as that of the emf. However, thesplanglep=—1.11 radians indicates that the emf

leads to a steady-state current by approximatdl6jk1.11. From the graphical result, one can asil
conclude that the computational method is conveérgéor problem 5.2 (see Figure 3), the current is
presented as an exponential term. The exponeatial becomes very small in a short time that iteaff
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is soon practically negligible; this is the tramgiderm (in order words the current is not steady).
However, the graphical results in general show thatcomputational method is convergent, since the
computed solutions converge toward the exact swisiti

6. CONCLUSION

We have been able to develop a computationptoaph for the solution of some electric circuit
problems of the form (1) using Legendre polynonafidegree six as our basis function. The method
developed was found to be L-stable and that explaimy it performed well on this class of problems.
The computational method was also found to be g&ble, symmetric, consistent and convergent. Thus,
satisfying the basic properties of computationalhods.The graphical results obtained in Figures®3&
show that the computational method developed isocwationally reliable and it is also important twie
that, at any value of timé, one would be able to know the curreintthat flows through the circuit.
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