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Abstract

In this paper, a two-point boundary value problem arising from a class of surface-
tension driven flows is considered. The existence properties of solutions are
established, and all possible solutions are classified using mathematical analysis.
The problem possesses unique or multiple solutions depending on parameter
values. Bifurcation diagrams are computed to verify the results obtained by
mathematical analysis.
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1 Introduction

The Navier-Stokes equations are the basic equations governing the motion of viscous fluid. Since
these equations are necessarily nonlinear and complicated when applied to realistic problems, analytical
results are often restricted to particular models with special properties. However, in some certain
flows, the Navier-Stokes equations are reduced to nonlinear ordinary differential equations through
a similarity transform for studying the solution properties [ Aziz (2009); Wang (2009); Gorder et al.
(2010); Xu et al. (2014); Costin et al. (2014)].

In this paper, a two point boundary value problem(TPBVP)

f ′′′ +Q(Aff ′′ − f ′2) = β, Q, β ∈ �;A ≥ 1, (1.1)

subject to the boundary conditions

f(0) = f(1) = f ′′(0) + 1 = f ′(1) = 0 (1.2)

is studied. The given problem arises from a similarity reduction of boundary layer approximation of
Navier-Stokes system in a microgravity environment [Gill et al. (1984)]. The Navier-Stokes system
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was applied to describe the steady state for the distributions of velocity in a low Prandtl(Pr) number
fluid in a slot with an insulated bottom. Here Q is related to the Prandtl number, β is an integrable
constant, f(y) is related to the stream function, and y = 1 denotes the insulated bottom of the slot.
For the derivation of equation (1.1) and (1.2) we refer to [Chen et al. (1993); Hwang et al. (1989)].
Numerical solutions of the TPBVP for A = 1 and A = 2 were studied by Hwang et al. [ Hwang et al.
(1989)] using a multiple shooting code BVPSOL. Hwang et al. also proved the existence properties for
a portion of the solutions for A = 1 and A = 2 using mathematical analysis. The rest of the existence
properties of the solutions for A = 1 and A = 2 were proved by Hwang and Wang [ Hwang and Wang
(1990)]. It is our purpose to study the TPBVP for A ≥ 1. To provide details, mathematical analysis
of the existence properties of the solutions for A ≥ 1 is given in Sec. 2. Numerical computation of
bifurcation diagrams and discussion is given in Sec. 3. Sec. 4 provides a brief conclusion.

2 Mathematical analysis of existence properties of solutions

Note that for each A, if Q = 0, the TPBVP has a unique solution f(η) = η(1 − η) 2/4 for β = 3/2.
Therefore, Q �= 0 is assumed in our study. Let y = b(1− η) and g(y) = Qf(η)/b for Q �= 0 and b > 0.
The TPBVP is equivalent to

g′′′ + g′2 − Agg′′ = −Qβ/b4, (2.1)

subject to the conditions
g(0) = g(b) = g′(0) = g′′(b) + (Q/b3) = 0. (2.2)

Denote g ′′(0) and −Qβ/b4 by α and B, respectively. By assuming values α and B, Eqs. (2.1) and
(2.2) become the initial value problem:

g′′′ + g′2 −Agg′′ = B, (2.3)

g(0) = g′(0) = g′′(0)− α = 0. (2.4)

Suppose that the solution g(y;α,B,A) to Eqs. (2.3) and (2.4) meets the y − axis at a positive
value y∗. By setting b = y∗, the initial value problem in Eqs. (2.3) and (2.4) has a solution when
Q = −(y∗)3g′′(y∗) and β = −B(y∗)4/Q.
Given A ≥ 0, we denote g(y;α,B) = g(y;α,B,A). g(y;α,B) can be extended to the maximal
interval [0,M), where M = M(α,B) ≤ ∞. In fact, g tends to ∞ or −∞ as y approaches M if
M < ∞. Therefore, the classification of positive zeros of g is given by (α,B) chosen from the
following quadrants:

D1 = {(α,B) | α ≥ 0, B > 0},
D2 = {(α,B) | α < 0, B > 0},
D3 = {(α,B) | α ≤ 0, B < 0},

and
D4 = {(α,B) | α > 0, B < 0}.

We shall classify all possible solutions of Eqs. (1.1) and (1.2) by assuming values of α,B,A in
Eqs. (2.1) and (2.3). It is clear that g(y; 0, 0, A) = 0 for all A > 0, g(y; 0, B, 3/2) = B

6
η3 for all B ∈ �,

and g(y;α, 0, 2) = 1
2
αη2 for all α ∈ �. Thus, (α,B) �= (0, 0), (α,A) �= (0, 3

2
), and (B,A) �= (0, 2) are

assumed in the following discussions. Moreover, let (0,M) be the corresponding maximal interval of
g(y;α,B,A), where M = M(α,B,A). Note that g can only blow up to ∞ or −∞ if M < ∞. The
following expressions are used frequently in the mathematical analysis:

g′′′ = B − (g′)2 +Agg′′, (2.5)

g(iv) = (A− 2)g′g′′ + Agg′′′, (2.6)

g(v) = (A− 2)(g′′)2 + (2A− 2)g′g′′′ + Agg(iv). (2.7)
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2.1 A ≥ 1 and B ≤ 0

Lemma 2.1. For A ≥ 0 and B ≤ 0, g ′′(y;α,B,A) has at most one zero for all α ∈ �.

Proof. Assume that y1 and y2 are the first and second zero of g ′′, respectively. By (2.3), g′′′(yi) =
B − g′(yi)

2 ≤ 0 for i=1,2. If the equality holds for i = 1 or 2, then B = 0, g ′(yi) = 0, and g′′(yi) = 0.
Consider Eq. (2.3) together with the initial condition g(y i), g′(yi) = 0, and g′′(yi) = 0. Then g(y) ≡
g(yi), y ∈ [yi,M) is the solution. In fact, the solution g(y) ≡ g(y i) can be extended to the maximal
interval [0,M). Therefore g(y) ≡ 0. This contradicts the assumption that (α,B) �= (0, 0). Therefore
g′′′(yi) = B−g′(yi)

2
< 0 for i=1,2. This implies that g ′′ has a zero in (y1, y2), which is a contradiction.

�

Theorem 2.2. For A > 0, B ≤ 0, and α ≤ 0, g(y;α,B,A) < 0 on (0,M).

Proof. Since g ′′′(0) = B ≤ 0, g′′(0) = α ≤ 0, and (α,B) �= (0, 0), g′′ is negative initially. Assume
that g′′ has a zero on (0,M) and let ȳ be the first positive zero. This implies that g ′′′(ȳ) ≥ 0 and g′

is negative on (0, ȳ), but g ′′′(ȳ) = B − g′(ȳ)2 < 0 is a contradiction. Therefore, g ′′ < 0 on (0,M).
This, together with the initial conditions g ′(0) = 0 and g(0) = 0, gives the result g(y;α,B,A) < 0 on
(0,M). �

Lemma 2.3. For A ∈ [0, 2), B ≤ 0, and α > 0, g ′′(y;α,B,A) has exactly one zero.

Proof. Assume g′′ > 0 on (0,M) and then g > 0 and g ′ > 0 on (0,M). Let μ(y) = exp(−A
∫ y

0
g).

We have (μg′′′)′ = (A− 2)μg′g′′ < 0 and thus g ′′′ ≤ B exp(A
∫ y

0
g) ≤ 0. Thus, g(iv) < 0 implying that

g′′ is concave downward on (0,M) which contradicts to g ′′ > 0 on (0,M). Hence, g ′′(y;α,B,A) has
at least one zero. From Lemma 2.1, g′′(y;α,B,A) has exactly one zero. �

Theorem 2.4. For A ∈ [0, 2), α > 0, and B ≤ 0, g(y;α,B,A) has exactly one zero.

Proof. Let y2 be the zero of g ′′ and assume that g ′ > 0 on (0,M) which leads to g > 0 on (0,M).
By the proof of Lemma 2.3, g′′′(y) ≤ B ≤ 0 on (0, y2). Thus, g′′′ = B − g′2 + Agg′′ < 0 on (y2,M),
and g′ is concave downward on (0,M). This contradicts to g ′ > 0 on (0,M), and g ′ has exactly one
positive zero. Similarly, g has exactly one zero. �

Theorem 2.5. For A > 2, α > 0, and B ≤ 0, g(y;α,B,A) has either one or no zero.

Proof. It is easy to prove that if g ′′ > 0 on (0,M), then g has no zero, and if g ′′ has exactly one
zero on (0,M), then g has exactly one zero on (0,M). By Theorem 2.2, g(y; 0, B,A) < 0 on (0,M)
for all B < 0. By continuous dependence on the initial data, if α is sufficiently small, then g has exactly
one zero. �

2.2 A ≥ 1 and B > 0

Lemma 2.6. For A > 2 and α ≥ 0, g (iv)(y;α,B,A) > 0 on (0,M).

Proof. Assume that B > 0. From Eq. (2.4), we have g′′′(0) = B > 0. Therefore, all of g, g ′,
and g′′ are increasing and positive initially. When g (k)(t) > 0 for all 0 ≤ k ≤ 3 and A ≥ 2, we have
g(iv)(t) > 0. So, g(k)(t) > 0 is increasing at t for all 0 ≤ k ≤ 3. Therefore, g (k)(t) > 0 on (0,M) for
all 0 ≤ k ≤ 4 if B > 0 and A ≥ 2. Now if B = 0, we may assume α > 0. Since g (iv)(0) = 0 and
g(v)(0) > 0 for A > 2, g(iv) is increasing and positive initially. Therefore, g (k)(t) > 0 on (0,M) for all
0 ≤ k ≤ 4 by similar arguments as stated above. �

Theorem 2.7. For A > 2, α ≥ 0, g(y;α,B,A) > 0 on (0,M).

102



Advances in Research X(X), XX–XX, 20XX

Proof. Note that g(t) = α
2
t2 is the solution for A = 2 and B = 0. This fact, together with Lemma

2.6, completes the proof of this theorem. �

Lemma 2.8. For A > 2, α ≤ 0, and B > 0, g ′′(y;α,B,A) has at most one zero.

Proof. If g′′′ > 0 on (0,M), the Lemma is clear. Suppose that g ′′′ has a positive zero and let y0

be the first zero of g ′′′. It follows that g(iv)(y0) ≤ 0 from Eq. (2.6). Hence, g′(y0)g′′(y0) ≤ 0 if A > 2.
Because g′′′ > 0 on (0, y0), g′′(y0) > 0 and g′(y0) ≤ 0. Now, we divide the proof into two cases. Case
(i): g′(y0) = 0. In this case, g′′′(y0) = g(iv)(y0) = 0 and g(v)(y0) > 0. Thus, g′′′ > 0 on (y0, y0 + δ)
for some δ > 0. Suppose that g ′′′ > 0 on (y0, y1) and g′′′(y1) = 0. This implies that both g ′′ and g′

are positive and increasing on (y0, y1). So g(iv)(y0) > 0. This is a contradiction. Therefore, y0 is the
unique zero of g ′′′, and g′′ has exactly one zero. Case (ii): g ′(y0) < 0. This leads that g ′(y0)2 < B.
Let y∗ ∈ (0, y0) be the first zero of g ′′. Thus, g and g ′ are negative on [y∗, y0]. This implies g(iv) ≤ 0
on (y∗, y0). Now, we claim that g ′′ > 0 for all y > y0. Assume that y∗ is the second zero of g ′′. Since
g′′ and g′′′ cannot both be zero at y∗, we have g′′′(y∗) < 0. In fact, g′′′ ≤ 0 on [y0, y

∗]. Otherwise,
there exists y2 in (y0, y

∗) such that g′′′(y2) = 0 and g(iv)(y2) > 0. This implies g ′(y2) > 0. By similar
arguments as in Case (i), g ′′ > 0 for y > y0. This contradicts the assumption that g ′′ has a second
zero at y∗. Let y3 > y0 be a zero of g satisfying g < 0 on [y0, y3). Furthermore, let ȳ = min{y3, y

∗}.
Thus g′′′(ȳ) ≤ 0 and g(iv) > [A− 2]g′g′′ on [y0, ȳ]. Then,

∫ ȳ

y0

g(iv)(y)dy >

∫ ȳ

y0

[A− 2]g′(y)g′′(y)dy,

g′′′(ȳ) >
A− 2

2
(g′(ȳ))2 − A− 2

2
(g′(y0))

2.

Next,

g′′′(ȳ)− A− 2

2
[B + Ag(ȳ)g′′(ȳ)− g′′′(ȳ)] = g′′′(ȳ)− A− 2

2
(g′(ȳ))2

≥ −A− 2

2
g′2(y0)

> −A− 2

2
B.

Thus, g′′′ − (A− 2)gg′′ > 0 at y = ȳ. It contradicts the sign of g ′′′(ȳ). Thus, g′′ > 0 for all y > y0 and
therefore, the proof is complete. �

The following theorem is obtained immediately.

Theorem 2.9. For A > 2, α < 0, and B > 0, g(y;α,B,A) has at most one zero.

For the mathematical analysis of the rest of the cases, a notation containing the sign of g (k),
where k = 0, 1, · · · , 5, is defined with (sign g, sign g ′, · · · , sign g(v)). We use “+”“-”,“0”,“+0”,“-0”,
and “*” to indicate positive, negative, zero, positive or zero, negative or zero, and indeterminate or
unimportant, respectively. For example, (+,−, 0,+0,−0, ∗) at y means that g(y) > 0, g ′(y) < 0,
g′′(y) = 0, g′′′(y) ≥ 0, g(iv)(y) ≤ 0, and the sign of g (v)(y) is indeterminate or it does not affect the
result of the analysis.

Lemma 2.10. For A ∈ (1, 2), α ≥ 0, and B > 0, g ′′(y;α,B,A) has at most one zero.

Proof. From the initial condition Eq. (2.4), we have (+,+,+,+, ∗, ∗) on (0, δ) for some δ > 0. Let
y∗ be the first zero of g ′′, then we have (+,+, 0,−,−,−) at y∗ because g′′ and g′′′ cannot be zero
simultaneously. Consequently, we have (+,+,−,−,−,−) on (y∗, y∗ + δ1) for some δ1 > 0. Suppose
that g(4)(y1) = 0 for some y1 > y∗ and g(iv)(y) < 0 for y ∈ (y∗, y1). Because g′′(y) < 0 and g′′′(y) < 0
for y ∈ (y∗, y1], there are three possible cases of g and g ′ values at y1: (i) (−0,−,−,−, 0,+0), (ii)
(+,−,−,−, 0,+0), or (iii) (+,+0,−,−, 0,+0).
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For case (i), if g ′′′(y2) = 0 for some y2 > y1 and g′′′(y) < 0 for y ∈ (y1, y2), then g(iv)(y2) ≥ 0.
Now, g′′′(y2) = 0 and g(iv)(y2) = 0 imply g′(y2) = 0 or g′′(y2) = 0, which cannot hold in this case.
Therefore, g(iv)(y2) > 0. Thus, we have (−,−,−, 0,+, ∗) at y2. However, this contradicts the sign of
g(iv)(y2) determined by Eq. (2.6).

For, case (ii), g(iv)(y1) < 0 from Eq. (2.6). This contradicts with the assumption g (iv)(y1) = 0.
For case (iii), g(v)(y1) < 0 from Eq. (2.7). This contradicts with the sign of g (v)(y1) in this case.
The above three cases give the conclusion that g ′′′ < 0 for y ∈ (y∗,M). Therefore, g ′′ < 0 for

y ∈ (y∗,M). �
Lemma 2.10 proves the following theorem.

Theorem 2.11. For A ∈ (1, 2), α ≥ 0 and B > 0, g(y;α,B,A) has at most one zero.

Theorem 2.12. For A ∈ (1, 2), α < 0 and B > 0, g(y;α,B,A) has at most two zeros.

Proof. From the initial condition in Eq. ( 2.4), we have (−,−,−,+,−,−) on (0, δ) for some δ > 0.
We let y1 > 0 such that there are two possible cases: (i) y1 is the first zero of g ′′′, and g, g′, and g′′

do not change their sign in (0, y1]. (ii) y1 is the first zero of g ′′, and g, g′, and g′′′ do not change their
sign in (0, y1].

For case (i), g(iv)(y1) < 0 from Eq. (2.6). From case (i) in the proof of Lemma 2.10, g′′′(y) < 0
for y ∈ (y1,M) and g(y;α,B,A) has no zero on (0,M) .

For case (ii), g(iv)(y1) < 0 and we have (−,−,+,+,−, ∗) on (y1, y1 + δ1) for some δ1 > 0. We
let y2 > y1 such that there are two possible cases: (a) g ′′′(y2) = 0, g′′′(y) > 0 for y ∈ (y1, y2),
and we have (−,−,+,+0, ∗, ∗) on (y1, y2]. (b) g′(y2) = 0, g′(y) < 0 for y ∈ (y1, y2), and we have
(−,−0,+,+, ∗, ∗) on (y1, y2].

Case (a) is impossible because g (iv)(y2) > 0 from Eq. (2.6).
For case (b), we have (−,+,+,+,−, ∗) on (y2, y2+δ2) for some δ2 > 0. We let y3 > y2 such that

there are two possible cases: (1) g(y3) = 0, g(y) < 0 for y ∈ (y2, y3), and we have (−0,+,+,+, ∗, ∗)
on (y2, y3]. (2) g′′′(y3) = 0, g′′′(y) > 0 for y ∈ (y2, y3), and we have (−,+,+,+0, ∗, ∗) on (y2, y3].

For case (1), y(iv)(y3) < 0 from Eq. (2.6), and we have (+,+,+,+,−, ∗) on (y3, y3 + δ3) for
some δ3 > 0. From the proof of Lemma 2.10, g has at most one zero in (y3,M), and thus, g has at
most two zeros in (0,M).

For case (2), y(iv)(y3) < 0, and we have (−,+,+,−,−, ∗) on (y3, y3 + δ4) for some δ4 > 0.
We let y4 > y3 such that there are three possible cases: (A) g ′′′(y4) = 0, g′′′(y) < 0 for y ∈
(y3, y4), and we have (−,+,+,−0, ∗, ∗) on (y3, y4]. (B) g(y4) = 0, g(y) < 0 for y ∈ (y3, y4), and
we have (−0,+,+,−, ∗, ∗) on (y3, y4]. (C) g′′(y4) = 0, g′′(y) > 0 for y ∈ (y3, y4), and we have
(−,+,+0,−, ∗, ∗) on (y3, y4].

Case (A) is impossible because g (iv)(y4) < 0 from Eq. (2.6).
For case (B), we have (+,+,+,−,−, ∗) on (y4, y4+ δ5) for some δ5 > 0. We may apply the proof

of Lemma 2.3 and Theorem 2.4, and g has exactly one zero in (y4,M). Therefore, g has exactly two
zeros in (0,M).

For case (C), y(iv)(y4) > 0, from Eq. (2.6), implies that there is ȳ, where y3 < ȳ < y4, such that
y(iv)(ȳ) = 0 and y(iv)(y) > 0 for y ∈ (ȳ, y4]. However, g(v)(ȳ) < 0 from Eq. (2.7). Therefore, case (C)
is impossible.

From all the cases discussed above, we have concluded that g(y;α,B,A) has at most two zeros.
�

From the above lemmas and theorems and the cases studied by Hwang et al. [ Hwang et al.
(1989)] for A = 1 and A = 2, the existence properties of solutions for A ≥ 1 are summarized as
follows:

(i) For B ≤ 0, α ≤ 0, and A ≥ 1, g has no zero.

(ii) For B ≤ 0 and α > 0, g has one zero if A ∈ [1, 2), and g has at most one zero if A ≥ 2.

(iii) For B > 0 and α < 0, g has at most two zeros if A ∈ [1, 2), and g has at most one zero if A ≥ 2.

(iv) For B > 0 and α ≥ 0, g has at most one zero if A ∈ [1, 2), and g has no zero if A ≥ 2.
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3 Numerical simulations and discussion

When the solutions to a differential equation satisfy a homogeneity property, an efficient numerical
approach can be constructed to reduce the computational effort [ Lu and Kazarinoff (1989); Hwang and Wang
(1992); Chen et al. (1993)]. In this section, a homogeneity property of the solutions to Eqs. ( 2.1) and
(2.2) will be established, and a numerical approach will be developed for computing the bifurcation
diagrams using Q and β as the bifurcation parameters.

3.1 Preliminaries

The solution g(y;α,B,A) satisfies the following property.

Proposition 3.1. g(y;α,B) = λg(λy;α/λ3, B/λ4), for λ > 0.

Proof. Define h(t) = g(t/λ;α,B)/λ. Let y = t/λ. Then, λh(λy) = g(y;α,B), and λ i+1h(i)(t) =
g(i)(y;α,B), where i = 1, 2, 3. We also have h(0) = 0, h′(0) = 0, h′′(0) = α/λ3. Therefore, h(t)
satisfies the following problem:

h′′′ + h′2 − Ahh′′ = B/λ4

h(0) = h′(0) = h′′(0) − α/λ3 = 0.

Thus, h(t) = g(t;α/λ3, B/λ4) = g(λy;α/λ3, B/λ4). So, g(y;α,B) = λg(λy;α/λ3, B/λ4). �
Now, let y(α,B) be the positive zero, if there is any, of g(y;α,B). Then y(α,B), Q and β satisfy

the following homogeneity property.

Proposition 3.2. For λ > 0,
y(α,B) = y(α/λ3, B/λ4)/λ,

Q(α,B) = Q(α/λ3, B/λ4),

and
β(α,B) = β(α/λ3, B/λ4).

Proof. From Proposition 3.1, g(y;α,B) = 0 implies g(λy;α/λ3, B/λ4) = 0. So, y(α/λ3, B/λ4) =
λy(α,B). For the second equation,

Q(α,B) =
−By4(α,B)

β
=

−By4(α/λ3, B/λ4)

βλ4
= Q(α/λ3, B/λ4).

For the third equation,

β(α,B) =
−By(α,B)

Q(α,B)
=

−By(α/λ3, B/λ4)

λQ(α/λ3, B/λ4)
= β(α/λ3, B/λ4).

�
From the homogeneity property in Proposition 3.2, we haveQ(α,B) = Q(α/λ3, B/λ4) = Q(1, B/α4/3),

β(α,B) = β(1, B/α4/3), and y(α,B) = y(1, B/α4/3)/λ, if we take λ = α1/3. This implies that every
point (α,B) on the curve B = kα4/3, where k is a constant, corresponds to the same point on the
Q − β plane. Also, g(y;α,B,A) has the same number of positive zeros on the curve B = kα 4/3.
This property allows us to design a one-dimensional computational domain for the computation of
solutions on the α−B plane.

To locate the possible zeros of g(η;α,B,A), an initial value problem code, SDRIV2 [ Kahaner et al.
(1989)], is employed with (α,B) chosen along a simple closed curve around the origin in the α − B
plane for every A. That is, we may pick the parameter (α,B) along the curve |α|+ |B| = 1.

When g has multiple zeros, Eqs. (1.1) and (1.2) have multiple solutions corresponding to different
(Q, β) values. For example, let y1 and y2, where 0 < y1 < y2, be two zeros of g. Under the
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transformation given in Sec. 2, f(η) = y ig(y)/Qi, is a solution to Eqs. (1.1) and (1.2) with parameter
values Qi = −y3

i g
′′(yi) and βi = −B(yi)

4/Qi, i = 1, 2.

A solution f of Eqs. (1.1) and (1.2) is called a two-cell solution if f ′ has exactly one zero in (0, 1),
and it is called a three-cell solution if f ′ has exactly two zeros in (0, 1) [Chen et al. (1993); Hwang et al.
(1989); Gill et al. (1984)]. Recall that the TPBVP, Eqs. (1.1) and (1.2), arises from surface-tension
flows in a slot with an insulated bottom. A two-cell or three-cell solution corresponds to a two-cell or
three-cell flow. Because g(y) = Qf(η)/b for Q �= 0 and b > 0, where y = b(1− η), f ′ and g′ have the
same number of zeros. Therefore, the number of zeros of g ′ can be used to determine if a solution is
a two-cell or three-cell solution.

3.2 Numerical simulations

In our first numerical example, we let A = 1.5, and Fig. 1(a) shows the bifurcation diagram for
(Q, β) ∈ [−1000, 30000] × [0.5, 3.5]. Theorem 2.2 shows that g has no zero when (α,B) ∈ D3.
Along the curve |α| + |B| = 1, the zeros of g are computed for (α,B) ∈ D 1, D2, and D4. When
(α,B) ∈ D1, Lemma 2.10 and Theorem 2.11 show that each of g ′ and g has at most one positive
zero. When (α,B) ∈ D4, Theorem 2.4 shows that each of g and g ′ has exactly one positive zero.
The numerical computation shows that the corresponding TPBVP possesses 2-cell solutions when
(α,B) ∈ D1, D4. When (α,B) ∈ D2, Theorem 2.12 shows that g has at most two positive zeros. The
numerical computation shows that g has two zeros for B ∈ (0.381, 1). Let y 1 and y2 be the zeros.
The function g(y), where y ∈ [0, y1], corresponds to a two-cell solution, and g(y), where y ∈ [0, y 2],
corresponds to a three-cell solution.

Next, we let A = 4, and Fig. 1(b) shows the bifurcation diagram for (Q, β) ∈ [−6000, 10000] ×
[0, 180]. From Theorems 2.2 and 2.7, g has no zero when (α,B) ∈ D1 and D3. Lemma 2.8 and
Theorems 2.5 and 2.9 show that both g and g ′ have at most one zero when (α,B) in D2 and D4. The
zeros of g are computed for (α,B) ∈ D2 and D4. The function g has one zero for B ∈ (−1,−0.348)
and B ∈ (0.348, 1), and the corresponding TPBVP possesses 2-cell solutions.
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Figure 1: Bifurcation diagram for (a) A = 1.5 and (b) A = 4.
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4 Conclusion

In this paper, the existence of solutions for the TPBVP, given by Eqs. ( 1.1) and (1.2), is studied. The
TPBVP is first transformed into an IVP which is presented by Eqs. ( 2.3) and (2.4). Solving the zeros
of the solution g to Eqs. (2.3) and (2.4) is equivalent to solving the TPBVP. In this paper, the existence
properties of the zeros of g have been proven for A ≥ 1. From the mathematical analysis, we conclude
that the TPBVP possesses only 2-cell solutions when A ≥ 2, and it may possess 2-cell and 3-cell
solutions when 1 ≤ A < 2. A homogeneity property of parameters is proven so that the numerical
computation on the parameter α − B plane is reduced to the perimeter of the square |α| + |B| = 1.
This greatly improves the computational efficiency. Numerical simulation is then conducted to verify
the existence property of solutions for the TPBVP.
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