
 

 

Modified Lee-Low-Pines Polaron in Spherical Quantum Dot under 

an Electric Field 

Part1: Strong Coupling 

Abstract 

In this paper, we investigated the influence of electric field on the ground state energy of polaron 

in spherical semiconductor quantum dot (QD) using modified Lee Low Pines (LLP) method. The 

numerical results show the increase of the ground state energy with the increase of the electric 

field and the confinement lengths. The modulation of the electric and the confinement lengths 

lead to the control of the decoherence of the system. 
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1- Introduction 

Due to the recent progress achieved in nanotechnology, it has become possible to fabricate low 

dimensional semiconductor structures. Special interest is being devoted to the quasi zero 

dimensional structures, usually referred to as quantum dots (QD) [1-9]. In such nanometer QD's, 

some novel physical phenomena and potential electronic device applications have generated a 

great deal of interest. They may give theoretical physicists great challenges to develop the theory 

based on the quantum mechanical regime. Recently, much effort [10-12] has been focused on 

exploring the polaron effect of QD's. Roussignol et al. [10] have shown experimentally and 

explained theoretically that the phonon broadening is very significant in very small 

semiconductor QD's. Some have also observed [11-12] that the polaron effect is more important 

if the dot sizes are reduced to a few nanometers. More recently, the related problem of an optical 

polaron bound to a Coulomb impurity in a QD has also been considered in the presence of a 

magnetic field. 

The theoretical investigation of the polaron properties was performed by using the standard 

perturbation techniques [13], by the variational Lee-Low-Pines method [14-15] and by modified 

LLP approach [16-17], by Feynman path integral method [18], by numerical diagonalization 

[19], or by Green function methods [20]. The experimental data [21] show, in particular, a large 

splitting width near the one-phonon and two-phonon resonance in a InAs/GaAs QD. This was 

accounted for by the theoretical model via a numerical diagonalization of the Fröhlich interaction 

[19]. The required value of the Fröhlich constant was much larger (by a factor of two [19]), than 

measured in bulk. In [18] using the Feynman path integral method, the authors observed that the 

quadratic dependence of the magnetopolaron energy is modulated by a logarithmic function and 

strongly depend on the Fröhlich electron–phonon coupling constant structure and cyclotron 

radius. Furthermore the effective electron-phonon coupling is enhanced by high confinement or 

high magnetic field. In [21] the polaron energy in QD was calculated using a LLP approach and 

it was found that the polaronic effect is more pronounced for small dot sizes. In [16], using a 

modified LLP approach, the number of phonons around the electron, and the size of the polaron 

for the ground state, and for the first two excited states is calculated via the adiabatic approach. 

 It is important to note that, all works done are not used the modified LLP method to solve the 

problem of polaron subjected to an electric field. It is also instructive from the works presented 

above, to recall that polarons are often classified according to the Fröhlich electron-phonon 

coupling constant. Because it recovers simultaneously all couplings types characterizing Fröhlich 

electron-phonon coupling, the Feynman path integral method [18] has been seen as one of the 

best. The main feature of the method presented here is the modification of the LLP approach [16] 

by introducing a new parameter 
1 2b and b in the traditional LLP approach, which permits us to 
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obtain an “all coupling” polaron theory. Here the coupling is weak if 1 2 1b b , strong 

coupling if 1 2 0b b  and intermediate  between these ranges.  

In this paper, we study the influence of the electric field on the polaron ground state 

energy, using the modified LLP method. this paper has the following structure: In section 2, we 

describe the Hamiltonian of the system while in section 3 the modified LLP method is presented 

and analytical results of the ground state energy, polaron effective mass are obtained. In section 

4, we present results and discussions and finally we end with section 5 where concluding 

remarks are presented. 

 

2- Hamiltonian of system  

The electron under consideration is moving in a polar crystal with three dimensional anisotropic 

harmonic potential, and interacting with the bulk LO phonons, under the influence of an electric 

field along the r  direction. The Hamiltonian of the electron-phonon interaction system can be 

written as 

. † .iQ r iQ r
e ph Q Q Q

Q

V a e a e                                                        (2.1) 

where 
e

 represents the electronic Hamiltonian and is given by 

2
2 2 2 2 *
1 2

1 1

2 2 2e

p
m m z

m
w r w re                                                        (2.2) 

where p  is the momentum, 
1 2andw w  measure the confinement in the r  direction and z  

direction respectively.  

ph
is the phonon Hamiltonian defined as 

†
ph Q Q

Q

a a                                                                                       (2.3) 

where †
Q Qa a  are the creation(annihilation) operators for  LO phonons of wave vector 

, zQ q q , and 
QV and a  is the amplitude of the electron-phonon interaction and the coupling 

constant respectively  given by  
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3-  Modified LLP method and analytical results of ground state energy 

and polaron mass 

 

Adopting the mixed-coupling approximation of [23], we propose a modification to the LLP-

transformation by inserting two variational parameters 
1 2b andb .  

Our new unitary transformation is now   

1 1 2exp ( ). ( )zi P b P zbr r rr                                                        (3.1) 

Where 

†
Q Q

Q

P p a a                                                                                             (3.2) 

is the total momentum of the polaron and 

†
Q Q

Q

Qa a                                                                                                (3.3) 

is the momentum of the phonon.  

The two new variational parameters are supposed to trace the problem from the strong coupling 

case to the weak coupling limit and to interpolate between all possible geometries.  

The second transformation has the form [23] 

†
2 ( )Q QQ

Q

u a a                                                                                                      (3.4) 

where 
Qu  is a variational function. This transformation is called the displaced oscillator which is 

related to the phonon operators via the phonon wave vector through the relation 
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2 0ph phUj                                                                                                               (3.5) 

where 0ph  is the phonon vacuum state since at low temperature there will be no effective 

phonons. 

Applying the transformation in (3.1) on the Hamiltonian (2.1), we obtained 

1 2 1 2

(1) 1
1 1

2
2 2 2 2 * 2 2
1 2 1

2 2 †
1 2 2

( . ) . † ( . ) .

1 1
( )

2 2 2

2 ( ) ( ) 2 ( )

z z

z z z z z QQ
Q

i b q b q z iQ r i b q b q z iQ r
Q Q Q

Q

p
m m z b P

m

b p P b P b p P a a

V a e e a e e

r r

r r

r r

w r w re

                 (3.6) 

Applying the transformation (3.4) on (3.6), we obtained 

(2) 1 (1)
2 2

2
2 2 2 2 * 2 2
1 2 1

2 (0) 2 (1) (0) 2 (1) (1)
1 1 1

2 (0) (1) 2 (0) 2 (0) 2 2 2 (0) 2
1 1 1 2 2

(1
2

1 1
( )

2 2 2

( ) 2 ( ) ( 2 )

2 ( ) 2 2 ( ) ( )

2 (

z z z

z z z z

p
m m z b P

m

b b p P b

b P b b P b P b

b p P

r r

r r r r r r r r r

r r r r r r r

w r w re

1 2 1 2

) (0) 2 (1) (1) 2 (0) (1)
2 2

2 (0) 2 (0) 2 † †
2 2

( . ) . ( . ) . †

) ( 2 ) 2 ( )

2 2 ( )

( ) ( )z z

z z z z z z

z z z z Q Q Q QQ Q
Q Q Q

i b q b q z iQ r i b q b q z iQ r
Q Q Q Q QQ

Q Q

b b P

b b P u a a u a a

V e e a u V e e a ur r

 

 

In Fröhlich units i.e. 2 1LOm w , this expression take the form 
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(2) 1 (1)
2 2

2 2 2 2 2 * 2 2
1 2 1

2 (0) 2 (1) (0) 2 (1) (1)
1 1 1

2 (0) (1) 2 (0) 2 (0) 2 2 2 (0) 2
1 1 1 2 2

(1)
2

1 1
( )

4 4

( ) 2 ( ) ( 2 )

2 ( ) 2 2 ( ) ( )

2 (

z z z

z z z z z

p z b P

b b p P b

b P b b P b P b

b p P

r r

r r r r r r r r r

r r r r r r r

w r w re

1 2 1 2

(0) 2 (1) (1) 2 (0) (1)
2 2

2 (0) 2 (0) 2 † †
2 2

( . ) . ( . ) . †

) ( 2 ) 2 ( )

2 2 ( )

( ) ( )z z

z z z z z

z z z z Q Q Q QQ Q
Q Q Q

i b q b q z iQ r i b q b q z iQ r
Q Q Q Q QQ

Q Q

b b P

b b P u a a u a a

V e e a u V e e a ur r

  (3.7) 

where  

(1) †( )Q Q Q
Q

Qu a a                                                                                           (3.8) 

and 

0 2
Q

Q

Qu                                                                                                          (3.9) 

Applying (3.5) on (3.7), we obtained the ground state energy  

2 2 2 2 2 * 2 2 2 (0) 2 (0) 2
1 2 1 1 1

2 2 2 2 2 (1) (0)
1 2 1

1 2 1 2

1 1
0 0 2 ( )

4 4

(1 ) 0 0 2 ( ) 0 0

0 (exp ( . ) exp( . ) exp ( . ) exp( . )) 0

g e e

Q z e ph ph e
Q

Q Q e z z e
Q

p z b P b P b

u b q b q b p P

V u i b q b q z iQ r i b q b q z iQ r

r r r r

r r r r r

w r w r

r r

e

2 2 2 (0) 2 (0) 2 (1) (0)
2 2 2 22 ( ) 0 0 2 ( ) 0 0z z z z e ph z z z z z ph eb P b P b b p P

 (3.10) 

To evaluate this expression, we express the coordinates and momenta of the electron in terms of 

its creation(annihilation) operators †( )s s  as 

†
1

†
1

†
2

†
2

( )

( )

( )

( )

z z z

z z

p

x i

p

z i

m m m

m m m

l s s

l s s

l s s

l s s
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where the index m  refers to the x and y  coordinates, and 
1 2andl l  are another variational 

parameters. Performing the required calculations we get for the ground state energy 

2 2 *
2 2 2 (0) 2 (0) 21 2 1 2
1 1 1

1 2 1

2 2 2 2 2 2 2 2 (0) 2 (0) 2
1 2 2 2 2

2 2 ( )
2 4 2 4

(1 ) 2 ( ) 2

g

Q z z z z z Q Q Q
Q Q

b P b P b

u b q b q b P b P b V u S

r r r r
l l w w

l l l
e

                     (3.11) 

with 

1 20 (exp ( . ) exp( . )) 0Q e z eS i b q b q z iQ rr                                                  (3.12) 

this expression can be written as 

2 2
2 2

1 2
1 2

exp (1 ) exp (1 )
2 2

z
Q

q q
S b b

l l
                                                        (3.13) 

Minimizing (3.11) with respect to the variational function 
Qu we obtain 

2 2 2 2 2 (0) 2 (0)
1 2 1 21 2 ( ) 2 ( )z z z z Q Q Qb q b q b q P b q P u V Sr r                      (3.14) 

Solving (3.14) with respect to 
Qu , with the assumption that (0)  differ from the total 

momentum by a scalar factor (0) Ph h , we get 

2 2 2 2 2 2
1 2 1 21 2 (1 ) 2 (1 )

Q Q
Q

z z z

V S
u

b q b q b qP b q Pr h h
                                   (3.15) 

Substituting (3.15) into (3.11) we obtain 

2 2 *
2 2 2 2 2 21 2 1 2
1 2

1 2 1

2 2 2 2 2 2
1 2

22 2 2 2 2 2
1 2 1 2

2 2

2 2 2 2 2 2
1 2 1 2

2
(1 ) (1 )

2 2 2 4

(1 )

1 2 (1 ) 2 (1 )

2
1 2 (1 ) 2 (1 )

g z

Q Q z

Q z z z

Q Q

Q z z z

b P b P

V S b q b q

b q b q b qP b q P

V S

b q b q b qP b q P

r

r

r

l l w w r
h h

l l l

h h

h h

e

                           (3.16) 
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But ( )g P  may be well represented by the first two terms of a power series expansion in 2P  as 

[23] 

2
4( ) (0) 0( )

2g g
P

P Pb                                                              (3.17) 

with 1b  gives the effective mass of the polaron. 

Comparing (3.16) and (3.17) we obtain for the ground state energy 

2 22 2 *
1 2 1 2

2 2 2 2
1 2 1 1 2

2

2 4 2 4 1

Q Q
g

Q z

V S

b q b q

l l w w

l l l

e                                         (3.18) 

and the mass of polaron is given as 

2 2 2 2
1 2

1 1

2 (1 ) 2 (1 )
Pm

b bh h
                                                              (3.19) 

Substituting (3.13) in the ground state energy (3.18), we obtained  

2 2
2 2 2

1 22 2 *
1 21 2 1 2

2 2 2 2
1 2 1 1 2

exp (1 ) exp (1 )
2

2 4 2 4 1

z
Q

g
Q z

q q
V b b

b q b q

l ll l w w
l l l

e                (3.20) 

re-arranging this expression, we finally obtained the ground state energy  

2 2
2 2 2

1 2*
1 21 2

4 4 2 2 2 2
11 1 2 2 1 2

exp (1 ) exp (1 )
1 1 2

2 4 2 4 1

z
Q

g
Q z

q q
V b b

l l b q b q

l ll l
ll l
e        (3.21) 

where 2 2
1 2

1 2

l and l
m mw w

are the confinement length in x y plane and z  direction 

respectively 

 

4- Numerical results and discussions 

For the numerical results, we consider the strong coupling case, i.e. 
1 2 0b b . In this part, 

we show the numerical results of the ground state energy 
0ε  versus the electric field strength

, the electron-phonon coupling strength a , and the confinement lengths 
1 2l and l . 
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Figure 1: Ground state energy 
0e as a function of electric field   with 

 (a)
 1 2 26.5, 0.15, 0.35 0.75l l and la

 
 

 (b)
1 2 26.5, 0.25, 0.35 0.75l l and la

 

 

 

Figure 2: Ground state energy 
0e as a function of coupling constant  a  with  

(a)
 1 2 20.25, 5.0, 0.25 0.85l l and l  

(b) 2 1 10.25, 0.0 0.3 0.35l l and l  

 
(c) 1 20.25, 0.5 0.5 3.5l l and  
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Figure 3: Ground state energy 
0e as a function of coupling constant  a  with  

(a)
 1 2 25.0, 0.45, 0.15 0.85l l and l

 
(b)

 2 1 110.0, 0.45 0.4 0.45l and l and l
 

 

In figure 1, we have plotted the ground state energy 0e  of polaron as a function of electric field 

for 
1 2 26.5, 0.15, 0.35 0.75l l and la  (figure (1a)) and 

1 2 26.5, 0.25, 0.35 0.75l l and la  (figure (1b)). The ground state energy is the increase 

function of electric field. This is because the electric field leads to the electron energy increment 

and makes the electrons interact with more phonons. In this way, the states’ energies are 

increased. From another point of view, since the presence of the electric field is equivalent to 

introduce another new confinement to the electron, which leads to greater the electron wave-

function overlapping with each other, the electron-phonon interaction will be enhanced, resulting 

in the increase of states’ energies with the increase of electric field. This indicates a new way to 

control the QD energies via the electric field. In fact, the electric field plays an important role in 

low-dimensional materials. For example, both the quantum decoherence process and the 

electron’s probability density are affected by it. Thus, here we find a suitable two-state system by 

adjusting the electric field, which is crucial in constructing a qubit [24-25].  

In Fig. 2 we plot the ground state energy 
0e varying with the electron-phonon coupling strength 

a  for. 
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1 2 20.25, 5.0, 0.25 0.85l l and l  (fig. 2a)
 
 

2 1 10.25, 0.0, 0.3 0.35l l and l  (fig. 2b) 

1 20.25, 0.5, 0.5 3.5l l and (fig. 2c) 

From the three figures we can see that the ground state energy 
0e  is a decreasing function of the 

electron-phonon coupling strength. From here, we also see that the ground state is the increasing 

function of the LO confinement length (fig.2a) and the electric field strength (fig.2c); it’s the 

decreasing function of the transverse confinement length (fig. 2b). With the increase of the 

harmonic potential (
1 2andw w ), the energy of the electron and the interaction between the 

electron and the phonons, which take phonons as the medium, are enhanced because of the 

smaller particle motion range. The presence of the parabolic potential is equivalent to introduce 

another confinement on the electron, which leads to greater electron wave function overlapping 

with each other, the electron-phonon interactions will be enhanced. 

 All these figures show the decreasing behavior of the ground state energy as a function of 

electron-phonon coupling constant a .This is because the larger the electron-phonon coupling 

strength is, the stronger the electron-phonon interaction is. Therefore, it leads to the increment of 

the electron’s energy and makes the electron interact with more phonons. It is known that the 

electron-phonon interaction strength is different in different crystal materials. Thus the state 

energies and the transition frequency of the AQDs can be tuned by changing it  [24,26]. 

In Fig. 3 we plot the ground state energy 
0e varying with the electron-phonon coupling strength 

a  for. 

1 2 25.0, 0.45, 0.15 0.85l l and l  (Fig. 3a)
  

2 1 110.0, 0.45 0.4 0.45l and l and l  (Fig. 3b) 

 

From here we it’s obvious that, the ground state energy increase with the electron-phonon 

coupling constant. This is because the larger the electron-phonon coupling strength is, the 

stronger the electron-phonon interaction is. Therefore, it leads to the increment of the electron’s 
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energy and makes the electron interact with more phonons. The presence of the electric field p is 

equivalent to introduce another confinement on the electron, which leads to greater electron wave 

function overlapping with each other, the electron-phonon interactions will be enhanced 

These results are in agreement with the results of Kervan et al. [27], Ren et al.[28], Kandemir 

[29] and [30] obtained respectively by using variational, Feynman-Haken path-integral, 

squeezed-state variational and linear combination operator methods. The transverse and 

longitudinal lengths of the AQD equal to the transverse and longitudinal confining lengths of the 

electrons, which show the property of strong confining strength in the transverse and longitudinal 

directions.  

 

5- Conclusion 

In conclusion, with the use of modified LLP method, we have study the energy levels of strong 

polaron in spherical quantum dot (QD) a strong coupling polaron in an anisotropic QD subjected 

to the electric field. It is found that the ground state energy of the polaron is the increase function 

of the electric field; this is because the presence of electric field make phonons interact more 

with the electron. It’s also see that, with the good control of the confinement length and the 

electron coupling constant we can control the decoherence of the system. The enhancement of 

the coupling strength is very important in the construction of quantum computers since it leads to 

the conservation of its internal properties such as its superposition states against the influence of 

its environment, which can induce the construction of coherent states and cause coherence 

quenching. The part two of this work is dedicating to the weak and intermediate coupling. 
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