Geoelectrical investigation of soils as foundation materials in Umudike area, Southeastern Nigeria 3

4 5 6

7

8

9 10

11

12 13

14 15 Geoelectrical investigation of soils in Umudike area of Abia State was undertaken in order to determine the competence of the soils as foundation materials. A total of 18Vertical Electrical Sounding (VES), using Schlumberger configuration was carried out. The results revealed three to six distinct geoelectric sequences with resistivities ranging from about 8 Ω m to about 38,000 Ω m and a variation in topsoil thicknesses with the least as 0.2m at vicinity of VES Station 2 Ahiaeke and the highest as 5.0m at VES Station 14 MOUAU. The topsoils are composed of sands, silts, sandy clays, clays and laterites. The study also revealed the cause of frequent cracking and collapse of a portion of the Umuahia-Ikot-Ekpene road. Based on the results of the survey, the most competent soils within which large civil engineering structures will be founded within the study area are encountered at VES 8,9 (inside ABSUPAC), 6 (opposite GCU), 14 and 15 (inside MOUAU).

18 Key words: Competent soils, Electrical Resistivity, Foundation failure, Geoelectric layer.
19 .

20

21 INTRODUCTION

- 22 The use of shallow geophysical methods of investigation in civil and construction engineering
- for road and building construction and evaluation, dam safety, and solution of related problems;
- engineering and environmental geophysics is defined as geotechnical geophysics (Sheriff, 2001).
- 25 High rising buildings are among large civil engineering structures that are subjected to strong
- 26 dynamic and static loads; and since the statistics of failures of building structures throughout the
- 27 nation has increased geometrically; therefore the design and construction should be preceded by
- adequate investigation in order to prevent such failures. These failures have been attributed to a
- 29 number of factors such as inadequate information about the soil and the subsurface geological
- 30 material, poor foundation design and poor building materials.
- 31 The need for pre-foundation studies is therefore necessary in order to prevent loss of valuable
- 32 lives and properties that always accompany such failure.
- 33 Foundation study usually provides subsurface information that normally assists civil engineers in
- 34 designing the foundation of civil engineering structures. This is because some earth materials due
- to their nature cannot support solid and rigid structures; among these materials are clays and
- 36 clay-bearing earth.
- Similarly, earth materials such as sands and fresh basement rock provide firm support for solidfoundation.
- 39 To this end, geophysical methods together with or besides other geotechnical approaches are
- 40 routinely used for foundation investigation (Ajayi et al., 2005; Akinrinmade, 2013; Akintorinwa,
- 41 2009; Tabwassah and Obiefuna, 2012).
- 42 Geophysical methods such as the Electrical Resistivity (ER), Seismic Refraction,
- 43 Electromagnetic (EM), Magnetic and Ground Penetrating Radar are used singly or in

- 44 combinations for engineering site investigation (Olorunfemi and Meshida, 1987; Fatoba et al.,
- 45 2010; Hunter et al., 2011; Melikan, 1960; Olorunfemi et al, 2000, 2004; Oluwakemi and
- 46 Michael, 2011). The applications of such geophysical investigation are in the determination of
- 47 layer thickness, depth to bedrock, structural mapping and evaluation of subsoil competence.
- The need to provide information in the subsurface sequence and structure disposition necessary
- 49 for foundation design necessitated a geoelectrical investigation of the soils of Umudike area and
- 50 environs as foundation materials.
- 51
- 52 Geologically, there are about 11 different formations in Abia State of Nigeria, and the selected
- study area (Umudike and its environs) falls within the transition zone of Ogwashi Formation and
- 54 Coastal plain sands (Fig. 1).
- 55 Within a transition zone, there are at times abrupt or gradual changes in lithology; therefore a
- 56 complex overall situation with respect to defining the competence of near-surface formation as
- 57 foundation materials could arise in future as a result of attempts in the construction of high rising
- 58 buildings.

Fig. 1: Geologic map of Abia State of Nigeria showing the study area (Modified after GSN,
1985).

- 62 Ogwashi Formation and Coastal Plain Sands are situated in the Cenozoic Niger Delta Basin.
- 63 The Cenozoic Niger Delta is situated at the intersection of the Benue Trough and the South
- 64 Atlantic Ocean where triple-R junction (rift system) developed during the break-up of Gondwana
- leading to the separation of the continents of South America and Africa in the Late Jurassic. The

- third arm of the rift after extending to about 1000km northeast from the Gulf of Guinea to Lake
- 67 Chad failed (aulacogen), thus forming the Benue Trough (Stoneley, 1966).
- 68 Subsequently sediments from weathering of the basement uplift were deposited into the trough
- 69 through rivers and lakes by Early Cretaceous (Murat, 1972). By Mid-Cretaceous onwards Marine
- sedimentation took place in the Benue Trough; thus making it possible in conjunction with other
- 71 geologic events for it to be presently underlain by diverse sedimentary basins.
- 72 The Benue Trough is arbitrarily divided into the Lower, the Middle and the Upper Benue
- 73 Trough; and by Santonian times the area underwent intense folding and compression forming
- 74 many anticlines and synclines.
- 75 After the Santonian-Campanian tectonism which formed the Abakiliki anticlinorium, the western
- 76 margin of the Lower Benue Trough subsided, and the corresponding synclinorium became the
- Anambra basin where over 2500m of deltaic complexes accumulated. However by Eocene, the
- 78 inception of Tertiary Niger Delta Basin commenced. Thus, the Late Cretaceous deltaic
- real sedimentation in the Anambra Basin was followed by the shift in deltaic deposition southward
- and consequently the construction or outbuilding of the Niger Delta took place. The interplay
- 81 between subsidence and deposition arising from a succession of sea transgressions and
- regressions (Hospers, 1965) gave rise to the deposition of three lithostratigraphic units in the
- 83 Niger Delta (Short and Stauble, 1967). These units are Marine Akata Formation, Paralic Agbada
- 84 Formation, and the Continental Benin Formation. The delta has prograded a distance greater than
- 250km from the Benin and Calabar flanks to the present delta front. Average thickness of
- sediments in the Niger-Delta is about 12,000m with an area of about 140,000km² (Obaje, 2009).
- 87 Ogwashi Formation was grouped as the upper member of the Ameki (Agbada Group) Formation
- (Short and Stauble, 1967). In the grouping, the coastal plain sands of (Reyment, 1965) were
- 89 referred to as Benin formation (Table 1).

 Table 1: Stratigraphic correlation chart of eastern Niger Delta outcrops and their subsurface equivalents (Short and Stauble, 1967)

YOUNGEST KNOWN AGE		OLDEST KNOWN AGE	YOUNGEST KNOWN AGE		OLDEST KNOWN AGE
RECENT	BENIN FORMATION Afam Shale Member	OLIGOCENE	PLIO/ PLEISTOCENE	BENIN FORMATION	MIOCENE ?
			MIOCENE	OGWASHI-ASABA FORMATION	OLIGOCENE
RECENT	AGBADA FORMATION	EOCENE	EOCENE AMEKI FORMATION		EOCENE
RECENT	AKATA FORMATION	EOCENE	L. EOCENE	IMO SHALE FORMATION	PALEOCENE
			PALEOCENE	NSUKKA FM	MAESTRICHTIAN
			MAESTRICHTIAN	AJALI FORMATION	MAESTRICHTIAN
EQUIVALEN	EQUIVALENTS NOT KNOWN		CAMPANIAN	MAMU FORMATION	CAMPANIAN
			CAMP./MAEST.	NKPORO SHALE	SANTONIAN
			CONIACIAN/ SANTONIAN	AWGU SHALE	TURONIAN
			TURONIAN	EZE AKU SHALE	TURONIAN
			ALBIAN	ASU RIVER GROUP	ALBIAN

92 While (Amajor, 1986) grouped the Ogwashi Formation as the lower member of the Benin

93 Formation, and the coastal plain sands as the upper member (Table 2).

94 Ogwashi Formation is predominantly sandy with alternating lignite seams and a few beds of clay

95 with sparse marine fauna (Reyment, 1965; Short and Stauble, 1967).

96 The Coastal plain sands are predominantly yellow and white sands alternating with pebbly layers

and a few clay beds (Reyment, 1965).

98 The formation comprises of shale/sand sediments with intercalation of thin clay beds (Asseez,

99 1976; Murat, 1972).

100 The sands are mostly medium to coarse grained, pebbly, moderately sorted with local lenses of

101 poorly cemented sands and clays. Petrographic analysis indicates that the composition of the 122 model in 12250 (0) and 12250

102 rocks is as follows: 95-99% Quartz grains, 1-2.5% of Na+K-mica (Onyeagocha, 1982).

103

104

105

106

107

108

AGE	SURFACE OUTCROP EQUIVALENT FORMATIONS	SUBSURFACE FORMATIONS	MEGA-DEPOSITION	
PLIDGENE	COASTAL PLANA	-UN FM	PARALIC	
MOCENE	OGWASHI- ASABA (JEBU ASABA FN	BEN" AFAM CLAY MBR	CONTINENTAL PLAIN	
EOCENE	AMERI PM PM ULAROM OSHOWIN	AGBADA FM	PARALIC FRONT	
PALEOCENE	IMO FM ENEKORO	AKATA	MARINE	
CAMPANIAN- MAASTRICH- TIAN SANTONIAN	NSUKKA FM AJALI SST MAMU FM NKPORO-ENUGU SHALE		UPPER CRETACEOUS PRO NIGER DELTA SUCCESSION	

110 Table 2: Stratigraphic correlation chart of the Niger Delta (After Amajor, 1986)

111 112

113 The selected study area (Umudike and its environs) is located within the central parts of

114 Ikwuano-Umuahia area; and lies within latitudes 5° 28.793'N and 5° 34.661'N, and longitudes 7° 115 31.602'E and 7° 34.661'E (Fig 2).

116 Climate of the area is the sub-equatorial climatic belt with tropical rain-forest vegetation. The

mean annual temperature is between 24° C and 27° C; while the annual rainfall varies between

118 1500mm and 3500mm (Adeleke and Leong, 1978).

119

120 Institutions and research centres such as Forestry Research Institute, New Industrial Market, Soil

and Water Department of Federal Ministry of Agriculture and Rural Development, and

122 Government College Umuahia (GCU) are situated within the study area.

- 123 Others are Abia State University Practical Agricultural Campus (ABSUPAC), National Root
- 124 Crops Research Institute (NRCRI) and Michael Okpara University of Agriculture(MOUAU).
- 125 The area is witnessing rapid increase in population and subsequently expansion in infrastructure.
- 126 It is known that rapid industrialization, urbanization and population growth have attendant
- 127 pressure on all sustainable resources.
- 128 This has led to many geophysical groundwater investigations in the area but not much have been
- done in the area of foundation investigations.
- 130 The land is fixed but there is daily increase in infrastructure. Also, the reduction in available land
- due to increasing infrastructure will eventually give rise to the need of optimally using the
- 132 available ones for sustainable practices.

- 133 In light of this, Umudike area and its environs are gradually being faced with the consequent
- attempts in the construction of high rising buildings
- 135 It is therefore essential to assess the foundation competence of the near-surface soil and
- 136 subsurface geological materials.
- 137

- 140
- 141

142 **METHODOLOGY**

143 The instruments used in the geoelectrical survey include resistivity meter (ABEM SAS 4000

144 Terrameter), Geographic Positioning System (GPS), 12Volts heavy duty motor battery with two

145 connecting wires with crocodile clips, four hammers and four electrodes with rolls of wire, two

rolls of 100m rope each, Three rods for ropes (one central and two end ones), One big umbrella

147 for shade, Data sheets with K-values and writing pen.

Six traverses were established across the study area (Fig. 3). Three (3) Vertical Electrical
Sounding (VES) stations were occupied along each of the traverses and a total of 18 soundings
were carried out using the Schlumberger electrode configuration of maximum half current
electrodes spacing (AB/2) of 65m (Table 3, Fig. 4).

153	Table 3: VES	stations and	their localitie	ies in the study are	a
-----	--------------	--------------	-----------------	----------------------	---

Data	Data Location	GPS Reading			
Number		Elevation	Latitude °N	Longitude °E	
		(m) a.m.s.l			
1	Umuohu-Azueke (Ministry of	186.5	$5^{0}34.623^{!}N$	7 ⁰ 34.661 [!] E	
	Agriculture)				
2	Umuohu-Azueke (New Industrial	135.4	5 ⁰ 30.558 [!] N	$7^{0}32.004' E$	
	Market)				
3	Umuohu-Azueke (New Industrial	148.9	$5^{0}30.318^{!}N$	$7^{0}31.602'E$	
	Market)				
4	Umuohu-Azueke (Government	131.5	5°30.134 [!] N	$7^{0}32.233^{!}E$	
	College Umuahia)		0		
5	Umuohu-Azueke (Government	151.2	$5^{0}30.070^{1}$ N	$7^{0}32.268^{!}E$	
	College Umuahia)		0		
6	Umuohu-Azueke (Igbugbo Opposite	162.5	5°34.645 ¹ N	7 [°] 32.564 [°] E	
	GCU)		0	0	
7	Umudike (Ihiuzo American Quarters	147.0	$5^{\circ}29.560^{\circ}N$	$7^{\circ}32.323^{\circ}E$	
	Plantation)		0	0	
8	Umuohu-Azueke (Abia State	137.9	5°28.645°N	7°33.721°E	
	University)	100.0			
9	Umuohu-Azueke (Behind Abia State	123.0	5°29.732°N	7°32.334°E	
1.0	University)				
10	Umudike (Behind NRCRI)	98.3	5°28.877 N	7°32.411°E	
11	Umudike (Inside NRCRI)	107.5	5 ⁰ 28.859 [!] N	7 ⁰ 32.432 [!] E	
12	Umudike (V.C'S Lodge)	126.3	5 ⁰ 29.312 [!] N	7 ⁰ 32.761 [!] E	
13	Umuariaga (Opposite MOUAU)	129.4	5 ⁰ 28.881 [!] N	7 ⁰ 33.052 [!] E	
14	Umudike (Inside MOUAU)	113.3	5 ⁰ 28.793 [!] N	7 ⁰ 32.433 [!] E	
15	Umudike (Behind MOUAU)	159.3	5 ⁰ 29.521 [!] N	7 ⁰ 32.445 [!] E	
16	Amaoba	199.4	5 ⁰ 29.421 [!] N	7 ⁰ 32.445 [!] E	
17	Amaoba	172.7	5 ⁰ 29.633 [!] N	7 ⁰ 32.544 [!] E	
18	Amaoba	190.1	5 ⁰ 29.655 [!] N	7 ⁰ 32.632 [!] E	

Fig. 3: Data acquisition grid of the study area showing the vertical electrical sounding
 stations

155

159

164

160 The 12V direct current (DC) served as current source to the Terrameter, and the current was 161 passed into the subsurface through the two current electrodes 'AB'; while the two potential 162 electrodes 'MN' were linearly arranged along the survey line to determine the ground potential 163 difference (Fig. 4).

The resultant ratio of the current and voltage is the measured data which is the ground resistanceread off in the Terrameter.

- 168 This ground resistance is used in computing the apparent resistivity using the corresponding kvalues with the formula:
- 170 $\rho a = \mathbf{kR}$... equation (1) where $\rho_a = \text{Apparent resistivity}, \quad k = \pi \left(\frac{L^2 - l^2}{2l}\right) = \text{Geometric factor}, R = \text{Resistance in ohms}$ 171 L = AB/2 = Half current electrode spacing (m), l = MN/2 = Half potential electrode spacing (m). 172 173 Substituting the values of k into equation (1), we get 174 $\rho a = \pi R \left(\frac{L^2 - l^2}{2l} \right)$... equation (2) 175 176 The apparent resistivity values were plotted against electrode spacing (AB/2) on a bi-logarithmic 177 graph sheet to generate depth sounding curves. The curves were then inspected visually for 178 identification of the curve types; and subsequently used for the conventional partial curve 179 matching technique and use of auxiliary point diagrams (Zohdy, 1989). From the result, 180 181 estimates of the resistivity and thickness of the various geoelectric layers were obtained and used for computer iteration using RESIST version 1.0 software (Varder - Velpen, 1988). 182 Finally, interpreted results were used for the analysis of sounding curves and preparation of 183 geoelectric sections. 184

185

186 **RESULTS AND DISCUSSION**

187

188 4.1.1 Analysis of Sounding Curve

Table and curves for vertical electrical sounding over layered structures is a function of the electrode configuration together with the resistivities and thicknesses of the layers (Orellana and Mooney, 1966; Zohdy, 1989; Amos-Uhegbu et al., 2012). Sounding (VES) curves are obtained by plotting the calculated apparent resistivity against the corresponding half current electrode separation (AB/2), and the letters Q,A,K and H are used to indicate the variation of resistivity with depth (Fig. 5).

- 196
- 197
- 198
- 199
- 200
- 201
- 202

VES	Resistivity of	Thickness of	Туре	VES	Resistivity of	Thickness of	Туре
Nos.	layers (Ωm)	layers (m)	Curve	Nos.	layers (Ωm)	layers (m)	Curve
VES	$\rho_1 = 332$	$t_1 = 0.8$	HKH	VES	$\rho_1 = 37999.0$	$t_1 = 0.4$	HKHQ
1	$\rho_2 = 1786.9$	$t_2 = 3.2$		10	$\rho_2 = 65.4$	$t_2 = 0.8$	
	$\rho_3 = 1250.9$	$t_3 = 7.0$			$\rho_3 = 666.8$	$t_3 = 2.3$	
	$\rho_4 = 640.9$	$t_4 = 16.7$			$\rho_4 = 51.0$	$t_4 = 6.7$	
	$\rho_5 = 3200.8$	$t_5 = ?$			$\rho_5 = 3276.1$	$t_5 = 12.4$	
VEC	5.62	4 0.2	AKO		$\rho_6 = 61,788$	$t_6 = ?$	
VES	$\rho_1 = 563$	$l_1 = 0.2$	AKQ	VEC	745.0	4 1 2	110
2	$\rho_2 = 1/20.0$	$l_2 = 3.1$		11	$\rho_1 = 745.0$	$l_1 = 1.2$	пų
	$p_3 = 4080$	$t_3 = 0.4$		11	$\rho_2 = 220.2$	$t_2 = 0.1$ $t_2 = 10.7$	
	$p_4 = 1230$	$t_4 - 22.2$ $t_7 - 2$			$\rho_3 = 2570.0$	$t_3 = 10.7$	
	$p_5 = 370$	15 - 1			$p_4 = 10380.7$	$t_4 - t_1$	
VES	$\rho_1 = 187.7$	$t_1 = 0.6$	AK	VES	$\rho_1 = 705.0$	$t_1 = 1.2$	HA
3	$\rho_2 = 1626.3$	$t_2 = 4.8$		12	$\rho_2 = 15.0$	$t_2 = 1.6$	
	$\rho_3 = 4867.6$	$t_3 = 15.1$			$\rho_3 = 805.0$	$t_3 = 2.8$	
	$\rho_4 = 231.7$	$t_4 = ?$			$ ho_4 = 65810.7$	$t_4 = ?$	
VES	$\rho_1 = 140.6$	$t_1 = 0.8$	HAA	VES	$0_1 = 518.0$	$t_1 = 0.6$	А
4	$\rho_2 = 8.3$	$t_2 = 1.8$		13	$p_1 = 310.0$ $p_2 = 878.0$	$t_1 = 0.0$ $t_2 = 15.0$	
	$\rho_3 = 226.5$	$t_3 = 1.4$		10	$p_2 = 2768.0$	$t_2 = ?$	
	$\rho_4 = 7147.3$	$t_4 = 22.2$			0.00 יש- נק	-5 •	
	$\rho_5 = 10197.5$	$t_5 = ?$		VES	$\rho_1 = 945.0$	$t_1 = 5.0$	AK
VES	$\rho_1 = 2200.0$	$t_1 = 0.4$	HA	14	$\rho_2 = 3380.8$	$t_2 = 7.0$	
5	$\rho_2 = 950.0$	$t_2 = 6.5$			$\rho_3 = 21000.0$	$t_3 = 21.5$	
	$\rho_3 = 3630.0$	$t_3 = 25.2$			$\rho_4 = 7/80.0$	$t_4 = ?$	
	$\rho_4 = 7710.0$	$t_4 = ?$		VES	$\rho_1 = 4300.0$	$t_1 = 1.2$	QHK
VES	$\rho_1 = 3520.0$	$t_1 = 4.2$	Н	15	$\rho_2 = 3200.0$	$t_2 = 1.6$	
6	$\rho_2 = 1460.0$	$t_2 = 13.9$			$\rho_3 = 400.0$	$t_3 = 4.0$	
	$\rho_3 = 7310.0$	$t_3 = ?$			$\rho_4 = 30000.0$	$t_5 = 21.4$	
VES	$\rho_1 = 114.0$	$t_1 = 1.0$	KH		$\rho_5 = 611.0$	$t_6 = ?$	
7	$\rho_2 = 1105.0$	$t_2 = 20.9$		VEC	-145	t = 1.2	Δ.
	$\rho_3 = 295.0$	$t_3 = 9.2$		16	$\mu_1 = 14.5$	$l_1 = 1.2$ $t_1 = 1.6$	A
	$\rho_4 = 527.0$	$t_4 = ?$		10	$\mu_2 = 10.3$	$t_2 - 1.0$ $t_2 - 2$	
VFS	0 - 575.0	$t_{1} = 0.4$	КПК		$\mu_3 = 808/3.0$	13 - 1	
V Ľ.Э 8	$\mu_1 = 5/5.0$	$t_1 = 0.4$ $t_2 = 2.4$		VFS	0 - 1320	$t_1 = 0.6$	КНА
0	$\mu_2 = 7370.0$	$t_2 - 2.4$ $t_2 - 4.7$		17	$p_1 = 132.0$	$t_1 = 0.0$ $t_2 = 3.0$	
	$\mu_3 = 319.0$	$t_3 = -17 \ \text{R}$		1/	$p_2 = 1200.0$	$t_2 = 3.0$ $t_2 = 8.6$	
	$\mu_4 - 12000.0$	$t_4 = 17.0$ $t_5 = 9$			$p_3 = 220.0$	$t_4 = 23.4$	
	μ5 – 00.0				$p_4 = 0.400.0$ $0_5 = 46700.0$	$t_{5} = ?$	
VES	$\rho_1 = 5104.2$	$t_1 = 3.1$	Q		0.00.0	-5 •	
9	$\rho_2 = 2568.2$	$t_2 = 28.1$		VES	$\rho_1 = 5130.0$	$t_1 = 0.6$	Q
	$\rho_3 = 845.1$	$t_3 = ?$		18	$\rho_2 = 1400.0$	$t_2 = 4.5$	
					$\rho_3 = 176.0$	$t_3 = ?$	

241 Table 4: A profile of VES data of the various sounding stations in the study area.

242 4.1.2 Geoelectric sections of the study area

- 243 Subsurface resistivity is related to the physical property of interest such as lithology, porosity,
- 244 water content etc; therefore electrical resistivity measurements determine subsurface resistivity
- distributions thereby differentiating layers based on resistivity values (Ako, 2002, Amos-Uhegbu
- et .al 2012).
- 247 Sounding curves obtained over a horizontally stratified medium could be presented as a
- 248 descriptive profile displaying variation of apparent resistivity with depth (Zohdy, 1989). The
- 249 profile is a scale drawing of the successive layer resistivities and thicknesses; so, a geoelectric
- section is a profile displaying variation of apparent resistivity with depth (Fig. 10, 11, and 12).
- 251

252

Fig. 10: Geoelectric sections along the first traverse

254

255 256

Fig. 12: Geoelectric sections along the fifth traverse

269 4.1.3 Subsurface Engineering Evaluation of the Study Area

- 270 Excavation for footings or foundation walls shall extend below depth of soil subjected to
- seasonal or characteristic volume change to undisturbed soil that provides adequate bearing
- capacity. So, topsoil is normally removed and variations in ground level corrected.
- Therefore, the best recommended depth of foundation is from 1.0 m to 1.5 m from original
- ground level (NHBC, 2011).
- 275 The depth of foundation depends on some factors such as the availability of soil with adequate
- bearing capacity, depth of shrinkage and swelling as in case of clayey soils, due to seasonal
- changes which may cause appreciable movements; and the depth of frost penetration in case of
- fine sand and silt. Also, proximity of excavation and depth of ground water table are considered.
- 279 Geoelectrical foundation engineering competence of soils can be qualitatively evaluated from
- layer resistivity; the higher the value of a layer resistivity, the higher the competence.
- Amos-Uhegbu et.al (2012, 2014) extensively worked within the study area and lithologically

deduced from drill-hole and geoelectric data that sediments with resistivity $< 100\Omega$ m are clays,

283 100Ωm - 500Ωm are silts, 500Ωm - 1500Ωm are fine-grained sands, 1500Ωm - 3000Ωm are

- medium-grained sands, $3000\Omega m 5500\Omega m$ are coarse-grained sands, and $> 5500\Omega m$ as
- sandstone.
- 286 By using a depth of 1.2m and a minimum of 750Ω m in the evaluation; the vicinity of VES 8 is
- the most suitable site for the construction of high rising building. This is followed by VES
- station 9, 6, 14 and 15. While the unsuitable sites for the construction of high rising building are

290

Recall that the higher the value of a layer resistivity, the higher the competence; therefore the

- lower the value, the lesser the competence. From the resistivity values of topsoils, the vicinity of
- VES 3, 4, 7, 16 and 17 are poor materials for any structural engineering purpose (Fig. 14). This
- is evident from the usual cracking and collapse of the portion of road along Umuahia-Ikot-
- Ekpene highway where the data of VES 17 was acquired. This could be associated with the
- 298 outcrop of local clay lenses at the vicinity.

299

Fig. 14: A histogram of Topsoil resistivity of the study area

302

303 CONCLUSIONS

The geophysical results revealed three to six geoelectric sequences within the study area which comprises topsoil, sands, silts, clays and possibly gravel. The thickness of the topsoils range

from about 0.2m to about 5.0m; but most are less than 2m. The thickness of the topsoils of the

vicinity of VES 6, 9, and 14 are by far greater than 2m probably because construction work have

been done in the area and the topsoils must have been removed during the levelling of the area

- 309 for the construction.
- By using the resistivity values together with depth of 1.2m in the evaluation, the vicinity of VES
- 8, 9, 6, 14 and 15 are suitable for the construction of high rising building; while the unsuitable
- sites are VES 4, 10, 11, 12 and 16. Also, the vicinity of VES 1, 2, 3, 5, 7, 13, 17 and 18 can be
- 313 considered for such construction under the supervision of structural and geotechnical experts.
- Further foundation investigation using alternative detailed geophysical (seismic) and
- 315 geotechnical investigations of the area is also recommended.

REFERENCES

318 319	AASHO (1962). "Road Test – Report 5 (Pavement Research)", Highway Research Board, Special Report 6IE Washington D.C.
320	
321	AASHTO (1988). Manual on subsurface investigations American Association of State Highways
322 323	and Transportation Officials Washington D.C.
324	Adeleke, B. O. and Goh Cheng Leong, (1978). Certificate Physical and Human Geography.
325	West African Ed. Oxford University Press, Nigeria, Ibadan.
326	Ajayi, O., Olorunfemi, M.O., Ojo, J.S., Adegoke, C.W., Chikwendu, K.K., Oladapo,
327	M.I., Idornigie, A.I., Akinluyi, F., (2005). Integrated geophysical and geotechnical investigation
328	of a dam site on River Mayo Ini, Adamawa State, Northern Nigeria. Afr. Geosci. Rev.,
329	12(3): 179-188.
330	
331	Akinrinmade A.O (2013). Geophysical and geotechnical investigation of river Ero for
332	dam site, Ajuba, south-western Nigeria. Msc. Thesis submitted to the Department of
333	Geology, University Of Ilorin, Kwara State, Nigeria. 114 pages.
334	
335	Akintorinwa, O. J. and Adeusi F. A. (2009). Integration of Geophysical and Geotechnical
336	Investigations for a Proposed Lecture Room Complex at the Federal University of
337	Technology, Akure, SW, Nigeria. Journal of Applied Sciences 2(3), 2009
338	
339	Amajor, L.C. (1986). Alluvial fan Facies in the Miocene-Pliocene Coastal Plain Sands,
340	Niger Delta, Nigeria. Journal of Sedimentary Geol. Vol. 49; p. 1-20.
341	
342	Amos-Uhegbu, C., Igboekwe, M.U., Chukwu, G.U., Okengwu, K.O. and Eke, K.T. (2012).
343	Hydrogeophysical Delineation and Hydrogeochemical Characterization of the
344	Aquifer Systems in Umuahia-South Area, Southern Nigeria. British Journal of Applied
345	Science & Technology, 2(4): 406-432.
346	
347	Amos-Uhegbu, C., Igboekwe, M.U., Chukwu, G.U., Okengwu, K.O. and Eke, K.T. (2014).
348	Geo-electrical Delineation and Geochemical Characteristics of Aquifer Systems in Kwa-
349	Ibo River Watershed, Abia State, Nigeria. Journal of Scientific Research & Reports
350	3(6): 818-843.
351	
352	Asseez, L.O. (1976). Review of the stratigraphy, sedimentation and structure of the Niger
353	Delta. In: Kogbe, C.A. (ed.). Geology of Nigeria. Elizabeth Publ. Co.: Lagos, Nigeria,
354	259–272.
355	
356	Bayewu, O. O., Oloruntola, M. O., Mosuro, G. O. and Abass, O. K. (2012). Preliminary
357	Investigation of a Proposed Dam Site along River Ome, Ago Iwoye South Western
358	Nigeria. Journal of Science and Technology Volume 1 No. 6.
359	

360	
361	
362	Bowles, J.A., 1990. Engineering Properties of Soil and their measurements. McGraw Hill,
363	NewPort carrol, D.1970. claymmerah. A guide to their X-ray identification. Geol Soc Am.
364	Spec.pap 80 Pp.
365	
366	Brink, A. B. A., Parridge, J. C. and Williams, A. A. B (1992). Soil Survey for Engineering,
367	Claredon, Oxford.
368	
369	Chukwu, G.U. (2010). Electrical resistivity survey to investigate causes of borehole
370	failure within Ikwuano/Umuahia area of Abia State, SE Nigeria, PhD Dissertation,
371	Michael Okpara University of Agriculture, Umudike, Nigeria, 104 nages.
372	
373	Fatoba I.O. Alo I.O and Fakeve A.A. (2010) Geoelectric Imaging for Foundation Failure
374	Investigation at Olabisi Onabanio University (O O U) Minicampus Ago Iwove
375	Southwestern Nigeria, Journal of Applied Sciences Research, 6(12): 2192-2198, 2010
376	
377	Federal Ministry of Works and Housing (1972) Highway Manual Part 1 Road Design Federal
378	Ministry of Works and Housing Lagos
570	initially of works and frousing, Eugos.
379	Geological Survey of Nigeria 'GSN' (1985): Geological Map of Nigeria. Federal
380	Ministry of Mines and Power, Lagos.
381	
382	Hunter, L.E., Powers, M.H. and Rose, R.S. (2011). Geophysical evaluation of earthen dam
383	foundations, US army corps of engineers, ISC, p33
384	
385	Jones, A.A and Hockey, R.A. (1964). The geology of part of southern Nigeria. Geology Survey.
386	Nigeria. Bull.1964; 31.10p.
387	
388	Kogbe, C.A. (1976). Paleogeographic History of Nigeria from Albian Times In: Kogbe C.A. (ed)
389	African Geology. Elizabethan Pub. Co. Lagos 436p.
390	
391	Mbonu P.D.C, Ebeniro J.O, Ofoegbu C.O. and Ekine A.S. (1991). "Geoelectric
392	sounding for the determination of aquifer characteristics in parts of the Umuahia area of
393	Nigeria," Geophysics, 56: 284–291.
394	
395	Melikan, R.E. (1960). Geophysical Activity Applied to Engineering Construction and
396	Groundwater Project. <i>Geophysics.</i> , 33: 9-11.
397	j
398	Møller, L. and Sørensen, K. I. (1998). A new approach for fast 2-D geoelectric mapping of near
399	surface structures: European Journal of Environmental and Engineering Geophysics 2
400	247–262
401	
402	Murat R C (1972) "Stratigraphy and Palaeogeography of the Cretaceous and Lower
402	Tertiary in southern Nigeria" In: Dessauvagie T F I and Whiteman A (eds.) A frican
405 ////	Geology III Press: Ibadan Nigeria nn 635 – 641
404 ///5	300005y. 0111055. 1040an, 10501a. pp $055 - 041$.
+05	

406	
407	
408	Neil, A. and Ahmed, I. (2006). A generalized protocol for selecting appropriate geophysical
409	techniques. Dept of Geol. and Geophys. University of Missouri-Rolla. Rolla,
410	Missouri.2006; 19p.
411	
412	NHBC, (2011) National House-Building Council, UK, Technical guidance note and Building
413	Amendment Regulation.
414	
415	Obaie N. G. (2009) Geology and Mineral Resources of Nigeria. Lecture Notes in Earth Science.
416	Springer-Verlag Berlin
417	Springer + enag, Dermi
<u>41</u> 7	Olorunfemi M O and Meshida E A (1987) Engineering Geophysics and Its Application in
<u>410</u>	Engineering Site Investigation (case study of Ile-Ife area The Nigeria Engineer 22(2):
420	57-66
/20	57 00.
421	Olorunfemi M.O. Idoniege A.I. Coker A.T. and Babadiya G.F. (2004). The Application of
422	the Electrical Resistivity Method in Foundation Failure Investigation a Case Study of
425	O A U Dental Clinic, Global Journal of Geophysical Science, 2004, 2(1): 139-151
424	0.A.O Dental Chine. Global Journal of Geophysical Science, 2004, 2(1). 139-131.
425	Olorunfemi M.O. Oio, J.S. Sonuga, F. Ajavi, O. and Oladano, M.I. (2000). Geoelectrical and
420	Electromagnetic Investigation of the Failed Koza and Nasarawa Farth Dams Around
427	Katsing, Northern Nigeria, I. Mining Gool, 26(1): 51, 65
428	Kaisina, Northern Nigeria. J. Minning Geor., 50(1). 51 - 05.
429	Olympicami A O and Michael I O (2011) Cooplectric investigation of Oppurguage Dam site
430	Unwakenii, A.O. and Michael, L.O. (2011). Geoelectric investigation of Owuruwuru Dain site,
431	ikere Ekiti, Southwestern Nigeria. Journal of Geology and Minning Research. Vol.
432	5.pp.12.
433	Observed D. D. (1000). Stars to all Transle in the Nicersian Decement Consultant. In Decementaries
434	Oluyide, P.O. (1988). Structural Trends in the Nigerian Basement Complex. In Precambrian
435	Geology of Nigeria. Geological Survey of Nigeria: pp. 93–98.
436	
437	Onyeagocha, A.C. (1980). Petrography and Depositional Environment of the Benin
438	Formation, Nig. J. Min. Geol; 17 (2): 147-151.
439	
440	Orellana, E. and Mooney, H.M. (1966). Master Tables and Curves for Vertical Electrical
441	Sounding over Layered Structures. Interciencia, Madrid, pp 34
442	
443	Oyawoye, M.O. (1972). The Basement Complex of Nigeria. In: Dessauvagie, T.F.J; Whiteman
444	A.J (eds), African Geology. University Press, Ibadan, Nigeria. 67-69.
445	
446	Reyment, R. A. (1965). Aspects of the geology of Nigeria: Ibadan University Press
447	
448	Sheriff, R. E. (2001). Encyclopedic Dictionary of Applied Geophysics. University of
449	Houston. 422pages.
450	
451	Short, K.C. and Stauble, A.J. (1967). Outline of Geology of Niger Delta. AAPG Bull. 51: 761-

769.
Sowers, G.B. and Sowe, G.F. (1970). Introductory soil mechanics. 3rd edition. 556 pages. Macmillan (New York)
Society of Exploration Geophysicists (1990). "Resistivity and induced polarization
methods," Geotechnical and Environmental Geophysics Volume I Review and Tutorial.
S. H. Ward, ed., Tulsa, OK, pp 147-190.
Stoneley, R. (1966). The Niger delta region in the light of the theory of continental drift: geol.
Mag., vol 105, p385-397.
Susan, E. P. (2006). The role of geophysics in 3-D mapping. Geological Survey of Canada.
2006; ON, KIA 0E8.
Tabwassah, C.A and Obiefuna, L.O. (2012). Geophysical and Geotechnical Investigation of
Cham Failed Dam Project, Nigeria. Research Journal of Recent Sciences Vol. 1(2).
Vander -Velpen, B.P.A. (1988). "RESIST version 1.0". A Resistivity depth sounding
interpretation software. M.Sc. Research Project. ITC: Netherlands.
Zohdy, A. A. R. (1989). A New Method for the Automatic Interpretation of
Schlumberger and Wenner Sounding Curves. <i>Geophysics</i> , 54(2): 245-253.