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Cumulative Effects of the Temperature and Damping on the
Time Dependent Entropy and Decoherence in the Caldirola-
Kanai Harmonic Oscillator

Abstract

The time Dependence of probability and Shannonopwtof the specific damped
harmonic oscillator systems is studied by usingagpypical Schrodinger cat state through
the Feynman path method. By averaging the prolwabdistribution over the thermal
distribution of velocities, we show that, the temgtere and the damped coefficient or
dissipation as well as the distance separatingdwtsecutive wave functions influence the

coherence of the system.

Keywords: damped harmonic oscillator ; Feynman path nmaiegDecoherence ; Shannon

entropy ; thermal distribution probability

|. Introduction

Quantum decoherence, where coherence in a quantstensis reduced due to interaction
with its environment is a fundamental and compéidatoncept of physics. Decoherence
refers to the destruction of a quantum interferepatern and is relevant to the many
experiments that depend on achieving and main@ieimangled states. Examples of such
efforts are in the areas of quantum teleportatiprantum information and computatfon
entangled statésSchrodinger catsand the quantum-classical interfadeor an overview of
many of the interesting experiments involving desence, we refer {d**

Understanding this phenomenon in dissipative haremoscillators is of a great interested

is of great physical importance and has found negplications especially in quantum optics.
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For example, it plays a central role in the quantheory of lasers and maskty’

Moreover, nowadays, many of research is dedicatathtlerstand decoherence in harmonic
oscillator>®® Isar et af'’ determine the degree of quantum decoherence ofrmohéc
oscillator interacting with a thermal bath usingndiblad theor}?'® Other authofSuse a
semi-classical approach to examine decoherence ianaarmonic oscillator coupled to a
thermal harmonic bath. Dariws af* exploit the Feynman path integral to study the mgm
in a non-locally damped oscillator. Moreover, Ozgual® determine the time dependence of
Leipnik’'s entropy in the damped harmonic oscillat@ path integral techniques. Sang Pyo
Kim et al®® study decoherence in quantum damped oscillatoi. Gord et af® show that
decoherence depend on the temperature througlitémaation coefficient.

The aim of this paper is to study the cumulatiieafof temperature and dissipation on the
coherence of a damped harmonic oscillator of agharin thermal equilibrium by using the
Caldirola-Kanai model based on the idea of Batethan

This model is known as a popular model used tordesdissipative systems. Here, we focus
our attention on the study of decoherence by etialyajuantum Shannon entropy. In the
literature for both open and closed quantum systelifferent information-theoretical entropy
measures have been discu$38d In contrast, quantum Shannon entf83y can also be

used to characterize the loss of information relléeevolving pure quantum stat®s

This paper is organized as follows. In Sec. Il,pesent the mathematical tools based
on the path integral formalism. We discuss the cdsedamped harmonic oscillator and build
the associated propagator. In Sec. lll, we invastighe effects of the damped coefficient and
the temperature on the coherence of the systenughrehe Shannon entropy behavior.

Discussion and concluding remarks are given irlakesection.
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II. Model description
We start by presenting the model which consista phrticle of massn, labeled by
the position variableq and the momentunp. Then follows the description of the used

mathematical tools which is the path integral foisma introduced by Feynméah

These tools suggest that the transformation funatalled propagator is analogue to
exp(% Sd) in which S, stands for the action, solution of Hamilton-Jaceuation. On the
other way, the transition amplitude of the parti@eémassm) from the positiong, at timet,
to the positiong, at time t,, known as the propagator, represents the solutiothe

Schrodinger equation. This lagrangian formulatiemayalizes the theory of relativity (time

and space). Nowadays, several problems of phyeicsadved via these techniqd®¥

Next, we consider the Bateman Hamiltorifastefined as :

H = pp - y{3p - %p] + Q7 (1)
where p and x are the mirror variables corresponding to the doate x and the
momentum p. The quantitiesy and @ are respectively the damped coefficient and the

system frequency. The associated lagrangian isdiye
L = XX— XX+ y( XX— Y)) (2)
Using Euler-Lagrange equation, we derive the foilmawo motion equations: [33]

X+ yx+Q?x=0
L 3)
X+yX+Q2%x=0

Bateman’s dual Hamiltonian describes classicallaeics correctly, but this model

faces some difficulties. It violates Heisenbergisngiple for y # 0. Therefore, to solve
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quantum mechanical problem, Caldirola-K&haiild a theory based on the idea of Bateman
dissipative system by considering the standard Hamnin of harmonic oscillator with time

dependent mass givenByn(t) = m, exg(2)t). Hence, the Hamiltonian and the lagrangian of

the system become respectively:

_p 1 2
H = () +§m(t)wzx

4)
L=p«—H= ex;(Zyt)Em)'(2 —%mwzxz}

From the lagrangian theory and exploiting Eq. (¢, ¢quation of motion takes the form :

X+2yx+Q°x=0 (5)
The classical solution of Eq.(5) is given by
x(t) = C, expla,t) + C, expla,t) (6)

wherein a, and a, are complex quantities defined asa;=-y-iQ, a, =-y+iQ with

Q =,/a” - y*. The integration constants, and C, are evaluated when the particle moves
from the positionx, at the timet, to the positionx, at timet,. The determination of the

propagator is convenient for founding quantum meaad solution for this Hamiltonian.

Therefore, the classical actiog, is defined as :
ty m
S (% b b) =] Uxx) de |2 %-a? &) o
ta

whose computation for the current study case leads

. _ mQ myy K,
AT er ey e oYy ey e S

In deriving relation (7), we set:
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= [ exil-2yt,) + X exdl- 21t,)| - 2x%, exil- ofta +1,)] + codt, -, )}

Hy = X2 exf- 2yt,) - xC ex- 2yt,)

From the classical action, the expression of theesponding propagator of the damped

harmonic oscillator is defined below.

y2 .
)= ma [
R e e Y R o —ta)}} onfj S0 i) @

This result is identical to the one establistf irsing the propagator method developed by Um
et af®. It also appears from Eq.(8) that the propagatbfa,ta;xb,tb) depends on the damped
coefficient y that links the system with the environment in viahiicevolves.

Hereafter, we intend to use the propagator (8)dmmiye some characteristic parameters (such
as the distribution probability and the Shannomagy) of the system subjected to a specific
double Gaussian wave functions. These investigat@m to measure the impact of the
environment (temperature and dissipation) on theaber of the system when the latter

progresses.
Ill. System properties under specific double Gausan case

One of the specificity of this section deals wltlk thoice of a double Gaussian wave function

(¢ (x,,0)) that includes the thermal distribution of velaedti Here, our starting point is the

prototypical Schrédinger cat state i.e., an insiate corresponding to two separated Gaussian
wave packefé. The motivation of this choice of wave packethattit describes accurately
the interference pattern arising in Young's twdsskxperiment§ or that arising from the

quantum measurement involving a pair G&ussian slits®” :



109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

. _ (2”"2)_]/4 -1 (_ d)? | impyv ~1( _dyimv
p (xb,o)_\/z(“ex{_dzn{ex;{ﬁ( x—EJ L %+ ex 402( *5] L H )
802

in which o is the width of each packed, represents the distance between the top of the two
successive waves in the double Gaussian stated, and v is the particle velocity. To

appreciate the impact of this wave packet on teentbdynamic parameters of the system, we

seek separately its distribution probability an@@ton entropy.
A. Distribution probability

We determine the distribution probability for a Bte1Gaussian wave packet to find
the particle at time at coordinate. This probability can be written in the Feynmarblbs

form ag’:

P (x.t) =] (x.0)" =[ dxp [ dxT *(% % (% % Jo( % W % P (10)

The distribution probability?" is obtained by substituting expression (9) into(Eg). The

computation yields the upcoming quantity:

1677 AT?

p" =—4e”11”12[cosI( Wy W)+ cosh y )] (11)
V1-16d0
: o’ d? 2mg V' 4img vd 4iamy vb
wherein U,=———— U, = +2F -2+ 200 -y =4abd+
to1-16d6° 2 go* n? h 3 h
2
_ (8%02)_]/2 mQ eX[{Zy t, _8(::72]
Upy :b—g 4 ImpVb and A=

o>  ho? _ q2
27th|n(Qt) 1+ex "7

One could note that the distribution probabilitypdeds not only on time, position and system

frequency, but also on the distance separatingtiee successive peaks of the double
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Gaussian function. In the limit case=0, we recover the probability of a single Gaussian

wave functiori®.

We consider now the case of a particle in the thésaquilibrium. The principles of statistical
mechanics tell us that, we obtain the correspongirapability distribution by averaging

distribution Eq.(11) over the thermal distributiohvelocitie$? :

I
R (x.t)= 2mkaT ) dvex{ 2KBTJ P{ x} (12a)

whose calculation in our case leads to

o (x1) = 32172 MZﬁlexF( A'Q [cosh( v;) exif— w)+ cosvys) ekevy)]  (12b)
(“’"‘ﬁKBTmbn]Z J1- 1620*

hz
. . 2 + 2
in which v11=4A'abd—w; 12=8KBT”?J6 8'@%7‘2 pa.
AK Tmy A% 1 AK Tmy At i
_Abd__ 4KgTmbd 8K, T+ 8k’ g b g2
Pt o(akgTmarn?) Y of (4K, Tm A ) ' 1-16d0"
d2
and C=——(+20
8o

Furthermore, we intend to deeply measure the l|dssnformation of the system by

investigating the influence of the environment lo@ Shannon entropy.

B. Shannon entropy

It is well known that the major way to appreciabe tpurity of a system is to study the
evolution of its entropy. When this quantity tetidszero, we obtain a pure state. Decoherence
stands for the loose of information in the syst&iis occurs when the exchange between the

environment and the system affects the evolutioth@fconcerned system. In this subsection,
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we investigate the Shannon entropy relates to thébld Gaussian wave function for a
specific damped harmonic oscillator that interasith the environment. Owing to the

definition, this entropy is Mathematically definegd Boltzmann- Shannon as :
S(=-K[ R InR dx (14)

in which the probability B is defined by Eq.(12b). Hereafter, we explore itifeience of
each system characteristics on the evolution &f émtropy. Fig.1. presents the behavior of
the entropy S(t) for the pure state.We observe that even with teatpee,we obtain a
coherent state. Fig 1 represents the coherence lstgtiuse it is identical to the one of an
harmonic oscillator which is the typical example system evolving without losing
information in time and in space (coherence staWg should stress that the dissipation is a
losing of information when the system interactshvan environment. This can be occurring
in classical mechanic or in quantum mechanics systehile Decoherence means loss of
coherence. It is a quantum phenomenon where quantenference pattern is destroyed (Fig
.2. and Fig.3). From those figures, we observeartbeeasing of the entropy with the damped
factor y . That means, the decoherence in the case of lowemature is due to the dissipation
factor. Fig. 4., Fig.5. and Fig.6 show the higmperature regime where the the decoherence
becomes bigger and bigger. We observe that themnincreases with the temperature for
small values of the damped facter We should notice that, it can be decoherenceowith
dissipation in high temperature. However the presef dissipation within a system induces
its decoherence. Meanwhile if the dissipation iases in a system, the decoherence will also
increase. Physically, it indicates that the digsgmais the main factor responsible of the

decoherence.
IV. Conclusion

In this paper, we have studied the thermodynanipgties of a damped harmonic
oscillator using the Caldirola-Kanai model basedteidea of Bateman. The Feynman path
method is exploiting to investigate the time demerdShannon entropy for specific double

Gaussian wave functions. We have derived the clalsaiction, the probability distribution
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and the entanglement entropy. Those quantitiesafieeted by the damped coefficient, the
frequency of the system and the temperature. We ldpgerved that the envelope of the
Shannon entropy curves with time indicated thatsystem is losing information with time.

Simply, the Shannon entropy show universal scatlivag is reminiscent of thermodynamic

quantities as i

We can use the damped factor and the temperatuaenptgers for two purposes : to
favor the decoherence or favor the coherence ofysem. We have noted that even if the
temperature and dissipation have cumulative effeitts main control parameter is the
damped factor. Our system can be very interestomgehgineering purposes. To code or
decode information, we have to take into considemathe damped coefficient, the frequency
of oscillation, and the temperature. For future estigations, we can also take into
consideration the physical domain of the dampetbfaas well as the distance separated the

two consecutive wave functions.
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271 Figure Captions

272 Fig .1.: Shannon entrop(t) as function of time for the pure state : harmowscillator

273 without dissipation. This coherent state remairengior nonzero temperature.

274  Fig .2.: Temporal evolution of th8hannon entropys(t) for the parametersy=0.002 ;

275 Q=17;d=57y =0.002 ;2=1.7; d=5 andT =0.000000. This curve
276 presents the growth of the entropy with time trawlgiche decoherence of the
277 system in the presence of damping and temperature.

278  Fig .3.: Shannon entropys(t) as function of time for the parameters of figurewh
279 y=0.02. We note that the system’s decoherence increagbstime and the

280 damped factoty.

281 Fig. 4.: Time evolution of thentropy S(t) for the parameterg/=0.0007; Q=1; d=5 and

282 T =0.00000.. This figure also indicates the evolution of the entropy with the

283 temperature.

284  Fig. 5.: Shannon entrop®(t) as function of time for th@arametersof figure 4 for the

285 temperatureT =0.00000:. This plot shows that the decoherence of the syste

286 grows both with time and the temperature.

287  Fig .6.: Behavior of th&hannon entropys( t) with time and the temperature in the presence
288 of small dissipation for the parametens=0.00001 ; Q=1; d=5 and
289 T =0.0000z.
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