Original Research Article

_	<u>Criginal Hoodal on 7 littles</u>
2	
3	Risk of residual aluminum in treated waters with aluminum
4	sulphate
_	•
5	
6	
7	
8	Abstract
9	Waters treatment by aluminum sulphate is the most used process in waters treatment to remove
10	unwanted microorganisms. The inorganic coagulants are partially hydrolyzed salts; their
11	dissolution in water depends mainly on this one's pH. However, there are still aluminum residues
12	after dissolving. The determination of residual aluminum in the treated waters is determined by the
13	standard addition method. Treated waters from the treatment plant station in Skikda's city contains
14	210 g / L of residual aluminum for an average dose of equal to 40m /L of aluminum sulphate. The
15	residual aluminum in treated water exceeds WHO standards (200µg / L), and far from the
16	recommended standards of 100 g / L in all searches. We made trials with laboratory flocculators
17	under the same conditions. The residual aluminium obtained by the same method, is 182 mg / L
18	13.33% less than the WHO standards. Another one trial is carried out with a dose of 40 mg / I
19	alum, as adjuvant we used a bentonite from M'Zila (Algeria) with a dose of 3mg / L. This test has
20	helped reduce the amount of residual aluminum in raw water (20.48%, lower than the
21	recommended standards).
22	In order to investigate the causes of this excess, we made trials with the laboratory flocculators
23	under the same conditions that station. The residual aluminum obtained by the same metered
24	addition method, is $182 \text{ mg} / L$ (13.33% , less than the WHO standards).
25	The dry residues were characterized by analysis with a scanning electron microscope and EDX
26	(MEB-EDX) to show the different spectra of the aluminum in the dry residue. The crude bentonite
27	is characterized by the elemental chemical method using X-ray fluorescence.
28	Keywords. Aluminum sulphate, bentonite, residual aluminum, MEB-EDX, fluorescence X.
29	INTRODUCTION
30	The residual aluminum present in water that has been treated clarification with
31	aluminum sulphate may be the result of an overdose or no conditions favourable
32	to its hydrolysis (pH and temperature). The Flocculants bind to in suspension
33	particles and cause them to precipitate as sludge at the bottom of flocculators and

- decanters. If the conditions are not met some of the aluminum remains in solution
- 35 (BOTTERO and al., 1980).
- 36 Epidemiological studies have shown the dangers of aluminum and some countries
- 37 have already taken their precautionary. The Canada, for example, tolerates only
- than 100µg / L in the treated water (HILL., 1989). In France, epidemiology
- 39 research team of Professor Jean François Dartigues, University of Bordeaux has
- 40 published several articles in the American Journal of epidemiology (RONDEAU
- and al., 2000; RONDEAU and COMMENGES, 2001; RONDEAU and al, 2006.)
- 42 treating the relation between aluminium and Alzheimer's disease. A lot of works
- advocate a tolerable threshold limited to 100µg / L in water used for drinking,
- 44 while remaining vigilant about monitoring the waters treatment plants. The
- 45 inorganic monomeric aluminum represents their main fraction of aluminum after
- treatment of the water (62% of total).
- 47 A study performed in Europe estimated that the intake of aluminum from drinking
- 48 water is less than 5% of daily intake from other sources like food, utensils,
- 49 medicines etc., (SOLLARS and al., 1989).
- An estimated total daily average intake of 8.26 mg or the share contributed by the
- water is less than 0.4 mg of aluminum.
- 52 Higher concentrations are found in drinking water in relation to the quality of raw
- 53 water over-loaded if the pH is not controlled properly during the steps of
- 54 treatment and optimizing the dose in steps of coagulation, decantation and
- 55 filtration (MEGHZILI and al, 2012; American Water Works Association Research
- Foundation, 1993). In distribution networks, the process of disinfection can be
- 57 limited if we find high levels of residual aluminum that retains and protects
- 58 microorganisms (American Water Works Association Research Foundation, 1993.
- 59 COSTELLO., 1984). The best results are obtained with pH between 6 and 7,
- 60 minimum solubility range of aluminum hydroxide during coagulation
- 61 (LETTERMAN and DRISCOLL., 1988).
- The chemistry of aluminum in water can be described by several forms (BAES)
- and MESMER, 1976; and MOTEKAITIS MARTELL, 1988; JEAN PIERRE
- 64 MARC HENRY JOLIVET and 1998):

- 65 \rightarrow five monomers: Al^{3+} , $Al(OH)^{2+}$, $Al(OH)_2^+$, $Al(OH)_3^0$, $Al(OH)_4^-$
- 66 \rightarrow three polymers: $[Al_2 (OH)_2]^{4+}$, $[Al_3 (OH)_4]^{5+}$, $[Al_{13}O_4 (OH)_{24}]^{5+}$
- 67 $(H_2O)_{12}^{7+}$
- 68 \rightarrow a One precipitate: Al (OH) ₃
- 69 Aluminum mononuclear hydrolytic products are combined to form polynuclear
- species in solution (Rondeau et al., 2000). Aluminum begins to polymerize when
- 71 the pH of an acidic solution substantially increases beyond 4.5: (BERTSCH and
- 72 PARKER., 1996)
- 73 2Al (OH) $(H_20)_5^{2+}$ $Al_2 (OH)_2 (H_20)_8^{4+} + 2H_20$
- 74 Polymerization produces gradually larger structures and eventually lead to the
- 75 formation of the Al₁₃ polycation (PARKER and BERTSCH., 1992a, 1992b).
- According to Jones and BENOIT (1986) the aluminium present in the treated
- vater is found largely under dissolved forms. The dissolved aluminum is defined
- as aluminum that passes through a 0.22µm filter (MEGHZILI and al., 2012).
- 79 In highly charged water, it is important to control the total aluminum content by
- 80 optimizing coagulation and filtration processes. We must control the dosage of the
- 81 coagulant and coagulation pH, because it must be accompanied by good stirring
- 82 allowing good flocculation of suspended solids and will facilitate their decantation
- 83 before the step of filtration.
- The neglect of one of these steps may cause an increase of residual aluminum.
- The pH is one of the factors that determine the form of aluminum present in water
- and its solubility increases in lower pH (MARTELL and MOTEKAITIS., 1989).

1. MATERIALS AND METHODS

1.1. Operating procedure

89 Analytical results of the raw water and the treated water in station are

90 shown in Table I.

91

87

88

92

93

Table I. Physic-chemical analysis of water supply (Central Laboratory of the company's petrochemical industries, ENIP).

Parameters	Units	Raw water	Treated water station
Aspect	-	Disorder	Limpid
pН	-	8.10	7.78
Conductivity	μs/ cm	418	425
Salinity rate	mg/L	360	340
Suspended materials	mg/L	42	Traces
Chlorides	mg/L	78.55	72.73
Carbonates	mg/L	Traces	Traces
Bicarbonates	mg/L	132.41	127.32
Calcium	mg/L	50.79	50.79
Magnesium	mg/L	14.40	14.40
Total hardness	°F	18.6	18.6
Sulphates	mg/L	46.23	44.20
Phosphates	mg/L	Trace	Traces
Potassium	mg/L	4.9	4.9
Sodium	mg/L	9.3	8.3
Dissolved organic	mg/L	38.02	1.68
carbon			
Ammonium	mg/L	0.42	Traces
Nitrites	mg/L	Trace	Traces
Nitrates	mg/L	Traces	Traces
Total iron	mg/L	1.91	1.88
Cuivre	mg/L	0.37	0.36
Mercury	μg/L	3.80	0.76
Aluminum	μg/L	-	210.00
Turbidity	NTU	8.87	2.96
Organic matter content	Mg O ₂ /L	8.70	5.55

98	1.2.1. Principle
99	The aluminum with cyanine Erichrome R forms a red complex at pH 6. After 5
100	minutes, the analysis is performed at the wavelength of 535 nanometers. The
l 01	method used is the standard addition method.
L02	- <u>Equipment</u>
103	UV/visible type Shimadzu UV-1605.
L04	- <u>reagents</u>
L05	- Solution Erichrome cyanine R
106	- Acetic acid buffer solution pH 6
L07	- Ascorbic Acid
108	- Solution 0.1 Mole EDTA (Éthylène Diamine Tétra-Acétique)
L09	- Sulphuric acid 0.05 Mole
10	- Al Solution 0.1 g / L
111	1.2.2. Procedure
12	Adjust the water sample at a pH of 3-3.5
113	Put 10ml of sample in 5 100mL flasks. In the first flask was added all reagents
14	except the aluminum standard solution (to adjust the zero of spectrophotometer).
15	In other vials, we put all reagents except EDTA and we add an increasing dose of
116	standard aluminum. The absorbance of the solution of each flask was then
L17	measured is and traced in curve $A = f(C)$, the absorbance versus concentration
18	aluminum and from this curve the amount of aluminum was determined in the
119	sample.
20	1.2.3. Description of tests jar-test
21	Jar test is carried out as per the procedures outlined in paragraph 1.2.
122	The tests were conducted in a laboratory flocculator comprising six agitators and
L23	six 500mL beakers. The water to be treated is placed in each beaker. The rapid
L 2 4	stirring is carried out at 200 rev / min; at time zero, we add increasing doses of
L 2 5	aluminum sulphate in each of the beakers. The phase rapid stirring lasts three
126	minutes. The rapid stirring is followed by 17 minutes of slow stirring at 45 t $\!\!\!/$ min.
27	After decenting for 30 minutes we take a quantity of supernatant to analyze

1.2. Determination of the content of aluminum in the treated water

residual aluminum. The optimum dose of aluminum sulphate is 40 mg / L (determined by jar-test). In Table 2 we present the results of quality parameters analysis.

Table II. Results of analyzes of quality parameters

Parameters	Raw water	(jar-test) Aliminum	Treated water station	Aliminum sulphate
		sulphate	$(sulphate\ Al)$	+Bentonite
Doses (mg/L)	-	40	40	40 +3
Temperature (°C)	28	29,5	28	29
Conductivity (µs/cm)	545	538	559	576
pН	8,10	7,32	7,61	7,79
Salinity	0,3	00	00	-
Turbidity(NTU)	4,47	1,04	2,10	3,37
Organic matter(mgO ₂ /L)	11,2	4,12	4,34	1,97
TH °F	21,00	20,40	26,20	-
TAC °F	11,50	9,70	8,10	-
% elimination turbidity	0	76,73	53,00	24,25
% élimination organic	0	63,21	61,25	42,41
matter				
Residual Aluminum	No detected	0,182	0,210	0,167
$(\mu g/L)$				

In Table II, we have considered only the monitoring of the residual aluminum in the jar-tests and the water treated in station, then to the same dose was we added a dose of 3 mg / L of bentonite as an adjuvant. At the end, the results will be compared between them.

1.3. Analysis of solid materials

1.3.1. Characterization bentonite

Bentonite is characterized by the National Entreprise of Non-Ferrous Mining Products and Useful Products (ENOF) in 2007.

142 Table.III. Physico-chemical characteristics of the bentonite

Exchangeable cations

Specific	pН	Specific mass	Exchange	(meq/100g)			
surface		g/cm ³	capacity				_
m^2/g			(Meq/100g)				
				Ca ²⁺	Na ²⁺	Mg^{2+}	Na/ca
65,00	9,00	2,71	75,8	43,60	25,20	4,80	0,58

Table IV. Mineralogical characteristics of bentonite

Montmorillonite	Quartz	Carbonates	Feldspars	Biotites
45 à 60%	15 à 20%	8 à 10%	3 à 5%	8 à 10%

1.3.2. Electronic scanning microscopy

This operation allows to directly visualizing the morphology (shape, size) of particles and their possible surface roughness (image 1, 2 and 3). It consists of scanning, line by line, the surface of the particles by an incident beam of high energy electrons, thereby causing the emission of secondary electrons of low energy. These are sent to a detector which transmits the signal to a screen of where the scanning is synchronized with the scanning of the sample. The contrast of the image reflects the relief of the sample. These secondary electrons allow reconstruction of a magnified picture of the surface.

In laboratory, images of the scanning electron microscope (SEM) were performed using a Philips XL 30 microscope equipped with a field emission gun. The sample is prepared by depositing the powder on the aluminum support coated with a thin layer of graphite whose surface is adhesive. It is then metalized by vacuum, by sputtering a layer of gold having a thickness between 10 and 20 nm.

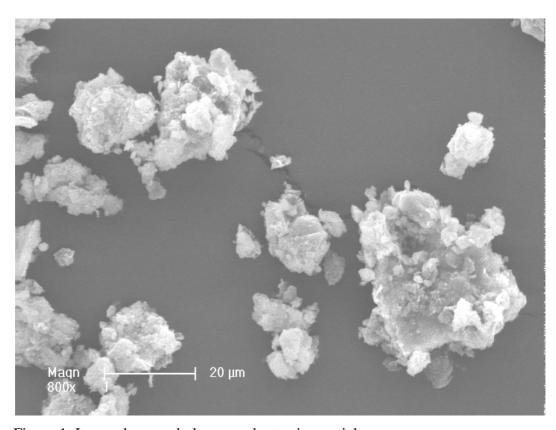


Figure 1. Image the morphology raw bentonite particles

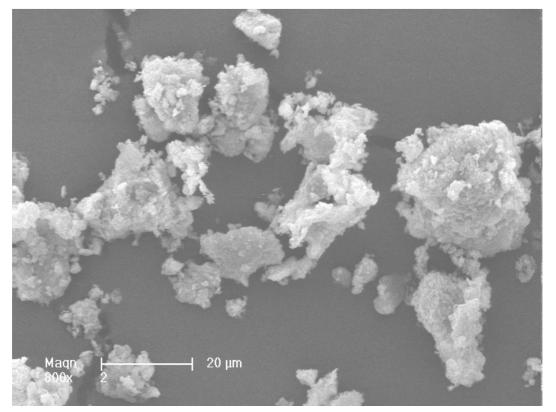


Figure 2. Sample image with a dose of aluminum sulfate 40 mg/L $\,$

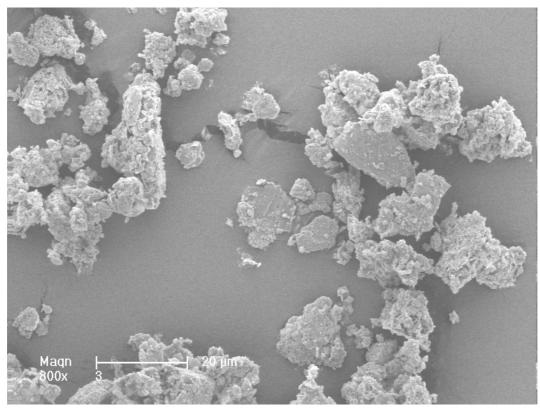
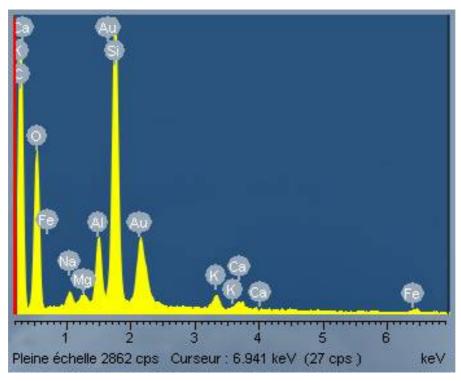



Figure 3. Sample image with a dose of aluminum sulfate 40 mg / L + 3 mg of

165 bentonite

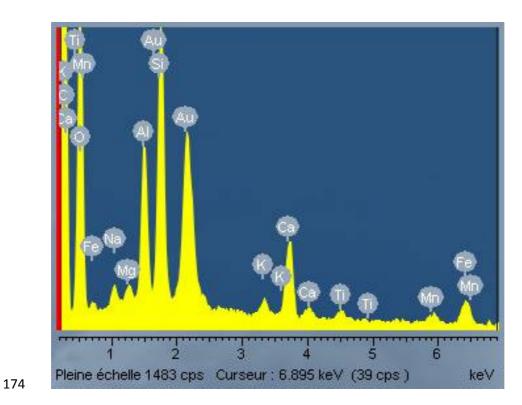

1.3.3. MEB-EDX dry residues

Figure 4, 5, 6 shows the various spectra of the minerals present in different samples. The peaks of aluminum vary from one sample to another. The higher amounts of aluminum are located on the sample 3 and then the second and the lowest peak on the sample 1. Figure 3 shows a larger concentration of aluminum on the image 3

173 Figure 4. Raw bentonite

172

175 Figure 5. Dose of aluminum sulphate 40 mg / L

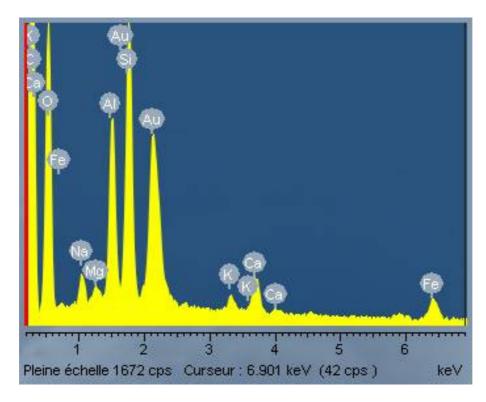


Figure 6. Dose of aluminum sulphate 40 mg + 3 mg bentonite

1.3.4. Fluorescence (XRF)

Fluorescence spectrometry is an elemental analysis method using the physical property of the material to determine pure elements concentrations. The X-ray spectrum emitted by the material is characteristic of the sample composition. The spectrum analysis allows deducing the elemental composition of the mass concentrations. The powder to be analyzed is put into a cup, and then pressed onto a pellet of boric acid. The device used is a fluorescence spectrophotometer X MagiX Panalytical.

Table V. Quantification of raw bentonite sample

Analyte	Compound of formula	Concentration %	Méthod of calculating
Na	Na ₂ O	2.796	Calculated
Mg	MgO	2.913	Calculated
Al	Al_2O_3	14.031	Calculated
Si	SiO_2	69.665	Calculated
P	P2O ₅	0.082	Calculated
S	SO_3	0.491	Calculated
K	K2O	2.407	Calculated
Ca	CaO	4.098	Calculated
Ti	TiO_2	0.350	Calculated
Mn	MnO_2	0.168	Calculated
Fe	Fe_2O_3	2.879	Calculated
Rb	Rb_2O	0.009	Calculated
Sr	SrO	0.041	Calculated
Cl	Cl	0.069	Calculated

196 Table VI. Percentage of mass concentrations

Element	Concentration %	Element	Concentration %
O	48.60	K	2.00
Na	2.07	Ca	2.93
Mg	1.76	Ti	0.210
Al	7.43	Mn	0.106
Si	32.6	Fe	2.01
P	0.0359	Rb	0.00844
S	0.197	Sr	0.0347
Cl	0.0690		

2. DISCUSSION OF RESULTS

198 We considered only the monitoring of residual aluminium.

Table VII. Monitoring the residual aluminum in the different samples

	Réactifs	Dose (mg/L)	Al residual	% Al residual/total Al			
Water treatment station	Alumina sulphate	40	0,210	5,77%			
Jar-test	Alumina sulphate	40	0,182	5,00%			
Jar-test	Alumina sulphate	40	0,167	4,58%			
	Bentonite	+ 3					
The 40 mg dose of a	luminum sulphate / L	gives 3.64 mg	L of alumin	um. water			
treated of station co	ntains 5.77% of the	total aluminum a	and thus cons	stitutes the			
residual aluminum.	The pH of raw wate	r arriving at the	station has	a value of			
8.10, less favorable	for the polymerization	on leading to the	formation o	f the Al13			
polycation. After tr	eatment the pH doe	es not exceed 7	.61 and the	minimum			
solubility range of al	uminum hydroxide dı	uring coagulation	n is at a pH be	etween 6-7			
for best yields (LET	ΓERMAN and DRISC	COLL., 1988).					
Aluminum sulfate, in	addition to its action	on the reduction	n of suspende	ed solids, it			
intervenes on lowering the pH. A pH of 7.61 obtained after treatment with							
aluminum sulfate confirmed that there was no optimization of the various steps of							
clarification (dose, pH, residence time, stirring etc.).							
For the jar-test perf	Formed with SA of	40 mg / L, 5%	of the total	aluminum			
remains in solution, limit advised and recommended in all works on the residual							
aluminum in drinkin	aluminum in drinking water treatment.						
The jar-test perform	ed with 40 mg / L	SA and 3mg / I	of bentonit	e, residual			
aluminum is 4.58% of	of the total aluminum,	well below the	5% recommen	nded.			
According to Sollars	s and al (1989), in a	study of aluminu	ım in drinkin	g water in			
Europe have also she	Europe have also shown that the aluminum contribution of drinking water is less						
than 5%.							
The optimum dose	determined by jar-	test has elimina	ated 95% of	the total			
aluminum after filtration.							
Incidentally, during the process of agglomeration or coagulation, much of							
aluminum contained in the aluminum salts added is hydrolyzed to give/produce							
the aluminum hydroxide which precipitates and becomes part of the floculate.							

This aluminum is therefore part of the sludge generated by the treatment process.

- 226 It is possible that a small amount of added aluminum remains in the treated water,
- 227 whether in colloidal particle form (Al (OH) 3) or in soluble form (Al (OH) 2+, Al
- 228 (OH) 4⁻), according to the conditions of processing. A fault in the spillway of the
- sludge, incorrect scraping, unsettled flow of the sludge pumps, can cause release
- of the aluminum contained in the sludge and thus constitute a further addition to
- the existed aluminum residual.
- By studying the electronic scanning microscopy images and spectra in the jar-tests
- 233 1, 2 we find that the aluminum peaks are important in the second test. For a dose
- of 40mg / L of SA, 5% of the total aluminum is residual; the remainder is with the
- settled particles. In station, and under the same conditions, the residual aluminum
- is 5.77% of the total aluminum. In the resort, this is explained by the non
- homogeneity of treatment (agitation, dosage, residence time) because it must meet
- 238 the urgent need of drinking water because its capabilities are no longer sufficient
- 239 to satisfy a growing of population.
- In addition a portion of the aluminum present in sludge may be salted out when
- the sludge removal is not done automatically or when the sludge discharge pumps
- are stopped. Bentonite, as adjuvant reduced the residual aluminum to a lower level
- 243 due to its cationic exchange capacity (75.8 meq / 100 g of bentonite) and the
- 244 possibilities of retention in their foliar spaces. The bentonite used contains
- 245 14.031% of Al₂O₃ compound, giving a 7.43% of aluminum, which may in its turn
- be hydrolyzed to form other polymers, polycations Al₁₃, which promote good
- 247 decantation and reduce the residual aluminum.

CONCLUSION

- 249 The aluminum sulfate is used as a coagulant in the treatment of surface water;
- 250 generally its pH is close or greater than 8, what does not facilitate turbidity
- 251 removal, because their removal also results in reduction of pathogenic
- 252 microorganisms and also reduces the formation of by-products (organic matter)
- before disinfection, to prevent the formation of compounds organochlorine
- responsible for some cancers. Disinfection can be hindered by high levels of
- residual aluminum. It is imperative, in the surface water treatment process, to

- work in optimum conditions can lead to a minimum aluminum concentration in
- drinking water. In loaded water, an adjuvant of the coagulation-flocculation can
- 258 help to reduce the residual of aluminum, as is the case with natural bentonite. The
- 259 Favorable conditions for hydrolysis of aluminum (pH, t °, agitation and water time
- 260 stay) allow the formation of the Al₁₃ polycation responsible for a good
- 261 flocculation and reduced residual aluminum including its harmfulness described
- 262 in several studies. The tests have shown that if one respects the conditions of
- 263 hydrolysis of aluminum (Table II), we arrive at an acceptable level of residual
- aluminum.

265 BIBLIOGRAPHIC REFERENCES

- 266 AMERICAN WATER WORKS ASSOCIATION RESEARCH FOUNDATION
- 267 (1993). Aluminum in drinking water and Alzheimer's disease: a resource guide.
- 268 AWWA Research Foundation and the American Water Works Association. 115
- 269 pp.
- BAES C. F.et MESMER R. E. (1976). The hydrolysis of cations, Wiley, New York,
- 271 496 p.
- 272 BERTSCH, P.M. ET D.R. PARKER (1996). Aqueous polynuclear
- 273 aluminum species. In: G. Esposito (éd.), The environmental chemistry of
- aluminum, 2e éd., CRC Press, Boca Raton (Fla.), p. 117-168.
- 275 BOTTERO J.Y., CASES J.M., FIESSINGER F. AND POIRIER J.E.
- 276 (1980). Studies of hydrolyse aluminium chloride solutions. 1. Nature of
- 277 aluminium species and composition of aqueous solutions. Journal of
- 278 physical chemistry 84, 2933-2939.
- 279 COSTELLO, J.J (1984). Postprecipitation in distribution systems. J. Am. Water
- 280 Works Assoc., 76: 46-49
- JEAN PIERRE JOLIVET and MARC HENRY (1994). De la solution à l'oxyde.
- 282 Condensation des cations en solution aqueuse. Savoirs Actuels.
- interEdition/CNRSEdition.
- 284 Hill, R.J. and Hill, M (1989). An exposure assessment of the health hazards
- associated with the intake of aluminium. Part II of a report on the effects of

- aluminium on human health. Préparé pour le Ministère de la Santé et du Bien-être,
- 287 Ottawa (1989).
- JONES, K.C. and BENOTT BG (1986). Exposure of man to environmental
- aluminum- exposure commitment sassements. Total environ., 52., 65-82.
- 290 LETTERMAN, R.D. and DRISCOLL, C.T (1988). Survey of residual aluminium
- in filtered water. J. Am. Water Works Assoc., 80: 154-158.
- 292 MARTELL, A.E. et MOTEKAITIS, R.J(1989). Coordination chemistry and
- 293 speciation of Al (III) in aqueous solution. Dans: Environmental chemistry and
- toxicology of aluminum. T.E. Lewis (dir. de publ.). Lewis Publishers, Chelsea,
- 295 MI. pp. 3-17.
- 296 MEGHZILI B, BOUSSAA M, MEDJRAM MS (2012). Aluminium résiduel et
- optimisation des étapes de la clarification dans les stations de traitement des eaux.
- 298 ScienceLib Editions Mersenne: Volume 4, N° 120118.
- 299 PARKER, D.R. and P.M. BERTSCH (1992a). Identification and
- quantification of the «Al13» tridecameric polycation using ferron, Environ.
- 301 Sci. Technol., 26: 908-914.
- PARKER, D.R. and P.M. BERTSCH (1992b). Formation of the «Al13»
- tridecameric polycation under diverse synthesis conditions, Environ. Sci.
- 304 Technol., 26: 914-921.
- 305 RONDEAU V, COMMENGES D, JACQMIN-GADDA H and DARTIGUES JF
- 306 (2000). Relationship between aluminum and silica concentrations in drinking
- water and Alzheimer's disease: an 8-year follow-up study. Am J Epidemiol, 152,
- 308 59-66.
- 309 RONDEAU V, COMMENGES D (2001) The Epidemiology of Aluminium and
- 310 Alzheimer's Disease, In Aluminum and Alzheimer's Disease, the Science that
- Describes the Link, C. Exley, (Editor), Elsevier Science B. V.
- 312 RONDEAU V, IRON A, LETENNEURL, COMMENGES D, DUCHENE F,
- 313 ARVEILER B and DARTIGESJ-F (2006). Analysis of the effect of aluminum in
- drinking water and transferring C2 allele on Alzheimer's disease. Eur J Neurology
- 315 13, 1022-1025.

- 316 SOLLARS, C.J., BRAGG, S., SIMPSON, A.M. et PERRY, R (1989). Aluminum
- in European drinking water. Environ. Technol. Lett., 10: 131-150.