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A STUDY ON MEROMORPHIC HARMONIC STARLIKE FUNCTIONS
BY USING A NEW GENERALIZED DIFFERENTIAL OPERATOR

ABSTRACT. A new class of meromorphic harmonic starlike functions ,exterior to
the unit disc U := {z |z| > 1}, were introduced in this study. Coefficient bounds,
distortion theorems and extreme points for this functions were also obtained.

1. INTRODUCTION

f = u+iv is a complex harmonic function in a domain D C C if each of v and v is real
continuous harmonic functions in D. In any simply connected domain, f is writen in the
form of h 4+ g where both h and g are analytic in D [1].

A necessary and sufficient condition for f to be locally univalent and orientation pre-
serving in D is that |h/(2)| > |¢'(2)] in D [1]. The harmonic functions in the exterior of
the unit disc U := {z|2| > 1} were investigated by Hengartner and Schober in [2], and
they were represented by the following equation of (1.1)

F(2) = h(z) + g(2) + Alogl2], (1.1)
where h(z) and g(z) are defined by

h(z) =vz+ Z arz * and g(z) =Bz + Z bz * (1.2)
k=1 k=1

for 0 < || < |7, A € C and z € U. In addition, different classes of meromorphic
harmonic functions have been studied by Jahangiri and Silverman[3], Jahangiri[4] and
Murugunsundaramoorthy [5,6]. Since harmonic functions are been used in many fields of

sciences, new studies on harmonic functions are still of scientific interest.

In this study, a new operator © was defined for meromorphic harmonic functions in U.
The classes GS(n) and GS(n) were also defined. Some properties of these classes, such as
coefficient estimates and a distortion theorem, were then investigated.This new operator

D is defined as follows:

ISP Gisit.c) PN (%)

and for n =2,...,

D" f(2) =D(@" 7 f(2)).
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Using this new operator,

DU f(2) =72+ kA —a)+ A —a+1)]"arz""

+(2A—2a+1)"Bz+ (— Z[ — 1A —a) = 1]7bgz—F

was obtained for n = 0,1, ..., and 0 < (2A —2a+ 1)"|5| < |’y\
Let GS(n) show the class of harmonic functions with sense preserving and univalent

functions that consist of functions satisfying for z € U, n € No = NU {0},

%{2—%{5)} > 0. (1.3)

Also, let GS(n) be the subclass of GS(n) which consists of meromorphic harmonic

functions of the form of (1.4)

fn(2) = h(2) + gn(2) = —vz—Zakz + Bz = (—1)n > bpzk (1.4)
k=1

where v > 8 > 0,ar > 0,b; > 0. A necessary and sufficient condition for f functions of
the form (1.1) to be starlike in U is that

0 0y _ ] #() = 20'() e
Far9(f(re ))—9?{ o) 130 }>07 eU. (1.5)

for each z, |z| = r > 1. This classification (1.5) for harmonic univalent functions was first

used by Jahangiri [7].

2. COEFFICIENT INEQUALITIES

In this section, sufficient conditions of coefficient inequalities for f(z) to belongs to the
class GS(n) are obtained.

Theorem 2.1. If f(z) = h(2) + g(2) where £ <A —a <1, a>0,X>0, h(z) and g(2)

P
are of the form (1.2) and the inequality

Z[m a)+A—a+1D)]" k(A —a)+(A—a—1)]|ax|

+ > (k=) (A=) =1]"[(k=1) (A=) +1][br|+[b1] < [7|—(2A—2a+1)" (2A—2a—1) 8|
k=2
(2.1)

is satisfied, then f(2) is univalent, sense preserving and f(z) € GS(n) in U.

Proof. We must show that if the condition (2.1) is satisfied, then f(z) € GS(n). Hence,
it is sufficient to show that p,(z) is in the class GS(n) which is the class of harmonic

functions with positive real part.

Ipn(2) + 1| > |pn(z) — 1],z € T, (2.2)
where .
pn(z) _ 29 f('za)n_fi) f(z) (2'3)
from (2.2) we obtain,
39" (2) — D) [D"(2) — D) )

12" f(2)] - 12" f(2)]



Since

3D f(2) = D" f ()| — 19" f(2) = D" f(2)]

—|2wz+2 (A—a)+A—a+1)]" kA=) +(=A+a+2)]arz "+(2X — 2o+ 1)(2 — 2X + 20) 52
k=1

ikq A—a) — 1k — 1)(A — a) + 2Jbez—*|

o0

—| Z[kz(A —a)+A—a+D]"[-k(A—a) — (A —a)]arz” " + (2X — 2+ 1) (—2X + 2a) Bz

k=1

1" [k = (A = @) = 1" [(k = (A — a)]bez—*|

k=1

> 2|y||z|— |Z (A—a)+A—a+1)]"[—k(A—a)—(A—a—2)]arz " |—|(2A—2a41)" (2—2X420) Bz| —2|b1 || 2| ~*
k=1

[eS) oo

> (k=1 (A=) =1]"[(k=1) (A=) +2]brz" "= Y _[k(A—a)+(A—a+1)]"[-k(A—a)— (A\—a)]arz""|

k=2 k=1

—|(2A—2a+1)"(—2A+2a) Bz| | Z[(kq)(xfa)fu"[(kq)(xfa)]bkz*’“|

> 2Pylzl=) [k(A—a)+(A—a+1)]" [~k(A—a) —(A—a=2)][lax||z| " ~[(2A~2a+1)" (2-2A+20)|| 8] ||

=2 lI(k=1) (A=) =1]"[(k=1) (A=) +2][|bi||=|~*=2[ba| =Y [[k(A—a)+(A—a+1)]" [~k(A—a) =(A=a)][lax||z|

k=2 k=1

—[(2A =2+ 1)" (=22 +20)|18]|2] = D |[(k = (A = @) = 1]"[(k = 1)(A = a)]|[be]|2| ™"

> 2{|y|— Z (A—a)+(A—a+1)]" [k(A—a)+(A—a—1)]jak]|— (2A—2a+1)"(2A—2a—1)| 3|

oo

—Jbr] = 1k = DA — @) = 1J"[(k — 1)(A ) + 1] be]} > 0. (2.5)
k=2
So the proof of Theorem 2.1 is complete. O

In the following theorem we show that the sufficient coefficient condition given by (2.1)

is also necessary for the family GS(n).

Theorem 2.2. Let f,(z) = h(2) + gn(z). Then fn(z) € GS(n) if and only if

kA —a)+A—a+ D"k —a) + (A — o — 1)]a

+ 3 [(k=1)(A—) ~1]"[(k—1)(A—a) +1]br b1 < 7—(2A—2a+1)" (2A—2a—1)5.

(2.6)



Proof. Taking into account of Theorem 2.1, we need to prove the ”only if” part, since
GS(n) C G8(n). Let fo(z) € GS8(n), and 2z be a complex number. If R(z) > 0 then
%(%) > 0. Therefore, we obtained that as follows.

2" 4(2) R0
207 f(z) =D f(z) ] T |29 f(2) - D f(2)
B —yz =300 AarzF 4+ (2X —2a + 1)"Bz — (=1)" > 5 Chyz—F
vz + Y po ABagz=F + (2X — 2004+ 1) (=22 + 2a + 1)z — (—1)" > _p, CDbrz=F
< el + 302, Aarlz| ™" + (23 — 20+ 1)"Blz| + 332, Cbil2|™* + b 2| "
T 9|zl = Yope, ABaglz|7F — (2X = 2+ 1)"(2X — 2o — 1) Bz — D72, CDbglz|=F — bi|z|7*

Y+ I e Aar+ (22X =20+ 1)"B+ 300, Chi + by
v —>pe, ABar — (2A =20+ 1)"(2X - 20— 1)3 — 332, CDby — by

O<%{

(2.7)
where

A=k(A—a)+(A\—a+1)]", B = [k(A—a)+(A\—a—1)],C = [(k—1)(A—a)—1]", D = [(k—1)(A—a)+1].

The inequation (2.7) leads to the following inequality.

> kO—a)+A—a+ D))" k(A—a)+(A—a—Dar+ Y _[(k—1)(A—a)—=1]"[(k—1)(A—a)+1]bx+b1
k=1 k=2

<y—02A=2a+1)"(2A—2a—1)B.
So, the proof of the theorem is being completed. O

3. A DISTORTION THEOREM AND EXTREME POINTS

In this section we will obtain distortion bounds and extreme points for functions f(z) €

GS(n) which f, is defined by (1.4).

Theorem 3.1. Let the function fn(z) be in the class GS(n). Then for 0 < |z| =1 < 1,

we have

(y=B)r—[r—(2A=2041)"(2A—=2a=1)Blr ! < [fa(2)| < (y+B)r+[1—(2A—2a+1)" (2A—2a—1)B]r "
(3.1)

Proof. Taking into account of Theorem 2.2 ,for 0 < |z| = r < 1, we obtain

[fa(2)| = |—7v2 =D axz "+ Bz — (=) Y _brzF
k=1 k=1
<Ar+Br+Y (ar+b)r F <ar+Br+> (ak + by
k=1 k=1

<~r+pr+ ril(i[k()\ —a)+A—a+D]"[EA—a) + (A —a —1)]ax
k=1

+) (k= 1A= a) = 1]"[(k — 1)(A — @) + 1]bx + br)
k=2

< (vB)r+y—(2A—2a+1)" (2A—20—1)B]r
by the coefficient inequalitiy in (2.6). O



The distortion bounds given in Theorem 3.1 is valid for functions f, = h + g, which
is given in the form (1.4) and it is also known that the bounds is valid for functions of
the form f = h + g where h and g are given by (1.2) if the coefficient condition (2.1) is
satisfied.

The extreme points of closed convex hulls of GS(n) denoted by clcoGS(n) were deter-

mined in the next theorem.

Theorem 3.2. Let f,, = h+ 7y, is given by (1.4).Let be A\— a > 1. Then, f, € clcoGS(n)

if and only if it can be expressed as

Z[wkhn #(2) + Yrgn.k(2)]

where x> 0,yr > 0 and Y oo o (xk +yr) =7

z

hnyo(z) =% gnvo(z) = —z+ (2)\ —2a+ 1)"(2)\ o — 1)7 gn,l(z) = _Z_(_l)n2717
=—Z- ! z " an
S S 15 Ny UG Wi ) 5 wipsy iy ey ) R d
(=" ok

Gnk(2) = —2— ; k>2

(k=D —a)— 1" (k- DA —a)+ 1]

In particular, the extreme points of GS(n) are {hn i} and {gn.i}

Proof. For A —a > 1, let

oo

Fa(2) = lenhni(2) + yrgnr(2)]

k=0
where zx > 0,yx > 0 and Y, (xx +yr) = 7.

Then we have

2) =Y [wrhnk(2) + Yrgnr(2)]

= Zohn.0(2) + ;“[’Z THRO—a)t O —at 1)]i[lc(/\ s oy s L
oo Hingna (e *Zyk[ (e B e e i
ixk+yk ki (A—a+1)]aik[k(A—a)+(A—a—1)}zik
ter—2a+ 1)%?(» " 1)]2_(_1)%5_1_(_1)" ,i (k=D —a)— 1]%?[(1@ o a1 ]
= Wi EOr—a)+(h—axt 1);1k[k-(x—a)+(x—a_ i
ter—2a+ 1)i0(2x vy GG LA S ,i (k=D —a)— 1]ynk[(k ETrem e
Since

Z[k)\ Q)+ A—a+D)]" [k(A—a)+(A—a—1)

][k()\fa)+(/\fa+1)]”[k()\fa)+()\faf1)}

[e’e) yk
+22 YA—a)—1]"[(k—1)(A—a) +1] (T D S e S R



= <Zxk+y1 +Z’yk>
k=1 k=2

Yo

=y—yo—x0 < 7—[(2A—2a+1)"(2A—2a—1)] (22— 2a+1)"(2r —2a —1)]

by Theorem (2.2), so fn(z) € clcoGS(n). Conversely, suppose that fn(z) € clcoGS(n),
then we may write

fn(2) = h(2) + gn(2) = —y2 — Zakz + Bz — (1) Y bz
k=1

where v > > 0,ar > 0,br > 0. We set

ar = Tk 7]{::1,2,...,
EO—a)+ (h—at D"k —a) + A —a—1)]
= Yo B
- [(2A =20+ 1)"(2X — 220 = 1)]” br =y,
"o g k=2,..

(k=1 =) =1]"[(k = 1)(A =) + 1]

Hence we obtain

fn(2) = h(2) + gn(z) = =72 — Zakz + Bz = (—1)n Y bzt
k=1

_kzz()xk+yk ;;1 FTOA—at kA —a)+ (A —a-1)]
Yo _ 271 - ( 1) Yk 271‘3
+[(2/\72a+1)n(2)\72a71)] kz:z ,1 7a)71] [( )( 70&)4»1]

1 _
(_Z)+sz’“ {‘Z‘ FO @ 0 i PO @t 0 a T

+Yo <_z + [\ — 2+ 1)"(2\ — 20 — 1)]) +y1(—2z— (—1)”2_1)
- —z — (-1)" -
+kz2yk{ (k=1 —a)=1"[(k - 1)(A — o) + 1]

Consequently we obtain following relation as required

Z [Zrhn,k(2) + Ykgn,k(2)].
k=0



(1]
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