Cumulative Effects of the Temperature and Damping on the Time Dependent Entropy and Decoherence in the Caldirola Kanai Harmonic Oscillator

4 5

6 Abstract

7 The time Dependence of probability and Shannon entropy of the specific damped 8 harmonic oscillator systems is studied by using a prototypical Schrodinger cat state through 9 the Feynman path method. By averaging the probability distribution over the thermal 10 distribution of velocities, we show that, the temperature and the damped coefficient or 11 dissipation as well as the distance separating two consecutive wave functions influence the 12 coherence of the system.

13

Keywords: damped harmonic oscillator ; Feynman path integral ; Decoherence ; Shannon
 entropy ; thermal distribution probability

16

17 I. Introduction

Quantum decoherence, where coherence in a quantum system is reduced due to interaction with its environment is a fundamental and complicated concept of physics. Decoherence refers to the destruction of a quantum interference pattern and is relevant to the many experiments that depend on achieving and maintaining entangled states. Examples of such efforts are in the areas of quantum teleportation¹ quantum information and computation^{2,3}, entangled states⁴, Schrödinger cats⁵, and the quantum-classical interface⁶. For an overview of many of the interesting experiments involving decoherence, we refer to^{4,7-11}.

25 Understanding this phenomenon in dissipative harmonic oscillators is of a great interested. It

is of great physical importance and has found many applications especially in quantum optics.

For example, it plays a central role in the quantum theory of lasers and masers $^{12-14}$.

Moreover, nowadays, many of research is dedicated to understand decoherence in harmonic 28 oscillator^{15,16}. Isar *et al*¹⁷ determine the degree of quantum decoherence of a harmonic 29 oscillator interacting with a thermal bath using Lindblad theory^{18,19}. Other authors²⁰use a 30 31 semi-classical approach to examine decoherence in an anharmonic oscillator coupled to a thermal harmonic bath. Darius *et al*²¹ exploit the Feynman path integral to study the memory 32 in a non-locally damped oscillator. Moreover, Ozgur $et al^{16}$ determine the time dependence of 33 Leipnik's entropy in the damped harmonic oscillator via path integral techniques. Sang Pyo 34 Kim et al^{22} study decoherence in quantum damped oscillators, G.W. Ford *et al*²³ show that 35 36 decoherence depend on the temperature through the attenuation coefficient.

The aim of this paper is to study the cumulative effect of temperature and dissipation on the coherence of a damped harmonic oscillator of a particle in thermal equilibrium by using the Caldirola-Kanai model based on the idea of Bateman²⁴.

This model is known as a popular model used to describe dissipative systems. Here, we focus our attention on the study of decoherence by evaluating quantum Shannon entropy. In the literature for both open and closed quantum systems, different information-theoretical entropy measures have been discussed^{25,27}. In contrast, quantum Shannon entropy^{28,29} can also be used to characterize the loss of information related to evolving pure quantum states³⁰.

This paper is organized as follows. In Sec. II, we present the mathematical tools based on the path integral formalism. We discuss the case of a damped harmonic oscillator and build the associated propagator. In Sec. III, we investigate the effects of the damped coefficient and the temperature on the coherence of the system through the Shannon entropy behavior. Discussion and concluding remarks are given in the last section.

51 **II. Model description**

We start by presenting the model which consists of a particle of mass m, labeled by the position variable q and the momentum p. Then follows the description of the used mathematical tools which is the path integral formalism introduced by Feynman³¹.

These tools suggest that the transformation function called propagator is analogue to $exp(\frac{i}{\hbar}S_{cl})$ in which S_{cl} stands for the action, solution of Hamilton-Jacobi equation. On the other way, the transition amplitude of the particle (of mass m) from the position q_a at time t_a to the position q_b at time t_b , known as the propagator, represents the solution of the Schrodinger equation. This lagrangian formulation generalizes the theory of relativity (time and space). Nowadays, several problems of physics are solved via these techniques^{16,32}

61 Next, we consider the Bateman Hamiltonian²⁴ defined as :

$$62 H = \overline{p}p - \gamma [x\overline{p} - \overline{x}p] + \Omega^2 \overline{x}x (1)$$

63 where \overline{p} and \overline{x} are the mirror variables corresponding to the coordinate x and the 64 momentum p. The quantities γ and Ω are respectively the damped coefficient and the 65 system frequency. The associated lagrangian is given by

$$66 L = \dot{\overline{x}}\dot{\overline{x}} - x\overline{\overline{x}} + \gamma \left(x\dot{\overline{x}} - x\overline{\overline{x}}\right) (2)$$

67 Using Euler-Lagrange equation, we derive the following two motion equations: [33]

$$\begin{cases} \ddot{x} + \gamma \, \dot{x} + \Omega^2 x = 0\\ \\ \ddot{x} + \gamma \, \dot{x} + \Omega^2 \, \overline{x} = 0 \end{cases}$$
(3)

69 Bateman's dual Hamiltonian describes classical mechanics correctly, but this model 70 faces some difficulties. It violates Heisenberg's principle for $\gamma \neq 0$. Therefore, to solve quantum mechanical problem, Caldirola-Kanai³⁴ build a theory based on the idea of Bateman dissipative system by considering the standard Hamiltonian of harmonic oscillator with time dependent mass given by³⁴ $m(t) = m_0 exp(2\gamma)$. Hence, the Hamiltonian and the lagrangian of the system become respectively:

 $H = \frac{p^{2}}{2m(t)} + \frac{1}{2}m(t)\omega^{2}x^{2}$ $L = p\dot{x} - H = exp(2\gamma t) \left[\frac{1}{2}m\dot{x}^{2} - \frac{1}{2}m\omega^{2}x^{2}\right]$ (4)

From the lagrangian theory and exploiting Eq.(4), the equation of motion takes the form :

$$\ddot{x} + 2\gamma \dot{x} + \Omega^2 x = 0 \tag{5}$$

78 The classical solution of Eq.(5) is given by

79
$$x(t) = C_1 \exp(a_1 t) + C_2 \exp(a_2 t)$$
 (6)

80 wherein a_1 and a_2 are complex quantities defined as : $a_1 = -\gamma - i\Omega$, $a_2 = -\gamma + i\Omega$ with 81 $\Omega = \sqrt{\omega^2 - \gamma^2}$. The integration constants C_1 and C_2 are evaluated when the particle moves 82 from the position x_a at the time t_a to the position x_b at time t_b . The determination of the 83 propagator is convenient for founding quantum mechanical solution for this Hamiltonian. 84 Therefore, the classical action S_{cl} is defined as :

85
$$S_{cl}(x_a, t_a; x_b, t_b) = \int L(x, \dot{x}, t) dt = \int_{t_a}^{t_b} \frac{m}{2} (\dot{x}^2 - \omega^2 x^2) dt$$

86 whose computation for the current study case leads to :

87
$$S_{cl}(x_a, t_a; x_b, t_b) = \frac{m_0 \Omega \mu_1}{\exp\{-2\gamma (t_a + t_b)\} \sin\{\Omega (t_a - t_b)\}} + \frac{m_0 \gamma \mu_2}{\exp\{-2\gamma (t_a + t_b)\}}$$
(7)

88 In deriving relation (7), we set:

89
$$\mu_{1} = \left[x_{b}^{2} \exp(-2\gamma t_{a}) + x_{a}^{2} \exp(-2\gamma t_{b})\right] - 2x_{a}x_{b} \exp\left[-\gamma(t_{a} + t_{b})\right] + \cos\left\{\Omega(t_{a} - t_{b})\right\}$$

90
$$\mu_2 = x_b^2 \exp(-2\gamma t_a) - x_a^2 \exp(-2\gamma t_b)$$

91 From the classical action, the expression of the corresponding propagator of the damped92 harmonic oscillator is defined below.

93
$$\Re(x_a, t_a; x_b, t_b) = \left[\frac{m_0\Omega}{2\pi i \hbar \exp\{2\gamma(t_a + t_b)\}\sin\{\Omega(t_b - t_a)\}}\right]^{1/2} \exp\left(\frac{i}{\hbar}S_{cl}(x_a, t_a; x_b, t_b)\right) (8)$$

94 This result is identical to the one establish in³² using the propagator method developed by Um 95 *et al*³⁵. It also appears from Eq.(8) that the propagator $\aleph(x_a, t_a; x_b, t_b)$ depends on the damped 96 coefficient γ that links the system with the environment in which it evolves.

97 Hereafter, we intend to use the propagator (8) and derive some characteristic parameters (such 98 as the distribution probability and the Shannon entropy) of the system subjected to a specific 99 double Gaussian wave functions. These investigations aim to measure the impact of the 100 environment (temperature and dissipation) on the behavior of the system when the latter 101 progresses.

102 III. System properties under specific double Gaussian case

103 One of the specificity of this section deals with the choice of a double Gaussian wave function 104 $(\phi''(x_b, 0))$ that includes the thermal distribution of velocities. Here, our starting point is the 105 prototypical Schrödinger cat state i.e., an initial state corresponding to two separated Gaussian 106 wave packets²². The motivation of this choice of wave packet is that it describes accurately 107 the interference pattern arising in Young's two slits experiments³⁶ or that arising from the 108 quantum measurement involving a pair of "*Gaussian slits*"³⁷:

109
$$\phi''(x_b,0) = \frac{\left(2\pi\sigma^2\right)^{-1/4}}{\sqrt{2\left(1 + exp\left(\frac{-d^2}{8\sigma^2}\right)\right)}} \left\{ exp\left[\frac{-1}{4\sigma^2}\left(x - \frac{d}{2}\right)^2 + \frac{im_0v}{\hbar}x\right] + exp\left[\frac{-1}{4\sigma^2}\left(x + \frac{d}{2}\right)^2 + \frac{im_0v}{\hbar}x\right] \right\}$$
(9)

in which σ is the width of each packet, *d* represents the distance between the top of the two successive waves in the double Gaussian state $\sigma \ll d$, and *v* is the particle velocity. To appreciate the impact of this wave packet on the thermodynamic parameters of the system, we seek separately its distribution probability and Shannon entropy.

114 A. Distribution probability

115 We determine the distribution probability for a double Gaussian wave packet to find 116 the particle at time t at coordinate x. This probability can be written in the Feynman Hibbs 117 form as³⁰:

118
$$P''(x,t) = \left| \varphi''(x,t) \right|^2 = \int dx'_b \int dx_b \, \mathbf{x}^* (x_a, x'_b, t) \, \mathbf{x}(x_a, x_b, t) \, \varphi(x'_b, 0) \, \varphi^*(x_b, 0) \tag{10}$$

119 The distribution probability P'' is obtained by substituting expression (9) into Eq.(10). The 120 computation yields the upcoming quantity:

121
$$P'' = \frac{16\pi A\sigma^2}{\sqrt{1 - 16a^2\sigma^4}} e^{u_{11}u_{12}} \left[\cosh(u_{11}u_{13}) + \cosh(u_{11}u_{14}) \right]$$
(11)

122

123 wherein
$$u_{11} = \frac{\sigma^2}{1 - 16a^2\sigma^4}$$
; $u_{12} = \frac{d^2}{8\sigma^4} + 2b^2 - \frac{2m_0^2v^2}{\hbar^2} + \frac{4im_0vd}{\hbar}$; $u_{13} = 4abd + \frac{4iam_0vb}{\hbar}$

124
$$u_{14} = \frac{bd}{\sigma^2} + \frac{im_0 vb}{\hbar\sigma^2} \quad \text{and} \quad A = \frac{\left(8\pi\sigma^2\right)^{-1/2} m_0 \Omega \exp\left(2\gamma t_b - \frac{d^2}{8\sigma^2}\right)}{2\pi \hbar \sin\left(\Omega t\right) \left[1 + \exp\left(-\frac{d^2}{8\sigma^2}\right)\right]}$$

One could note that the distribution probability depends not only on time, position and system frequency, but also on the distance separating the two successive peaks of the double 127 Gaussian function. In the limit case d = 0, we recover the probability of a single Gaussian 128 wave function¹⁴.

We consider now the case of a particle in the thermal equilibrium. The principles of statistical mechanics tell us that, we obtain the corresponding probability distribution by averaging distribution Eq.(11) over the thermal distribution of velocities²²:

132
$$P_T(x,t) = \sqrt{\frac{m_0}{2\pi K_B T}} \int_{-\infty}^{+\infty} dv \exp\left(-\frac{m_0 v^2}{2K_B T}\right) P''(x,t)$$
(12a)

133 whose calculation in our case leads to

134
$$P_{T}(x,t) = \frac{32\pi^{\frac{3}{2}}A\sigma^{2}\sqrt{m_{0}}\exp(A'C)}{\left(\frac{4\pi m_{0}^{2}K_{B}T}{\hbar^{2}} + m_{0}\pi\right)^{\frac{1}{2}}\sqrt{1 - 16a^{2}\sigma^{4}}} \left[\cosh(v_{11})\exp(-v_{12}) + \cosh(v_{13})\exp(-v_{14})\right]$$
(12b)

135 in which
$$v_{11} = 4A' abd - \frac{16K_B T \sigma^2 m_0^2 b^2}{4K_B T m_0 A' + \hbar^2}$$
; $v_{12} = \frac{8K_B T m_0 b^2 + 8K_B T \sigma^2 m_0 a^2}{4K_B T m_0 A' + \hbar^2}$;

136
$$v_{13} = \frac{A'bd}{\sigma^2} - \frac{4K_B T m_0 bd}{\sigma^2 \left(4K_B T m_0 A' + \hbar^2\right)}; \quad v_{14} = \frac{8K_B T m_0^2 b^2 + 8K_B T \sigma^2 m_0 b^2}{\sigma^4 \left(4K_B T m_0 A' + \hbar^2\right)}; \quad A' = \frac{\sigma^2}{1 - 16a^2 \sigma^4}$$

137

138 and
$$C = \frac{d^2}{8\sigma^4} + 2b^2$$

Furthermore, we intend to deeply measure the loss of information of the system byinvestigating the influence of the environment on the Shannon entropy.

141 **B. Shannon entropy**

142 It is well known that the major way to appreciate the purity of a system is to study the 143 evolution of its entropy. When this quantity tends to zero, we obtain a pure state. Decoherence 144 stands for the loose of information in the system. This occurs when the exchange between the 145 environment and the system affects the evolution of the concerned system. In this subsection, we investigate the Shannon entropy relates to the double Gaussian wave function for a
specific damped harmonic oscillator that interacts with the environment. Owing to the
definition, this entropy is Mathematically defined by Boltzmann- Shannon as :

149
$$S(t) = -K \int_{-\infty}^{+\infty} P_T \ln P_T dx$$
(14)

in which the probability P_T is defined by Eq.(12b). Hereafter, we explore the influence of 150 151 each system characteristics on the evolution of this entropy. Fig.1. presents the behavior of 152 the entropy S(t) for the pure state. We observe that even with temperature, we obtain a coherent state. Fig 1 represents the coherence state because it is identical to the one of an 153 harmonic oscillator which is the typical example of system evolving without losing 154 information in time and in space (coherence state). We should stress that the dissipation is a 155 losing of information when the system interacts with an environment. This can be occurring 156 157 in classical mechanic or in quantum mechanics systems while Decoherence means loss of 158 coherence. It is a quantum phenomenon where quantum interference pattern is destroyed (Fig 159 .2. and Fig.3). From those figures, we observe the increasing of the entropy with the damped 160 factor γ . That means, the decoherence in the case of low temperature is due to the dissipation factor. Fig. 4., Fig.5. and Fig.6 show the high temperature regime where the the decoherence 161 162 becomes bigger and bigger. We observe that the entropy increases with the temperature for 163 small values of the damped factor γ . We should notice that, it can be decoherence without dissipation in high temperature. However the presence of dissipation within a system induces 164 its decoherence. Meanwhile if the dissipation increases in a system, the decoherence will also 165 166 increase. Physically, it indicates that the dissipation is the main factor responsible of the 167 decoherence.

168 IV. Conclusion

In this paper, we have studied the thermodynamic properties of a damped harmonic oscillator using the Caldirola-Kanaï model based on the idea of Bateman. The Feynman path method is exploiting to investigate the time dependent Shannon entropy for specific double Gaussian wave functions. We have derived the classical action, the probability distribution and the entanglement entropy. Those quantities are affected by the damped coefficient, the
frequency of the system and the temperature. We have observed that the envelope of the
Shannon entropy curves with time indicated that the system is losing information with time.
Simply, the Shannon entropy show universal scaling that is reminiscent of thermodynamic
quantities as in^{38,39}.

178 We can use the damped factor and the temperature parameters for two purposes : to favor the decoherence or favor the coherence of the system. We have noted that even if the 179 180 temperature and dissipation have cumulative effects, the main control parameter is the 181 damped factor. Our system can be very interesting for engineering purposes. To code or 182 decode information, we have to take into consideration the damped coefficient, the frequency of oscillation, and the temperature. For future investigations, we can also take into 183 184 consideration the physical domain of the damped factor as well as the distance separated the 185 two consecutive wave functions.

186

187 ACKNOWLEDGEMENTS

188 We acknowledge the support from SDI.

189

190 **COMPETING INTERESTS**

191 Authors declare that there is no conflict of interest in the publication of this work.

192

194 **References**

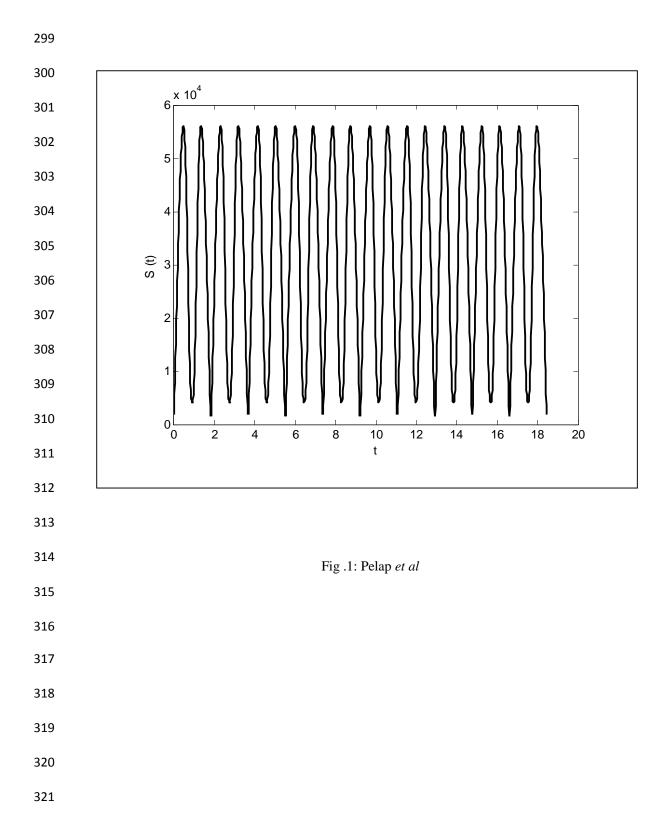
- ¹Zeilinger A, "*Quantum Teleportation*," Sci. Am. **282** (4) 32-41 (2000)
- ²Bennett CH, "Coupling and Entangling of Quantum States in Quantum Dot," Phys. Today
 48 (10) 24-30 (1995)
- ³Rogers P. "*Quantum Information*. Physics World-special issue," **11** (3) 33-57 (1998)
- ⁴S.Haroche. "Entanglement, Decoherence and the Quantum/Classical Boundary" Phys.
 Today 51 (7) 36-42. (1998)
- ⁵Zeilinger A. "*The Quantum Centennial*", Nature **408** 639-641 (2000)
- ⁶Tegmark M, Wheeler JA, "Decoherence in Phase Space MAIK "Nauka/Interperiodica".
 Sci. Am. 284 (2) 68-75 (2001)
- ⁷Myatt CJ et al. "Decoherence of quantum superposition through coupling to engineered
 reservoirs," Nature 403 269-273 (2000)
- ⁸Murakami M, Ford GW, O'Connell RF. "Decoherence in Phase Space," Laser Physics 13
 (2) 180–183 (2003)
- ⁹O'Connell RF. "Decoherence in nanostructures and quantum systems," Physica E. 19 77–82
 (2003)
- ¹⁰Ratchov A, Faure F, Hekking FWJ. "Loss of quantum coherence in a system coupled to a
 zero-temperature environment," Eur. Phys. J. B 46 (2) 519–528 (2005)
- ¹¹Tchoffo M et al. "Effect of the Variable B-Field on the Dynamic of a Central Electron Spin
 Coupled to an Anti-Ferromagnetic Qubit Bath," World Journal of Condensed Matter
 Physics 2 (4) 246-256 (2012)
- ¹²Giulini D, Joos E, Kiefer C, Kupsch J, Stamatescu IO, Zeh HD "Decoherence and the
 Appearance of a Classical World in Quantum Theory," (Springer, Berlin, 1996)
- ¹³Paz J P, Zurek W H, "*Coherent Atomic Matter Waves*," (Les Houches Session LXXII, ed.
 by R Kaiser, C Westbrook and F David, Springer, Berlin, 2001)
- ¹⁴Zurek W. H., "Decoherence, einselection and the quantum origins of the classical," Rev.
 Mod. Phys. **75** (3) 715-775 (2003)
- ¹⁵Zuo J, O'Connell RF," *Effect of an external field on decoherence: Part II*," J. Mod. Opt.
 51 (6) 821-832 (2004)

- ¹⁶Ozcan O., Akturk E., Sever R.," *Time Dependence of Joint Entropy of Oscillating Quantum Systems*," Int. J. Theor. Phys. 47 3207-3218 (2008)
- ¹⁷A. Isar, "Quantum decoherence of a damped harmonic oscillator". arXiv:quant ph/0606222v1 (2006), Assessed 21 March 2013
- ¹⁸Lindblad G.," *Brownian motion of a quantum harmonic oscillator*," Rep. Math. Phys. 10
 393-406 (1976)
- ¹⁹Sandulescu A, Scutaru H, "Open quantum systems and the damping of collective models in
 deep inelastic collisions," Ann. Phys. **173** 277-317 (1987)
- ²⁰Elran Y, Brumer P, "Decoherence in an anharmonic oscillator coupled to a thermal *environment: A semi-classical forward-backward approach*," J. Chem. Phys. **121** (6)
 2673-???? (2004). doi.org/10.1063/1.1766009
- ²¹Chruscinski D., Jurkowski J., "*Memory in a nonlocally damped oscillator*". arXiv:quant ph/0707.1199v2 (2007) Assessed 22 March 2013
- ²²Sang Pyo Kim *et al*, " *Decoherence of Quantum Damped Oscillators*" Journal of the
 Korean physical society 43 (4) 452-460 (2003)
- ²³ Ford GW, O'Connell RF, "Decoherence without dissipation," Physics letters A. 286 8790 (2001)
- ²⁴Bateman H, "On Dissipative Systems and Related Variational Principles," Phys. Rev. 38
 815-819 (1931)
- ²⁵Zurek WH, "Decoherence and the transition from quantum to classical," Phys. Today 44
 36-44 (1991)
- ²⁶Omnes R, "Consistent interpretations of quantum mechanic" Rev. Mod. Phys. 64 (2) 339382 (1992)
- ²⁷ Anastopoulos C, "*Quantum processes on phase space*," Ann. Phys. **303** 275-320 (2003)
- ²⁸Leipnik R, "*Entropy and the uncertainty principle*" Inform. and Control **2** 64–79 (1959)
- ²⁹Dodonov VV, "Nonclassical' states in quantum optics: a `squeezed' review of the first 75
 years" J. Opt. B : Quantum Semi-classical Opt. 4 R1-R33 (2002)
- ³⁰ Trigger SA, Bull. Lebedev Phys. Inst. **9** 44 (2004)

- ³¹Feynman RP, "Space-Time Approach to Non-Relativistic Quantum Mechanics," Rev. of
 Mod. Phys. 20 (2) 367-387 (1948)
- ³²Fai LC *et al*, "*Polaron State Screening by Plasmons in a Spherical Nanocrystal*," J. Low
 Temp. Phys. **152** 71-87 (2008)
- ³³Um CI, Yeon KH, George TF, "*The quantum damped harmonic oscillator*," Physics
 Reports 362 63-192 (2002)
- ³⁴Kanai E, "On the quantization of the dissipative Systems," Prog. Theor. Phys. 3 (4) 440-442
 (1948)
- ³⁵Um CI, Yeon KH, Kahng WH, "*The quantum damped driven harmonic oscillator*," J. Phys.
 A 20 611-626 (1987)
- ³⁶Caldeira AO, Leggett AJ, "Influence of damping on quantum interference: An exactly soluble model," Phys. Rev. A **31** (2) 1059-1066 (1985)
- ³⁷Feynman RP, Hibbs AR,"*Quantum mechanics and path integrals*," McGraw-Hill, New
 York, 1965)
- ³⁸Murao M, Jonathan D, Plenio MB, and Vedral V, "*Quantum telecloning and multiparticle entanglement*" Phys. Rev. A **59** 156-161 (1999)
- ³⁹Costi TA, Zarand G, "Thermodynamics of the dissipative two-state system: A Bethe-ansatz
 study," Phys. Rev. B 59 12398-12418 (1999)

271 Figure Captions

272	Fig .1.: Shannon entropy $S(t)$ as function of time for the pure state : harmonic oscillator
273	without dissipation. This coherent state remains even for nonzero temperature.
274	Fig .2.: Temporal evolution of the Shannon entropy $S(t)$ for the parameters $\gamma = 0.002$;
275	$\Omega = 1.7$; $d = 5$ $\gamma = 0.002$; $\Omega = 1.7$; $d = 5$ and $T = 0.0000001$. This curve
276	presents the growth of the entropy with time traducing the decoherence of the
277	system in the presence of damping and temperature.
278	Fig .3.: Shannon entropy $S(t)$ as function of time for the parameters of figure 2 with
279	$\gamma = 0.02$. We note that the system's decoherence increases with time and the
280	damped factor γ.
281	Fig. 4.: Time evolution of the entropy $S(t)$ for the parameters $\gamma = 0.0007$; $\Omega = 1$; $d = 5$ and
282	T = 0.000001. This figure also indicates the evolution of the entropy with the
283	temperature.
284	Fig. 5.: Shannon entropy $S(t)$ as function of time for the parameters of figure 4 for the
285	temperature $T = 0.000003$. This plot shows that the decoherence of the system
286	grows both with time and the temperature.
287	Fig .6.: Behavior of the Shannon entropy $S(t)$ with time and the temperature in the presence
288	of small dissipation for the parameters $\gamma = 0.00001$; $\Omega = 1$; $d = 5$ and
289	T = 0.00002.
290	
291	
292	
293	
294	
295	
296	
297	



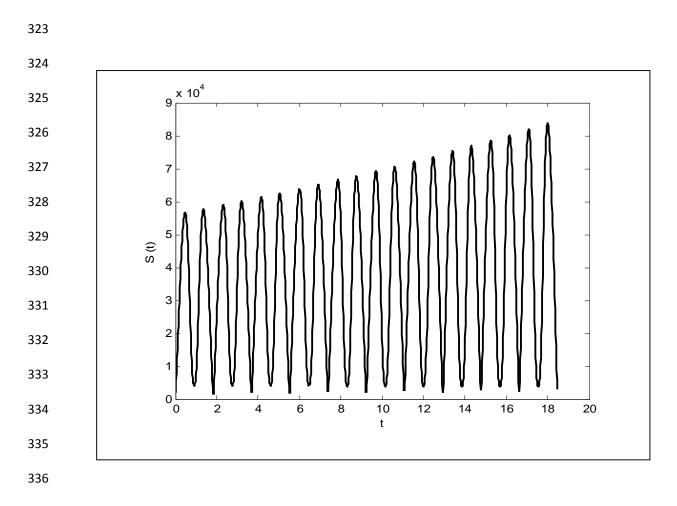


Fig .2: Pelap et al

