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Abstract
Recently the traditional calculus of variations has been extended to be applicable for systems
containing nonsmooth function. In this paper, we have investigated the generalized derivative
of nonsmooth functions. The obtained results were applied to investigate the generalized Euler-
Lagrange and Hamilton equations for constrined system. The approach was applied within an
illustrative.
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1 Introduction
The calculus of variations is concerned with the problem of extermizing functionals. It has many
appliacations in physics, geometry, engineering, dynamics, control theory, and economics [Kalman
(1960); CRockafellar,larke et al. (1972); Rockafellar (1970, 1975, 1976); Clarke (2009); Clarke et al.
(2008); Clarke (1975, 1976); Almeida and Torres (2009); Mordukhovich (1988); Gale (1967)].

The formulation of a problem of the calculus of variations requires two step: the specification of
a performance criterion; and then, the statement of physical constraints that should be satisfied. The
basic problem is stated as follows:

Minimize J(x(·)) =
∫ tf

t0

L(t, x(t), ẋ(t))dt (1.1)

subject to x(t0) = x0, x(tf ) = xf , (1.2)

where x(·) is the state variable and L(·, x(·), ẋ(·)) (function L, in short) is Riemann integrable nonsmooth
function and x0, xf are given vectors.
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The traditional calculus of variation cannot be used to obtain the Euler-Lagrange and Hamilton
equations of nonsmooth systems. The main aim of this paper is to obtain the corresponding generalized
Euler-Lagrange and Hamilton equations for above nonsmooth variational problem (NSVP), within
generalized derivatives which is proposed by Kamyad et.al. [Kamyad et al. (2011)] that utilize in the
next section. Other generalized derivatives have been proposed, for instance the limiting proximal
subgradient by Clarke [Clarke (1989)], the approximate subdifferential by Ioff [Ioffe (1984, 1981,
1984); Ioffe and Rockafellar, (1996)] and the subdifferential by Mordukhovich [Rockafellar and Wets
(2009); Mordukhovich (1988, 1992, 1995, 1994)] are not practical, hence theirs results include some
restrictions for examples the function L must be locally Lipschitz or convex and may, the set of
generalized derivative of L on [t0, tf ], either is empty. Then we almost can not use them for obtainning
the optimal solution of the nonsmooth problem (1.1)-(1.2). It is noteworthy that, these conditions are
only criterions for testing the optimality of a given state x(·). We present different definition to derive
generalized derivatives (GDs) for nonsmooth functions, in which the involved functions are Riemann
integrable but not necessary locally Lipschitz or continuous. It will be shown that this kind of GDs
is particularly helpful, practical and dose not have the above restriction. There are some conditions
on function L in problem (1.1) for existence of an optimal solution (see [Kalman (1960); Rockafellar
(1970); Clarke (1975)] ). For problem (1.1), by assumption differentiability, One way to deal with this
problem is to solve the second order differential equation

∂L

∂x
− d

dt

∂L

∂ẋ
= 0, (1.3)

called the Euler-Lagrange (EL) equation. The two given boundary conditions provide sufficient
information to determine the two arbitrary constants. But if there are no boundary constraints, then
we need to impose another conditions, called the natural boundary conditions (see [Gelfand and
Silverman (2000)]), [∂L

∂ẋ

]∣∣∣
t=t0

= 0 and
[∂L
∂ẋ

]∣∣∣
t=tf

= 0. (1.4)

Clearly, such terminal conditions are important in models, the optimal control or decision rules are
not unique without these conditions. Here, in non-differentiability (or nonsmoothness) conditions,
we compute Euler Lagrange equations for unconstrained and constrained nonsmooth variational
problems, by using generalized derivatives in the nonsmooth analysis that presented by [Kamyad et
al. (2011)]. The resulting equations are found to be similar to those for smooth variational problems. In
other words, the results of nonsmooth calculus of variations reduce to those obtained from traditional
smooth calculus of variations where the derivative replaced by generalized derivate. Futhermore, we
proposed necessary optimality conditions for nonsmooth control systems via generalized Hamilton-
Jacobi equation.

The plan of this paper is as follows: in section 2, we present a novel generalized derivative for
Riemann integrable nonsmooth functions and state the assumptions, notations and the results of the
literature needed in the sequel. Section 3, reviews a generalized Euler-Lagrange (GEL) equation
for problem (1.1). Our contribution is then given in section 4: we analyze the generalized Hamilton
equation for nonsmooth optimal control (NSOC) system. Finally, in section 5, we explain the novelties
of our results. Section 6, is devoted to our conclusions.

2 Preliminaries on generalized derivatives
Here, at first, we brifly introduce a practical GD which is proposed by [Skandari et al. (2013, 2014)]
and use the new GDs for nonsmooth calculus of variations. Let Ω be a connected and compact
set and L : Ω ⊂ R → R is a one-variable Riemann integrable nonsmooth function. Assume that
C(Ω) and C1(Ω) are the spaces of continuous and continuous differentiable functions on the set Ω,
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respectively. Assume that φj(·), j = 0, 1, 2, . . ., are the continuously differentiable basic functions for
the space C(Ω) and Nδ(s) is the neighbourhood of s with radius δ. Divide Ω into the similar sets Ωi,
i = 1, 2, . . . ,m (m is a sufficiently big number), such that Ω = ∪m

i=1Ωi and int(Ωi) ∩ int(Ωj) = ∅,
i ̸= j. Given si ∈ int(Ωi), i = 1, 2, . . . ,m, and δ > 0 is sufficiently small number. Now consider the
following optimization problem which we utilize it for the GD of L(·):

Minimize

m∑
i=1

∫
Nδ(si)

∣∣∣L(x)− L(si)− (x− si)

∞∑
j=0

ajφj(si)
∣∣∣dx (2.1)

where aj ∈ R, j = 0, 1, 2, . . ., are unknown variables of this problem. By assumptions g(s) =
Σ∞

j=0ajφj(s), s ∈ Ω, the problem (2.1) is equivalent to the following problem:

Minimize

m∑
i=1

∫
Nδ(si)

∣∣∣L(x)− L(si)− (x− si)g(si)
∣∣∣dx (2.2)

It is obvious that if g∗(·) ∈ C(Ω) is an optimal solution for problem (2.2) then there exist a∗
j , j =

0, 1, 2, . . ., such that g∗(si) =
∑∞

j=0 a
∗
jφj(si), i = 1, 2, . . . ,m.

Theorem 2.1. Lef L ∈ C1(Ω) and δ > 0 be a sufficiently small number. the unique optimal solution
of the optimization problem (2.2) is the function L

′
(·).

Here, we state a Lemma such that we use it for converting the nonsmooth optimization problem
(2.2) to the smooth problem.

Lemma 2.2. Let the pair (u∗(·), v∗(·)) be the optimal solution of the following smooth problem:

Minimize v(x)

subject to

v(x) ≥ u(x), v(x) ≥ −u(x),

u(·), v(·) ∈ C(Ω), x ∈ Ω. (2.3)

where Ω is a compact set. Then u∗(·) is the optimal solution of the following nonsmooth problem:

Minimize |u(x)|
subject to u(·) ∈ C(Ω).

Proof. See [Skandari et al. (2014)].

Now, using Lemma (2.2), we can approximate the nonsmooth optimization problem (2.2) into a
corresponding smooth optimization problem as follows:

Minimize

m∑
i=1

∫
Nδ(si)

v(x, si)dx

subject to

− v(x, si) ≤ L(x)− L(si)− (x− si)g(si), i = 1, 2, . . . ,m,

− v(x, si) ≤ −L(x) + L(si) + (x− si)g(si), i = 1, 2, . . . ,m,

x ∈ (si − δ, si + δ), g(·) ∈ C(Ω),

v(·, ·) ∈ C(Ω2), v(·, ·) ≥ 0. (2.4)

Theorem 2.3. Let L : Ω ⊂ R → R be a Riemann integrable nonsmooth function and g∗(·) be the
optimal solution of the optimization problem (2.4). The GD of function L(·) denoted by ∂L(·) and is
defined as ∂L(·) = g∗(.).
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Proof. See [Skandari et al. (2014)].

We refer the interested reader to [Skandari et al. (2013, 2014); Kamyad et al. (2011)], where this
functional optimization problem is approximated with the corresponding linear programming problem
that we can solve it by linear programming methods such as simplex method. Indeed, we can
approximate the obtained GDs of nonsmooth function L(·) with Fourier series [Stein and Weiss
(1971)]. So for any Riemann integrable nonsmooth function L(·), if a∗

j , j = 0, 1, 2, . . ., is the optimal
solution of the problem (2.1), then g∗(.) =

∑∞
j=0 a

∗
jφj(.) is an optimal solution for the problem (2.2)

and we have the GDs as ∂L(·) =
∑∞

j=0 a
∗
jφj(.) .

The next section is to write the Euler-Lagrange and the corresponding Hamiltonian equations.

3 Generalized Euler-Lagrange equations
Now, we shall think in terms of finding state trajectories that minimize performance measures. In
control problems, trajectories are determined by control histories and initial conditions; however to
simplify the discussion it will be assumed initially that there are not such constraints and that the
states can be directly and independently varied.

In this line of taught, we consider the functional (1.1) defined on the set of continuous curves
x : [t0, tf ] → R that satisfying prescribed boundary conditions (1.2).

Definition 3.1. The functional J(.) is said to have a local minimum (resp. local maximum) at x(.)
if there exists a δ > 0 such that J(x(.)) ≤ J(x̂(.)) (resp. J(x(.)) ≥ J(x̂(.))) for all x̂(.) satisfying
∥x(.)− x̂(.)∥ < δ.

It is desired to find the function x∗, among all curves x(t) satisfying the boundary conditions
(1.2), for which the functional (1.1) has a relative extermum. Rockfallar [Rockafellar (1970, 1975,
1976, 1970); CRockafellar,larke et al. (1972)] and Clarke [Clarke (1975, 2009, 1975, 1976, 1989);
Clarke et al. (2008)] began the studies where L for any t ∈ [0, 1] is convex and Lipschitz continuity
function respectively but here, L is a continuous nonsmooth function. Now by obtaining the GD of L
from last section, a necessary condition for this problem, is given by the next result.

Lemma 3.1. Suppose that
∫ tf
t0

η(x)g(x)dx = 0 for all η(.) ∈ C[t0, tf ]. If g : [t0, tf ] → R is a continuous
function then g ≡ 0 on the interval [t0, tf ].

Proof. See [Kamyad et al. (2011)].

Theorem 3.2. A necessary condition for the differentiable functional J(x) to have an extermum for
x = x∗ is that its variation vanishes for x = x∗

δJ = 0.

Proof. See [Gelfand and Silverman (2000)].

Theorem 3.3. Let x be a extermizer of J as in problem (1.1)-(1.2), then, for all t ∈ [t0, tf ], x is a
solution of the GEL equation

∂xL(t, x(t), ẋ(t))−
d

dt
∂ẋL(t, x(t), ẋ(t)) = 0. (3.1)

Proof. Suppose that x is an extermizer of J . We can proceed as Lagrange did, by considering the
value of J at a nearby function x̃ = x + ϵh, where ϵ ∈ R be a real number with |ϵ| ≪ 1, and h be an
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admissible variation such that h(t0) = h(tf ) = 0. Now consider the increment of the functional J as
follows:

δJ = J(x+ ϵh)− J(x) =

∫ tf+δtf

t0+δt0

L(t, x+ ϵh, ẋ+ ϵḣ)dt−
∫ tf

t0

L(t, x, ẋ)dt

Here we have∫ tf+δtf

t0+δt0

L(t, x+ ϵh, ẋ+ ϵḣ)dt =

∫ tf

t0

L(t, x+ ϵh, ẋ+ ϵḣ)dt

+

∫ tf+δtf

tf

L(t, x+ ϵh, ẋ+ ϵḣ)dt−
∫ t0+δt0

t0

L(t, x+ ϵh, ẋ+ ϵḣ)dt

By using the generalized first order Taylor expanision of the nonsmooth function L(t, x + ϵh, ẋ + ϵḣ)
at point (t, x, ẋ) [Skandari et al. (2014)], we obtain∫ tf

t0

L(t, x+ ϵh, ẋ+ ϵḣ)dt =

∫ tf

t0

L(t, x, ẋ)dt+

∫ tf

t0

ϵh(t)∂xL(t, x, ẋ)dt

+

∫ tf

t0

ϵḣ(t)∂ẋL(t, x, ẋ)dt+ Eϵ,∂L(t, x, ẋ)

Where limϵ→0 Eϵ,∂L(t, x, ẋ) = 0 [Skandari et al. (2014)]. Now using integration by parts, we obtain∫ tf

t0

L(t, x+ ϵh, ẋ+ ϵḣ)dt ≃
∫ tf

t0

L(t, x, ẋ)dt

+

∫ tf

t0

ϵh(t)
(
∂xL(t, x, ẋ)−

d

dt
∂ẋL(t, x, ẋ)

)
dt+

[
ϵh(t)∂xL(t, x, ẋ)

]∣∣∣tf
t0

We also have ∫ tf+δtf

tf

L(t, x+ ϵh, ẋ+ ϵḣ)dt ≃ δtfL(t, x, ẋ)
∣∣∣
t=tf

,∫ t0+δt0

t0

L(t, x+ ϵh, ẋ+ ϵḣ)dt ≃ δt0L(t, x, ẋ)
∣∣∣
t=t0

.

So finally we obtain

δJ ≃
∫ tf

t0

ϵh(t)
(
∂xL(t, x, ẋ)−

d

dt
∂ẋL(t, x, ẋ)

)
dt+

[
ϵh(t)∂xL(t, x, ẋ)

]∣∣∣tf
t0

+ δtfL(t, x, ẋ)|t=tf − δt0L(t, x, ẋ)
∣∣∣
t=t0

Since h, ϵ, δt0, δtf are arbitrary, according to theorem (3.2), equating δJ to zero yields the result.

Now, we present the Euler-Lagrange equation for functionals containing dependent variables.

Theorem 3.4. Let x be a extermizer of J as in problem (1.1)-(1.2), where x = (x1, . . . , xn), ẋ =
(ẋ1, . . . , ẋn), and xk, k = 1, 2, . . . , n, are continuous real-valued functions defined on [t0, tf ]. Then x
is a solution of the GEL equation

∂xkL(t, x(t), ẋ(t))−
d

dt
∂ẋkL(t, x(t), ẋ(t)) = 0

k = 1, 2, . . . , n, for all t ∈ [t0, tf ].

We give new necessary optimality conditions for: (i) functionals of form (1.1) with free boundary
conditions; (ii) nonsmooth isoperimetric problem; and (iii) nonsmooth problem with subsidiary holonomic
constraints.
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3.1 Natural boundary conditions
Determine continuous curves x such that the functional J , defined in (1.1), has an extermum at x.
Note that no boundary conditions are now imposed.

Theorem 3.5. Let x be a local extermizer to problem (1.1). Then, x satisfies the following GEL
equation

∂xL(t, x(t), ẋ(t))−
d

dt
∂ẋL(t, x(t), ẋ(t)) = 0 (3.2)

for all t ∈ [t0, tf ]. Morever, if x(t0) is not specified, then[
∂ẋL(t, x(t), ẋ(t))

]∣∣∣
t=t0

= 0 (3.3)

and [
∂ẋL(t, x(t), ẋ(t))

]∣∣∣
t=tf

= 0. (3.4)

Proof. If in previous proof picking curves such thet h(t0) = 0 and h(tf ) ̸= 0, and others such that
h(tf ) = 0 and h(t0) ̸= 0, we deduce the natural boundary conditions (3.3).

3.2 The Nonsmooth Isoperimetric Problem (NSIP)
We wants to find the extermizer of a given functional, when restricted to a prescribed integral constraint.
Problems of this type have found many applications in differential geometry, discrete and convex
geometry, probability, Banach space theory and multiobjective optimization [Almeida and Torres
(2009); Malinowska and Torres (2009)]. We state the NSIP in the following way: find the function
x that satisfy the boundary conditions (1.2), the integral constraint

I(x(·)) =
∫ tf

t0

g(t, x(t), ẋ(t))dt = κ, κ ∈ R (3.5)

and we obtain a minimum or maximum for (1.1). Similarly as before, we assume that L is a continuous
nonsmooth function and suppose that ℓ is a apecified real constant.

Theorem 3.6. Let x be an extermizer of J given by (1.1) under the condition (1.2) and (3.5). Suppose
that x is not an extermal for I in (3.5), then, there exists a constant λ such that x satisfies the GEL
equation

∂xF − d

dt
∂ẋF = 0

for all t ∈ [t0, tf ], with F = L− λf .

Proof. Let ϵ1, ϵ2 ∈ R be two sufficiently small parameters, such that ∥ϵi∥ ≪ 1; i = 1, 2. Consider
a variation curve of x with two parameters, say x(t) + ϵ1h1(t) + ϵ2h2(t) where h1 and h2 are two
continuous curves satisfying hi(t0) = hi(tf ) = 0, i = 1, 2. First, we define function ȷ and ℓ by

ȷ(ϵ1, ϵ2) = J(x+ ϵ1h1 + ϵ2h2)

and
ℓ(ϵ1, ϵ2) = I(x+ ϵ1h1 + ϵ2h2)− κ

Doing calculations as in the proof of theorem (3.3), we obtain

∂ℓ

∂ϵ2

∣∣∣
(0,0)

=

∫ tf

t0

(
h2∂xg + ḣ2∂ẋg

)
dt =

∫ tf

t0

(
∂xg − d

dt
∂ẋg

)
h2dt
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Since x is not an extermal for I, by the fundamental Lemma of the calculus of variations [Gelfand and
Silverman (2000)], there must exist a function h2 for which

∂ℓ

∂ϵ2

∣∣∣
(0,0)

̸= 0. (3.6)

By the implicit function theorem there exist function ϵ2(.) defined in an open neighborhood of zero as
we may write ℓ(ϵ1, ϵ2(ϵ1)) = 0. Because (0, 0) is an extermum ȷ subject to the constraint ℓ(0, 0) = 0,
and (∂ϵ1ℓ, ∂ϵ2ℓ)(0, 0) ̸= 0, by the Lagrange multiplier rule [Gelfand and Silverman (2000)], there
exists λ verifying the equation

∇
(
ȷ− λℓ

)∣∣∣
(0,0)

= (0, 0)

in particular,
∂ȷ

∂ϵ1

∣∣∣
(0,0)

− λ
∂ℓ

∂ϵ1

∣∣∣
(0,0)

= 0 (3.7)

Similarly as before, we obtain

∂ȷ

∂ϵ1

∣∣∣
(0,0)

=

∫ tf

t0

(
h1∂xL+ ḣ1∂ẋL

)
dt =

∫ tf

t0

(
∂xL− d

dt
∂ẋL

)
h1dt

and

∂ℓ

∂ϵ1

∣∣∣
(0,0)

=

∫ tf

t0

(
h1∂xg + ḣ1∂ẋg

)
dt =

∫ tf

t0

(
∂xg − d

dt
∂ẋg

)
h1dt

By using this relations in (3.7), we have∫ 1

0

[
∂xL− d

dt
∂ẋL− λ

(
∂xg − d

dt
∂ẋf

)]
h1(t)dt = 0 (3.8)

As (3.8) holds for any function h1 and by Lemma (3.1), one has

∂xL− d

dt
∂ẋL− λ

(
∂xg − d

dt
∂ẋg

)
= 0.

Introducing F = L− λg we get the desired result.

3.3 Holonomic constraints
In this section, we consider following problem: find functions x1 and x2 for wich the functional

J(x1(·), x2(·)) =
∫ tf

t0

L
(
t, x1(t), x2(t), ẋ1(t), ẋ2(t)

)
dt (3.9)

has an extermum, when the admissible functions restricted to the boundary conditions

(x1(t0), x2(t0)) = (x0
1, x

0
2) and (x1(tf ), x2(tf )) = (xf

1 , x
f
2 ) (3.10)

xj
i ∈ R for i = 1, 2, j = t0, tf , and the following holonomic condition satisfy

g(t, x1(t), x2(t)) = 0. (3.11)

where L is as before.

Theorem 3.7. Let the pair (x1, x2) be an extermizer of J as in (3.9), subject to the constraints (3.10)-

(3.11). If
∂g

∂x2
̸= 0, then there exists a continuous function λ : [t0, tf ] → R such that (x1, x2) is a

solution of the GEL equations

∂xkF − d

dt
∂ẋkF = 0 (3.12)

for all t ∈ [t0, tf ] and k = 1, 2, where F = L− λg.
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Proof. Consider a variation of the optimal solution of type

(x̂1(t), x̂2(t)) = x(t) + ϵh(t) = (x1 + ϵh1, x2 + ϵh2)

where (h1(t), h2(t) are continuous curves such that hi(t0) = hi(tf ) = 0, i = 1, 2 and ϵ is as before.

By hypothesis,
∂g

∂x2
(t, x̂1, x̂2) ̸= 0 therefor it is possible to solve the equation g(t, x̂1(t), x̂2(t)) = 0

with respect to h2, h2 = h2(ϵ, h1). Let j(ϵ) = J(x̂1(t), x̂2(t)). Differentiating j(ϵ) at ϵ = 0, we have

0 =

∫ tf

t0

(
∂x1Lh1(t) + ∂ẋ1Lḣ1(t) + ∂x2Lh2(t) + ∂ẋ2Lḣ2(t)

)
dt

=

∫ tf

t0

((
∂x1L− d

dt
∂ẋ1L

)
︸ ︷︷ ︸

GEL1

h1(t) +
(
∂x2L− d

dt
∂ẋ2L

)
︸ ︷︷ ︸

GEL2

h2(t)
)

(3.13)

Where GEL1 is the GEL equation respect to x1 and GEL2 is the GEL equation respect to x2. Since
(x̂1(t), x̂2(t)) satisfy the condition (3.11), we have

0 =
[ d

dϵ
g(t, x̂1(t), x̂2(t))

]∣∣∣
ϵ=0

=
(
∂x1g

)
h1(t) +

(
∂x2g

)
h2(t)

Getting:

h2(t) = −∂x1g

∂x2g
h1(t) (3.14)

And λ as follows:

λ(t) =
∂x2L− d

dt
∂ẋ2L

∂x2g
. (3.15)

Combining (3.14) and (3.15), Eq. (3.13) can be written as∫ tf

t0

(
∂x1L− d

dt
∂ẋ1L− λ(t)∂x1g

)
h1(t)dt = 0.

by Lemma (3.1), and since h1 is an arbitrary curve, we deduce that

∂x1L− d

dt
∂ẋ1L− λ(t)∂x1g = 0. (3.16)

Define F = L− λg, thus Eq. (3.12) is obtained.

We now state (without proof) our previous result in its general form.

Theorem 3.8. Let J be given by (1.1) where x = (x1, . . . , xn) and ẋ = (ẋ1, . . . , ẋn), such that
xk, k = 1, . . . , n, are continuous functions defined on the set of curves that satisfy the boundary
conditions x(t0) = x0 and x(tf ) = x1 and satisfy the constraint g(t, x) = 0. If x is an extermizer for

J , and if
∂g

∂xn
̸= 0 for all t ∈ [t0, tf ], then there exists a continuous function λ(t) such that x satisfy

the Euler-Lagrange equations

∂xkF − d

dt
∂ẋkF = 0

for all t ∈ [t0, tf ], where F = L− λg.
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4 Variational Approach to NSOC Problem
In this section, we formulate the NSOCP for a single input system. Now consider the optimal control
of

J(x, u) = h(x(tf ), tf ) +
1

2

∫ tf

t0

(xTQx+ uTRu)dt (4.1)

subject to the dynamic constraint
ẋ(t) = f(x) + g(x)u, (4.2)

and the given boundary conditions as x(t0) = x0, x(tf ) is free and tf is fixed. Here x(t) and u(t)
are n-dimensional state vector and m-dimensional control input, respectively. We make the following
assuption:

(A1) The function f(·) is a continuouse nonsmooth function,

A2) The functions h(·) and g(·), all of them are differentiable functions,

(A3) Rm×m > 0 and Qn×n ≥ 0 are constant, symmetric, and respectively positive definite and
nonnegative definite matrixes.

We say that a state-control pair (x(·), u(·)) is admissible if the following conditions hold:

1) The state x(·) is differentiable on [t0, tf ].

2) The control u(·) is piecewise continuous on [t0, tf ].

3) The condition x(t0) = x0 is satisfied.

4) The pair (x(·), u(·)) satisfies the differential equation (4.2).

An optimal solution is a pair of functions (x(.), u(.)) that minimizes J as in (4.1), subject to the
nonsmooth dynamic equation (4.2). Using the Lagrange multiplier vector p(t) we introduce the
augmented performance index as

Ja(u) = h(x(tf ), tf ) +

∫ tf

t0

{1

2
(xTQx+ uTRu) + pT (f(x) + g(x)u− ẋ)

}
dt. (4.3)

Taking the first variation of equation (4.3) we obtain

δJa(u) =
d

dx
h(x(tf ), tf )δx(tf ) +

∫ tf

t0

{(
Qx+ pT (∂xf + ġ(x)u)

)T

δx (4.4)

−pT δẋ+
(
Ru+ pT g(x)

)
δu+

(
f(x) + g(x)u− ẋ

)T

δp
}
dt.

Using integration by parts, Eq. (4.4) can be written as

δJa(u) =
d

dx
h(x(tf ), tf )δx(tf )− [pδx]

∣∣∣tf
t0

+

∫ tf

t0

{(
Qx+ pT

[
∂xf + (4.5)

ġ(x)u
]
+ ṗ

)T

δx+
(
Ru+ pT g(x)

)
δu+

(
f(x) + g(x)u− ẋ

)T

δp
}
dt.

Because x(t0) is specified, we have δx(t0) = 0, and since x(tf ) is not specified, we require p(tf ) =
d

dx
h(x(tf ), tf ). Minimization of Ja(u) requaires the cofficients of δp, δx and δu in equation (4.5) be

zero. This leads to
ẋ = f(x) + g(x)u, (4.6)

ṗ = −
(
Qx+ pT (∂xf + ˙g(x)u)

)
, (4.7)

Ru+ pT g(x) = 0 (4.8)
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x(t0) = x0, p(tf ) =
d

dx
h(x(tf ), tf ). (4.9)

Equations (4.6), (4.7) and (4.8) constituate a set of necessary conditions for the optimality of the
NSOCP considered here; these conditions are not, in general, sufficient. Equations(4.6), (4.7) and
(4.8) with the boundary condition (4.9) form a TPBVP. They can be solved using a direct numerical
technique.

As a special case, assume that the performance index is an integral of quadratic forms in the
state and control,

J(x(.)) =
1

2

∫ 1

0

(
q(t)x2(t) + r(t)u2

)
dt

where q(t) ≥ 0 and r(t) > 0 for t ∈ [0, 1], and the dynamics of the system is described by the following
nonsmooth linear differential equation,

ẋ(t) = a(t)|x|+ b(t)u. (4.10)

The EL equations (4.6)-(4.8) and (4.10) lead to equation (4.10) and

− ṗ(t) = q(t)x+ a(t)pT∂x(|x|) (4.11)

and
r(t)u+ b(t)p = 0 (4.12)

From equations (4.10) and (4.12), we have

ẋ(t) = a(t)|x| − r−1(t)b2(t)p (4.13)

The state x(t) and the costate p(t) are obtained by solving the nonsmooth differential equations (4.10)
and (4.13) subject to the terminal conditions x(0) = x0, p(1) = 0. Once p(t) is known, the control
variable u(t) can be obtained using equation (4.12).

4.1 Generalized Hamilton-Jacobi Bellman (GHJB) equation
We once more consider the optimal control problem (4.1)-(4.2), but here, we use an approach via
dynamics programming. Let J∗(x(t), t) denote the optimal cost on the interval (t, tf ). Then the basic
optimal equation of dynamics programming reads

J∗(x, t) = min
u

{∫ t+δt

t

(
xTQx+ uTRu

)
dτ + J∗(x+ δx, t+ δt)

}
(4.14)

= min
u

{(
xTQx+ uTRu

)
δt+ J∗(x, t) +

d

dt
J∗(x, t)δt

}
, (4.15)

therefor, (as J∗(x, t) dose not depend upon u),

0 = min
u

{(
xTQx+ uTRu

)
δt+

d

dt
J∗(x(t), t)δt

}
(4.16)

and on making δt ↓ 0

0 = min
u

{(
xTQx+ uTRu

)
+

d

dt
J∗(x(t), t)

}
(4.17)

Since
d

dt
J∗(x(t), t) = ∂xJ

∗ẋ(t) + ∂tJ
∗,

Then by substituting this result into (4.17), and since ∂tJ
∗ is not depended to u, we obtain the GHJB

equation
− ∂tJ

∗ = min
u

{(
xTQx+ uTRu

)
+

(
f(x) + g(x)u

)
∂xJ

∗
}
= 0. (4.18)
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which yeilds the optimal control law as follows

u∗ = −1

2
R−1gT (x)∂xJ

∗. (4.19)

Substituting (4.19) into (4.18) yields the GHJB equation:

∂tJ
∗ +

(
∂xJ

∗
)
f(x) +Q(x)− 1

4

(
∂xJ

∗
)T

g(x)R−1g(x)T
(
∂xJ

∗
)
= 0. (4.20)

The GHJB equation in (4.20) and (4.19) provide the solution to fixed-final time NSOCP. However, a
closed-form solution for GHJB equation is impossible to fined.

5 Test problems
In this section we employ the new results obtained in the previous sections to solve three examples.

Example 5.1. Consider the following NSVP:

J(x) =

∫ 1

0

(
sin(π|ẋ− 0.5|)e|ẋ−0.8| − ẋ2(ẋ− 0.2)

)
dt

subject to the boundary conditions

x(0) = 0 and x(1) = 0.5

for L(t, x, ẋ) = sin(π|ẋ − 0.5|)e|ẋ−0.8| − ẋ2(ẋ − 0.2) and by applying theorem (3.3) for this problem,
we obtain the GEL equation as follows:

d

dt
∂ẋL(t, x, ẋ) = 0.

Hence, by applying theorem (2.3), the corresponding GEL equation (3.1) is as follows (see [Skandari
et al. (2013)]):

d

dt

∞∑
j=1

a∗
j cos(πjẋ) = 0, t ∈ [0, 1].

Example 5.2. Let J be given by the eapression

J(x) =

∫ 1

0

(
|x− 0.5| − |x− 0.4|+ |ẋ− 0.3| − |ẋ− 0.1|

)
dt

subject to the boundary conditions

x(0) = 0.65 and x(1) = 1

By asumption L(t, x, ẋ) = |x − 0.5| − |x − 0.4| + |ẋ − 0.3| − |ẋ − 0.1| and by applying theorem (3.3)
for this NSVP, we have:

∂xL(t, x, ẋ)−
d

dt
∂ẋL(t, x, ẋ) = 0.

Hence, by applying theorem (2.3), the corresponding GEL equation (3.1) is:

∞∑
j=1

a∗
j cos(πjx)−

d

dt

∞∑
j=1

b∗j cos(πjẋ) = 0, t ∈ [0, 1].
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Example 5.3. As a first example, consider the following NSOC problem

Minimize J = x2(1) +

∫ 1

0

u2(t)dt

subject to ẋ = |x|+ u

x(0) = 1

For this example, we have

Q(x) = 0, r = b(t) = 1, f(x) = |x|, h(x(1), 1) = x2(1), t0 = 0, tf = 1.

From (4.20), and using x ≥ 0, the corresponding GHJB equation are given by

−∂tJ = x∂xJ − 1

4

(
∂xJ

)2

and the optimal control law is easily obtained by

u∗(t) = −1

2
∂xJ

The exact solution of the GHJB equation is

J(x, t) =
2x2

1 + e2(t−tf )

which implies the optimal feedback control law to be u∗(t) =
−2x

1 + e2(t−tf )
. Now, by applying x < 0

the exact solution of the GHJB equation

−∂tJ = −x∂xJ − 1

4

(
∂xJ

)2

is

J(x, t) =
−2x2

1− 3e2(tf−t)

and u∗(t) =
2x

1− 3e2(tf−t)
.

We refer the interested reader to [Skandari et al. (2014)] which deals with nonsmooth optimal
control problems, providing a direct method for solving such problems without using the GEL equation
type.

In these problems, it is hard to solve GEL and GHJ equations, analytically. Using numerical
method for solving such problems can be usefull and may be considered in future works.

6 Conclusions
Nonsmooth calculus become a very good candidate to describe the models with non-smooth dynamics.
In this paper, we first introduced a novel GD for nonsmooth functions. Then by using the generalized
first order taylor expanision for nonsmooth functions that proposed by [Kamyad et al. (2011)], we
introduced the GEL equation for nonsmooth problem (1.1). We have given it in a practical equation
to obtain an approximate optimal solution for nonsmooth problem (1.1). Then study nonsmooth
variational problems via derivative [Skandari et al. (2014)] under the presence of certain constraints.
Transversality conditions are optimaly conditions that are used along with EL equations in order to find
the optimal paths of dynamical models. Here, we extend our result over four nonsmooth variational
problems. Then we obtain explicity the Hamilton equation for a NSOC problem (4.1)-(4.2), and then
present necessary conditions for optimality these systems.
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