

www.sciencedomain.org

SDI Review Form 1.6

Journal Name:	Advances in Research
Manuscript Number:	Ms_AIR_27621
Title of the Manuscript:	Approximate Solutions of Nonsmooth Systems via Generalized Euler-Lagrange and Hamiltonian Equations
Type of the Article	Original Research Article

General guideline for Peer Review process:

This journal's peer review policy states that <u>NO</u> manuscript should be rejected only on the basis of '<u>lack of Novelty'</u>, provided the manuscript is scientifically robust and technically sound.

To know the complete guideline for Peer Review process, reviewers are requested to visit this link:

(http://www.sciencedomain.org/page.php?id=sdi-general-editorial-policy#Peer-Review-Guideline)

SDI Review Form 1.6

PART 1: Review Comments

	Reviewer's comment	Author's comment (if agreed with reviewer, correct the manuscript and highlight that part in the manuscript. It is mandatory that authors should write his/her feedback here)
Compulsory REVISION comments	This paper generalizes the Euler-Lagrange equations for systems of non-smooth functions. This paper addresses an important problem and seems to be technically correct; however, it is in serious need of a careful proof-read of word choice and syntax, etc. I especially appreciate the inclusion of test problems by the author(s), but the paper would also benefit from a bit clearer explanation of two of the test problems, Example 5.1 and Example 5.2, and a completion of these examples. After these revisions I recommend the paper be published. With respect to Example 5.1 and 5.2, I have the following	
	concern: In Example 5.1 it is not clear to me what is the connection between the sum aj cos(pi j xdot) to L, x, etc. I think the derivative of L with respect to xdot is the sum aj cos (pi j xdot) and that this relationship is used to define the aj's, but I am not completely sure. This should be clarified in this example. In Example 5.2 I think the sum aj cos(pi j x) is the derivative of L with respect to x and bj cos(pi j xdot) is the derivative of L with respect to xdot, but again I am unsure and the appropriate relationship should be stated explicitly in the examples.	
	You state in section 1 that the method you present is "practical", but a solution containing an infinite sum (as is	

SDI Review Form 1.6

Examples 5.1 and 5.2) is hardly "practical". Presumably the practical solution is to approximate the infinite sum with a finite sum. In that case the solution of these problems should suggest a number of terms to use in a practical application of solving these examples. Once this is done, explicitly give the aj and bj values that result. When this is done, the GEL equation in both of these examples will not produce an exact solution to the original problem. The next step should be to solve the original equation numerically and the GEL numerically and compare (e.g with a plot or other method) the results for x(t) in each case. In this way you will have	
results for x(t) in each case. In this way you will have demonstrated the ability of your method to give a "practical" method of solving the given problems	

www.sciencedomain.org

SDI Review Form 1.6

Minor REVISION	With respect to the word choice problem, I noted the following	
comments	words misused or misspelled (there are probably more):	
	Abstract: constrined for constrained	
	Section 1: extermizing for extremizing?	
	appliacation for applications	
	dose for does	
	Section 3.	
	not for no	
	taught for thought	
	Rockfallar for Rockafellar	
	Section 3.2	
	apecified for specified	
	Section 4	
	continuouse for continuous	
	matrixes for matrices	
	requaires for requires	
	cofficients for coefficients	
	With respect to the syntax problems, I noted the following	
	problems:	
	Section 1:	
	Other generalized derivatives have been proposedare not	
	practical (run on sentence)	
	We present [a] different definition (The "a" is missing.)	
	"by assumption" should be "by assuming"	
	One way, "One" is not the beginning of a sentence and should	
	not be capitalized.	
	"we need to impose another conditions" use the word	
	"other" instead of the word "another".	
	"that presented by [Kamyad" should be "that was presented	

www.sciencedomain.org

SDI Review Form 1.6

	by Kamyad "	
	where the derivative [is] replaced by ("is" is missing.)	
	"We proposed necessary" should read "We propose	
	necessary"	
	Section 2:	
	"we utilize it" should read "we use it"	
	Section 3:	
	"that there are not such" should read "that there are no	
	such"	
	"CRockafella,larke et al." (something is wrong here, but I can't	
	fix it)	
	Section 3.2	
	"We wants to find" should read "We want to find"	
	"x that satisfy the boundary" should read "x that satisfies the	
	boundary"	
	I think the script small L following equation 3.5 should	
	probably be kappa	
	I think lambda in Theorem 3.6 is only a constant in x. but not	
	in t, like it is in Theorem 3.7.	
	"f" in Theorem 3.6 is not defined in the theorem statement.	
Optional/General		
comments		

Reviewer Details:

Name:	Humphrey Hardy
Department, University & Country	Math/Physics, Piedmont College, USA