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Abstract 6 

The time Dependence of probability and Shannon entropy of the specific damped 7 

harmonic oscillator systems is studied by using a prototypical Schrodinger cat state through 8 

the Feynman path method. By averaging the probability distribution over the thermal 9 

distribution of velocities, we show that, the temperature and the damped coefficient or 10 

dissipation as well as the distance separating two consecutive wave functions influence the 11 

coherence of the system. 12 
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I. Introduction 17 

Quantum decoherence, where coherence in a quantum system is reduced due to interaction 18 

with its environment is a fundamental and complicated concept of physics. Decoherence 19 

refers to the destruction of a quantum interference pattern and is relevant to the many 20 

experiments that depend on achieving and maintaining entangled states. Examples of such 21 

efforts are in the areas of quantum teleportation
1 

quantum information and computation
2,3

, 22 

entangled states
4
, Schrödinger cats

5
, and the quantum-classical interface

6
. For an overview of 23 

many of the interesting experiments involving decoherence, we refer to
4,7-11

. 24 

 Understanding this phenomenon in dissipative harmonic oscillators is of a great interested. It 25 

is of great physical importance and has found many applications especially in quantum optics. 26 
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For example, it plays a central role in the quantum theory of lasers and masers
12-14

. 27 

Moreover, nowadays, many of research is dedicated to understand decoherence in harmonic 28 

oscillator
15,16

. Isar et al
17 

determine the degree of quantum decoherence of a harmonic 29 

oscillator interacting with a thermal bath using Lindblad theory
18,19

. Other authors
20

use a 30 

semi-classical approach to examine decoherence in an anharmonic oscillator coupled to a 31 

thermal harmonic bath. Darius et al
21

 exploit the Feynman path integral to study the memory 32 

in a non-locally damped oscillator. Moreover, Ozgur et al
16

 determine the time dependence of 33 

Leipnik’s entropy in the damped harmonic oscillator via path integral techniques. Sang Pyo 34 

Kim et al
22

 study decoherence in quantum damped oscillators, G.W. Ford et al
23

 show that 35 

decoherence depend on the temperature through the attenuation coefficient.  36 

The aim of this paper is to study the cumulative effect of temperature and dissipation on the 37 

coherence of a damped harmonic oscillator of a particle in thermal equilibrium by using the 38 

Caldirola-Kanai model based on the idea of Bateman
24

. 39 

This model is known as a popular model used to describe dissipative systems. Here, we focus 40 

our attention on the study of decoherence by evaluating quantum Shannon entropy. In the 41 

literature for both open and closed quantum systems, different information-theoretical entropy 42 

measures have been discussed
25,27

. In contrast, quantum Shannon entropy
28,29

  can also be 43 

used to characterize the loss of information related to evolving pure quantum states
30

. 44 

This paper is organized as follows. In Sec. II, we present the mathematical tools based 45 

on the path integral formalism. We discuss the case of a damped harmonic oscillator and build 46 

the associated propagator. In Sec. III, we investigate the effects of the damped coefficient and 47 

the temperature on the coherence of the system through the Shannon entropy behavior. 48 

Discussion and concluding remarks are given in the last section. 49 

 50 
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II. Model description 51 

We start by presenting the model which consists of a particle of mass m , labeled by 52 

the position variable q  and the momentum p . Then follows the description of the used 53 

mathematical tools which is the path integral formalism introduced by Feynman
31

.  54 

These tools suggest that the transformation function called propagator is analogue to 55 

( )cl
i Sexp
h

 in which clS  stands for the action, solution of Hamilton-Jacobi equation. On the 56 

other way, the transition amplitude of the particle (of mass m ) from the position aq  at time at  57 

to the position bq  at time bt , known as the propagator, represents the solution of the 58 

Schrodinger equation. This lagrangian formulation generalizes the theory of relativity (time 59 

and space). Nowadays, several problems of physics are solved via these techniques
16,32

 60 

Next, we consider the Bateman Hamiltonian
24

 defined as : 61 

[ ] xxpxpxppH
2Ω+−−= γ        (1) 62 

where p  and x  are the mirror variables corresponding to the coordinate x  and the 63 

momentum p . The quantities γ  and Ω  are respectively the damped coefficient and the 64 

system frequency. The associated lagrangian is given by 65 

( )L xx xx xx xxγ= − + −& &&        (2) 66 

Using Euler-Lagrange equation, we derive the following two motion equations: [33] 67 







=Ω++

=Ω++

0xx x

0xx x

2

2

&&&

&&&

γ

γ
        (3) 68 

 Bateman’s dual Hamiltonian describes classical mechanics correctly, but this model 69 

faces some difficulties. It violates Heisenberg’s principle for 0≠γ . Therefore, to solve 70 
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quantum mechanical problem, Caldirola-Kanai
34

 build a theory based on the idea of Bateman 71 

dissipative system by considering the standard Hamiltonian of harmonic oscillator with time 72 

dependent mass given by
34 ( )t2expm)t(m 0 γ= . Hence, the Hamiltonian and the lagrangian of 73 

the system become respectively: 74 

( ) 





−=−=

+=

222

22
2

xm
2

1
xm

2

1
 t2expHxpL

x )t(m
2

1

)t(m2

p
H

ωγ

ω

&&

     (4) 75 

From the lagrangian theory and exploiting Eq.(4), the equation of motion takes the form : 76 

0xx 2x
2 =Ω++ &&& γ         (5) 77 

 The classical solution of Eq.(5) is given by 78 

( ) ( )taexpCtaexpC)t(x 2211 +=       (6) 79 

wherein 1a  and 2a  are complex quantities defined as : Ω−−= ia1 γ , 2a iγ= − + Ω  with 80 

22 γω −=Ω . The integration constants 1C  and 2C  are evaluated when the particle moves 81 

from the position ax  at the time at  to the position bx  at time bt . The determination of the 82 

propagator is convenient for founding quantum mechanical solution for this Hamiltonian. 83 

Therefore, the classical action  clS  is defined as : 84 

( ) ( ) ( )
b

a

t

2 2 2
cl a a b b

t

m
S x ,t ; x ,t L x,x,t dt x x dt

2
ω= = −∫ ∫& &  85 

whose computation for the current study case leads to : 86 

( ){ } ( ){ } ( ){ }bababa

bbaacl
tt

m

tttt

m
txtxS

+−
+

−Ω+−

Ω
=

γ

µγ

γ

µ

2exp

 

sin2exp
),;,( 2010   (7)     87 

In deriving relation (7), we set: 88 
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( ) ( )[ ] ( )[ ] ( ){ }bababab
2
aa

2
b1 ttcosttexpxx2t 2expxt 2expx −Ω++−−−+−= γγγµ  89 

( ) ( )b
2
aa

2
b2 t 2expxt 2expx γγµ −−−=      90 

From the classical action, the expression of the corresponding propagator of the damped 91 

harmonic oscillator is defined below. 92 

( )
( ){ } ( ){ }


















−Ω+

Ω
=ℵ ),;,(exp

sin2exp  2
,;,

21

0
bbaacl

abba

bbaa txtxS
i

tttti

m
txtx

hh γπ
 (8) 93 

This result is identical to the one establish in
32

 using the propagator method developed by Um 94 

et al
35

. It also appears from Eq.(8) that the propagator ( )bbaa txtx ,;,ℵ  depends on the damped 95 

coefficient γ  that links the system with the environment in which it evolves. 96 

Hereafter, we intend to use the propagator (8) and derive some characteristic parameters (such 97 

as the distribution probability and the Shannon entropy) of the system subjected to a specific 98 

double Gaussian wave functions. These investigations aim to measure the impact of the 99 

environment (temperature and dissipation) on the behavior of the system when the latter 100 

progresses. 101 

III. System properties under specific double Gaussian case 102 

One of the specificity of this section deals with the choice of a double Gaussian wave function 103 

( )( )b'' x ,0φ  that includes the thermal distribution of velocities. Here, our starting point is the 104 

prototypical Schrödinger cat state i.e., an initial state corresponding to two separated Gaussian 105 

wave packets
22

. The motivation of this choice of wave packet is that it describes accurately 106 

the interference pattern arising in Young’s two slits experiments
36 

or that arising from the 107 

quantum measurement involving a pair of ”Gaussian slits”
37

 : 108 
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( )
( )

1 4
2 2 2

0 0
b 2 2

2

2

2 im v im v1 d 1 d
'' x ,0 exp x x exp x x

2 24 4d
2 1 exp

8

πσ
φ

σ σ

σ

−
    − −    

= − + + + +       
             −  

+    
  

h h
  (9) 109 

in which σ  is the width of each packet, d  represents the distance between the top of the two 110 

successive waves in the double Gaussian state dσ << , and ν  is the particle velocity. To 111 

appreciate the impact of this wave packet on the thermodynamic parameters of the system, we 112 

seek separately its distribution probability and Shannon entropy. 113 

A. Distribution probability  114 

We determine the distribution probability for a double Gaussian wave packet to find 115 

the particle at time t  at coordinate x . This probability can be written in the Feynman Hibbs 116 

form as
30

: 117 

( ) ( ) ( ) ( ) ( ) ( )
2

b b a b a b b bP'' x,t '' x,t dx' dx * x ,x' ,t x ,x ,t x' ,0 * x ,0ϕ ϕ ϕ= = ℵ ℵ∫ ∫   (10) 118 

The distribution probability P'' is obtained by substituting expression (9) into Eq.(10). The 119 

computation yields the upcoming quantity: 120 

 ( ) ( )11 12

2
u u

11 13 11 14
2 4

16  A
P'' e cosh u u cosh u u

1 16a

π σ

σ
 = + 

−
     (11) 121 

 122 

wherein 
2

11 2 4
u

1 16a σ

σ
=

−
 ; 

2 22
2 0 0

12 4 2

2m v 4im vdd
u 2b

8σ
= + − +

hh
  ;  0

13

4iam vb
u 4abd= +

h
123 

  0
14 2 2

im vbbd
u

σ σ
= +

h
 and    
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 124 

One could note that the distribution probability depends not only on time, position and system 125 

frequency, but also on the distance separating the two successive peaks of the double 126 
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Gaussian function. In the limit case d 0= , we recover the probability of a single Gaussian 127 

wave function
14

.  128 

We consider now the case of a particle in the thermal equilibrium. The principles of statistical 129 

mechanics tell us that, we obtain the corresponding probability distribution by averaging 130 

distribution Eq.(11) over the thermal distribution of velocities
22

 : 131 

 ( ) ( )
2

0 0
T

B B

m m v
P x,t  dv exp P'' x,t

2 K T 2K Tπ

+∞

−∞

 
= −  

 
∫       (12a) 132 

whose calculation in our case leads to 133 

( )
( )

( ) ( ) ( ) ( )

3

2 2
0

T 11 12 13 141

2 2
2 40 B

02

32 A m exp A' C
P x,t cosh v exp v cosh exp

4 m K T
m 1 16a

π σ
ν ν

π
π σ

 = − + − 
 

+ −  
 h

     

(12b) 134 

in which 
2 2 2

B 0
11 2

B 0

16K T m b
v 4A' abd

4K Tm A'

σ
= −

+ h
 ; 

2 2 2
B 0 B 0

12 2
B 0

8K Tm b 8K T m a
v

4K Tm A'

σ+
=

+ h
 ;  135 

 
( )

B 0
13 2 2 2

B 0

4K Tm bdA' bd
v

4K Tm A'σ σ
= −

+ h

; 
( )

2 2 2 2

B 0 B 0
14 4 2

B 0

8K Tm b 8K T m b
v

4K Tm A'

σ

σ

+
=

+ h

 ;
2

2 4

σ
A'

1 16a σ
=

−  
136 

 
137 

  and 

 

2
2

4

d
C 2b

8σ
= +  138 

Furthermore, we intend to deeply measure the loss of information of the system by 139 

investigating the influence of the environment on the Shannon entropy. 140 

B. Shannon entropy 141 

It is well known that the major way to appreciate the purity of a system is to study the 142 

evolution of its entropy. When this quantity tends to zero, we obtain a pure state. Decoherence 143 

stands for the loose of information in the system. This occurs when the exchange between the 144 

environment and the system affects the evolution of the concerned system. In this subsection, 145 
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we investigate the Shannon entropy relates to the double Gaussian wave function for a 146 

specific damped harmonic oscillator that interacts with the environment. Owing to the 147 

definition, this entropy is Mathematically defined by Boltzmann- Shannon as : 148 

 ( ) T TS t K P ln P dx
+∞

−∞

= − ∫      (14) 149 

in which the probability  TP   is defined by Eq.(12b). Hereafter, we explore the influence of 150 

each system characteristics on the evolution of this entropy. Fig.1. presents the behavior of 151 

the entropy ( )S t  for the pure state.We observe that even with temperature,we obtain a 152 

coherent state. From Fig .2. and Fig.3. , we observe the increasing of the entropy with the 153 

damped factor γ . That means, the decoherence in the case of low temperature is due to the 154 

dissipation factor. Fig. 4.,  Fig.5. and Fig.6 show the high temperature regime where the the 155 

dissipation becomes bigger and bigger. We observe that the entropy increases with the 156 

temperature for small values of the damped factor γ . Physically, it indicates that the 157 

temperature is the main factor responsible of the decoherence.  158 

IV. Conclusion 159 

In this paper, we have studied the thermodynamic properties of a damped harmonic 160 

oscillator using the Caldirola-Kanaï model based on the idea of Bateman. The Feynman path 161 

method is exploiting to investigate the time dependent Shannon entropy for specific double 162 

Gaussian wave functions. We have derived the classical action, the probability distribution 163 

and the entanglement entropy. Those quantities are affected by the damped coefficient, the 164 

frequency of the system and the temperature. We have observed that the envelope of the 165 

Shannon entropy curves with time indicated that the system is losing information with time.  166 

Simply, the Shannon entropy show universal scaling that is reminiscent of thermodynamic 167 

quantities as in
38,39

. 168 
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We can use the damped factor and the temperature parameters for two purposes : to 169 

favor the decoherence or favor the coherence of the system. We have noted that even if the 170 

temperature and dissipation have cumulative effects, the main control parameter is the 171 

damped factor. Our system can be very interesting for engineering purposes. To code or 172 

decode information, we have to take into consideration the damped coefficient, the frequency 173 

of oscillation, and the temperature. For future investigations, we can also take into 174 

consideration the physical domain of the damped factor as well as the distance separated the 175 

two consecutive wave functions.  176 

 177 

 178 

179 
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Figure Captions 257 

Fig .1.: Shannon entropy ( )S t  as function of time for the pure state: harmonic oscillator  258 

without dissipation  259 

Fig .2.: Shannon entropy ( )S t  as function of time for γ   = 0.002 ; Ω = 1.7 ;  d = 5 ; and         260 

T = 0.0000001  261 

Fig .3.: Shannon entropy  ( )S t  as function of time for γ  =0.02;  Ω  =1.7: d=5    and          262 

T=0.0000001 263 

Fig. 4.: Shannon entropy ( )S t  as function of time for  γ  =0.0007 ; Ω = 1 ;  d = 5 ;  and          264 

T = 0.000001  265 

Fig. 5.: Shannon entropy ( )S t  as function of time for  γ  = 0.0007 ;  Ω  = 1 ;  d = 5 ; and        266 

T = 0.000003  267 

Fig .6.: Shannon entropy ( )S t  as function of time for  γ  = 0.00001 ;  Ω  = 1 ; d = 5 ; and       268 

T = 0.00002  269 
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