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Controllable rogue waves

in the generalized nonlinear Schrédinger equations

Abstract: we obtain the rogue waves with a controllable aefinethe generalized

nonlinear Schrédinger equation by using a diredhoe The position of these solutions can
be controlled by varying different center parametéVe study the effects of different
parameters on rogue waves and hence find thatahknearity parameter is responsible for
the width of rogue waves. With the increase of balinearity parameter, the rogue wave
becomes wider. What is more, the negative nonlityeparameter can yield some singular

rogue waves.

Keywords: Generalized nonlinear Schrédinger equation; Regaxee; Singular rogue wave

1. Introduction

Rogue waves, are called freak waves, monsteresyakiller waves, giant waves or
extreme waves, Rogue waves are spontaneous nanliaeas with amplitudes significantly
larger (two or more times higher) than the surrangdaverage wave crests [1,2], What is
more, they appear from nowhere and disappear wittnace.

It is a very meaningful work to search for rogmaves, which has been found in many
different systems and has many important applinatio some fields since they can signal
fascinating stories [3,4].

In this paper, we study the generalized nonlineldiccSchrodinger equation

ia_w+Aaz_¢/

ax Atk =0, @

where x is the propagation distance and t is thestrerse variable. When A=0, equation (1)

becomes the famous nonlinear cubic Schrédingertegqu&ome rogue wave solutions of the

nonlinear cubic Schrodinger equation have beendduyntaking limit of Akhmediev breather
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solutions[5,6] and Darboux transformation.[7,8]. Bysimilarity transformatiomogue wave
solutions to the generalized nonlinear Schrodirggration with variable coefficients are obtained.[9

Using the (Expfo (& )) ) -Expansion method, some new exact traveling wsolations of the cubic
nonlinear Schrodinger equation are given [ Idje center of these solutions is located at alfixe
point (0, 0) on (x, t) plane. Basing on a simplsuasption, WANG and He found larger
universality and applicability of rogue waves wighcontrollable center [11]. The above
method does not consider the effect of parameterthe waveform, which is our interest.
More researches on rogue waves can be founded.iflRe21].
In this paper, our interests focus on two aspects:

(1) We want to determine rogue wave solutions of @¢ with an arbitrary coefficient of
nonlinearity;
(2) We want to know the role of the nonlinearityefficient on the formation of rogue waves.

The organization of this paper is as follows. Irct®e 2, we obtain some special rogue
waves with a controllable center by a direct metHadSection 3, we analyze the different
controllability by numerical simulation. Conclusiowill be given. In appendix, the

computational process for the second-order solusigriven.

2. Some special rogue waves

By the similar method in Ref. [9], we assume rogaees as follows

(. PLFiG |
L= 1+———= e 2
ool :
with
p(xt) =a,+ax+ayt, (3)
q (x.t) =b,+hx+bft, (4)
h(xt)=c(x-a)’ +c,(t-8)" +c, (5)

Here a;, b(i =0,1,2),¢,(] =1,2,3),a, B arereal parameters.

Substituting the functiony, into Eq. (1) and setting different coefficient tsgo be zero.

We obtain the following possible system of nonlimadgebraic equations with the aid of
Maple.
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-30,¢° =0,
-3p,c,7 =0,
2a,b,c,+ac/ =0,
8aacc,- bce,-6ar’bee,~ 168ac’+ 1Bobg’~ 1BDe’ bgg 5 (. (6)
-6a,c,Cc, +120acc,+ 128ace ,— S4r’c’c - 587~ 18¢6 &= (
—6a,cc, + 36ac’c,= 0,
4a,c’ -, ci+1280L2= 0,

12aa,cc, + Be,+18ag’,~ 72Pcc’%= O

From (6), we can have two classes of solutions:
Case 1.

c,#20, a,=-4c;,4 =0, a,=0,b,=8c,a, b =-8c, ,

2
b, =0, ¢ =4c,, CZZ%. (7)
Substituting (7) into Eq. (1), we obtain
p=|1e— 220 g ®

o Lo 2,1
(x=a)'+  (t=f)'+

Case 2

0] aO:O,aiz(), aZ:O, Q:M m:__blz, bo;:o, Clz_bl’

b 2
m#z0, czz—%, c,=0. 9
(i) & =0, =0, & =0, b #0, az—%bz, m=—f;2,
c =-b,m#0, CZ:—Z;:ln, c,=0. (10)

Substituting (9) and (10) into Eqg. (1), we obtain
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_ i(b, +bx+bt) ix
Y, =1+ _bl(x—_bo_'gbz)2+bf22(t—ﬁ)2 e, (11)
b b
v, =| 14— 1B Thx*bl) é*. (12)
—bl<x+€:2)2 +b;l(t - Py’

3. Some properties of rogue waves

3.1 Width of rogue waves

It is well known that the parameter of the nonliitgehave a major impact on the forms
of waves. We herein analyze the impact of rogueesawith the varying parameter of the
nonlinearity. Given by different parameters of thenlinearity, we draw the corresponding
rogue waves and density pictures. It is easy td fivat: (1) The nonlinearity parameten
has little effect on the height of rogue waves. tTisa there is no change the height with
different parameters of the nonlinearity. (2) Thmlinearity parameterm has more effect
on the width of rogue waves. With the increasemf the rogue waves becomes wider (in

detailed see Figure 1-3).

Q) b0



95 Fig.1. Rogue wave propagations (a) and contour spltt) for the intensity |l,l/1

|2

for

96 m=0.005a= 0
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100 Fig.2. Rogue wave propagations (a) and contoursp(b) for the intensity|¢/1|2 for

101 m=0.5,a=0.
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Fig.3. Rogue wave propagations (a) and contoursp{b) for the intensity |z//l|2 for

m=4,a=0
3.2 Rogue Waves with a Controllable Center

From (8), we find rogue waves will move whem, 5 are given by different values.
When we study the situation before takimy definite values for d ofm. The following, we
consider wave changes unden taking a fixed value 0.5 andr, 5 varying. We find the
following facts: Whena, 5 are given by different values, the central locatad the rogue

wave are different, namely, the rogue wave cestaravable (see Figure 4-7).

b()

Fig.4. Rogue wave propagations (a) and contous gljtfor the intensiwjlrfor m=0.5,

a=3,B=2.
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122  Fig.5. Rogue wave propagations (a) and contourspldt) for the intensitit,l/1|2 for

123 m=0.5a=2,=-2
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127 Fig.6. Rogue wave propagations (a) and contourspldit) for the intensitit,l/1|2 for

128 m=0.5a=-2,=-2.
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Fig.7. Rogue wave propagations (a) and contourspid®) for the intensit$401|2 for
m=4, a=0.

3.3 Singular rogue waves
According to the analysis in Section 2, wham is a negative value, we find that the
denominator valure of obtained solutions (11)-(@2) be zero under some positions. So we

can obtain some singular rogue waves which are stasfollows.

Fig.8. Rogue wave propagations (a) and contourspldf) for the intensitil//l|2 for

b,=1,b=1b, =1 5=1.
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Fig.9. Rogue wave propagations (a) and contourspld) for the intensity|t//l|2

forby=1,b =1,b, =1, f=-1.
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Fig.10. Rogue wave propagations (a) and contour tsplo(b) for the

intensityly,|*forb, = -1, b =3,b, =2, f=2.
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(a) b0

Fig.11. Rogue wave propagations (a) and contour tsplo(b) for the

intensity{l//l|2forbO =-1,b=3,b,=2,8=-2.

Conclusion
In this paper, we obtain some special rogue wavtsavcontrollable center by a direct
method and study the effects of different paransetar rogue waves. We find that the

nonlinearity parameter is responsible for the widfhrogue waves. In the future ,we will

study the effects of rogue wave solutioggg on NLS equations by similarity transformation.
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