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Abstract: We obtain the rogue waves with a controllable center in the generalized 7 

nonlinear Schrödinger equation by using a direct method. The position of these solutions can 8 

be controlled by varying different center parameters. We study the effects of different 9 

parameters on rogue waves and hence find that the nonlinearity parameter is responsible for 10 

the width of rogue waves. With the increase of the nonlinearity parameter, the rogue wave 11 

becomes wider. What is more, the negative nonlinearity parameter can yield some singular 12 

rogue waves. 13 
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1. Introduction 15 

   Rogue waves, are called freak waves, monster waves, killer waves, giant waves or 16 

extreme waves, Rogue waves are spontaneous nonlinear waves with amplitudes significantly 17 

larger (two or more times higher) than the surrounding average wave crests [1,2], What is 18 

more, they appear from nowhere and disappear without a trace. 19 

   It is a very meaningful work to search for rogue waves, which has been found in many 20 

different systems and has many important applications in some fields since they can signal 21 

fascinating stories [3,4].  22 

In this paper, we study the generalized nonlinear cubic Schrödinger equation 23 
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where x is the propagation distance and t is the transverse variable. When A=0, equation (1) 25 

becomes the famous nonlinear cubic Schrödinger equation. Some rogue wave solutions of the  26 

______________ 27 

nonlinear cubic Schrödinger equation have been found by taking limit of Akhmediev breather 28 
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solutions[5,6] and Darboux transformation.[7,8]. By a similarity transformation, rogue wave 29 

solutions to the generalized nonlinear Schrodinger equation with variable coefficients are obtained [9 ]. 30 

Using the (Exp(−φ (ξ )) ) -Expansion method, some new exact traveling wave solutions of the cubic 31 

nonlinear Schrodinger equation are given [ 10]. The center of these solutions is located at a fixed 32 

point (0, 0) on (x, t) plane. Basing on a simple assumption, WANG and He found larger 33 

universality and applicability of rogue waves with a controllable center [11]. The above 34 

method does not consider the effect of parameters on the waveform, which is our interest. 35 

More researches on rogue waves can be founded in Ref. [12-21]. 36 

In this paper, our interests focus on two aspects:  37 

(1) We want to determine rogue wave solutions of Eq. (1) with an arbitrary coefficient of 38 

nonlinearity;  39 

(2) We want to know the role of the nonlinearity coefficient on the formation of rogue waves.  40 

The organization of this paper is as follows. In Section 2, we obtain some special rogue 41 

waves with a controllable center by a direct method. In Section 3, we analyze the different 42 

controllability by numerical simulation. Conclusion will be given. In appendix, the 43 

computational process for the second-order solution is given. 44 

2. Some special rogue waves  45 

By the similar method in Ref. [9], we assume rogue waves as follows 46 
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                         (2) 47 

with 48 

( )1 0 1 2, + ,p x t a a x a t= +                        (3) 49 

                             ( )1 0 1 2, + ,q x t b b x b t= +                         (4) 50 

                    ( ) ( ) ( )2 2

1 1 2 3, .h x t c x c t cα β= − + − +                   (5)  51 

Here iα , ib ( i  = 0, 1, 2), jc ( j  = 1, 2, 3), α , β  are real parameters. 52 

 53 

Substituting the function 1ψ  into Eq. (1) and setting different coefficient Lists to be zero. 54 

We obtain the following possible system of nonlinear algebraic equations with the aid of 55 

Maple. 56 
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2 13 0,b c− =   57 

2
2 23 0,b c− =  58 

2
2 2 2 1 22 0,a b c a c+ =   59 

2 2 2 2 2
2 1 2 2 1 2 2 1 2 1 2 0 2 2 2 2 2 38 2 6 16 12 18 6 0,a c c b c c b c c a c b c b c b c cα α β β β− − − + − − =     (6) 60 

2 2 2 2
0 1 2 1 1 2 2 1 2 1 2 1 2 1 2 36 12 12 54 54 18 0,a c c a c c a c c c c c c c c cα β α β− + + − − − =   61 

2
1 1 2 1 26 36 0,a c c c cα− + =   62 

2 2 2
1 2 0 2 2 24 3 12 0,a c b c b cβ− + =    63 

2 2
2 1 2 2 1 2 1 2 1 212 8 12 72 0,a c c b c c a c c cα β αβ+ + − =    64 

………. 65 

 66 

From (6), we can have two classes of solutions:  67 

Case 1.  68 

3 0c ≠ , 0 34 ,a c= − 1 0a = , 2 0a = , 0 38 ,b c α=  1 38b c= −  ,  69 

2 0b = , 1 34c c= , 3
2

2c
c

m
= .                          (7)  70 

Substituting (7) into Eq. (1), we obtain 71 
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Case 2 74 

  (i) 0 0a = , 1 0,a =  2 0,a =  0 2
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  (ii) 0 0a = , 1 0,a =  2 0,a =  0 0b ≠ , 2
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      1 1c b= − , 0m ≠ , 1
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b
c

m
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Substituting (9) and (10) into Eq. (1), we obtain 79 



 

 4

                 0 1 2
2 2

2 20 2 2
1

1 1

( )
1

( ) ( )

ixi b b x b t
e

b b b
b x t

b b

ψ
β β

 
 + + = +

− − − − + − 
 

,             (11) 80 

                 0 1 2
3 2

2 22 2
1

1 1

( )
1

( ) ( )

ixi b b x b t
e

b b
b x t

b b

ψ
β β

 
 + + = +
 − + + − 
 

.                  (12) 81 

3. Some properties of rogue waves 82 

3.1 Width of rogue waves 83 

It is well known that the parameter of the nonlinearity have a major impact on the forms 84 

of waves. We herein analyze the impact of rogue waves with the varying parameter of the 85 

nonlinearity. Given by different parameters of the nonlinearity, we draw the corresponding 86 

rogue waves and density pictures. It is easy to find that: (1) The nonlinearity parameter m   87 

has little effect on the height of rogue waves. That is, there is no change the height with 88 

different parameters of the nonlinearity. (2) The nonlinearity parameter m  has more effect 89 

on the width of rogue waves. With the increase of m , the rogue waves becomes wider (in 90 

detailed see Figure 1-3).  91 

 92 

 93 

               (a )                                     (b ) 94 
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Fig.1. Rogue wave propagations (a) and contour plots (b) for the intensity 
2

1ψ  for 95 

0.005, 0m α= = ， 96 

 97 

 98 

               (a )                                      (b ) 99 

Fig.2. Rogue wave propagations (a) and contour plots (b) for the intensity 
2

1ψ  for 100 

0.5,m = =0α . 101 

 102 
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                 (a )                                     (b ) 103 

Fig.3. Rogue wave propagations (a) and contour plots (b) for the intensity  
2

1ψ  for 104 

4,m = =0α  105 

3.2 Rogue Waves with a Controllable Center 106 

From (8), we find rogue waves will move when ,α β  are given by different values. 107 

When we study the situation before taking α  definite values for d of m . The following, we 108 

consider wave changes under m  taking a fixed value 0.5 and ,α β varying. We find the 109 

following facts: When ,α β  are given by different values, the central location of the rogue 110 

wave are different, namely, the rogue wave center is movable (see Figure 4-7).  111 

 112 

 113 

                       114 

 115 

                 (a  )                                (b ) 116 

Fig.4. Rogue wave propagations (a) and contour plots (b) for the intensity
2

1ψ for 0.5m = ，117 

3, 2α β= = . 118 

 119 
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 120 

( a )                             (b ) 121 

Fig.5. Rogue wave propagations (a) and contour plots (b) for the intensity
2

1ψ for 122 

0.5m = , 2, 2α β= = −  123 

 124 

 125 
                   (a  )                               (b  )b   126 

Fig.6. Rogue wave propagations (a) and contour plots (b) for the intensity
2

1ψ for 127 

0.5m = 2, 2α β= − = − . 128 

 129 
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 130 
( a )                             (b ) 131 

Fig.7. Rogue wave propagations (a) and contour plots (b) for the intensity
2

1ψ for 132 

4,m = =0α . 133 

3.3 Singular rogue waves  134 

   According to the analysis in Section 2, when m  is a negative value, we find that the 135 

denominator valure of obtained solutions (11)-(12) can be zero under some positions. So we 136 

can obtain some singular rogue waves which are shown as follows. 137 

 138 
( a )                                       (b ) 139 

Fig.8. Rogue wave propagations (a) and contour plots (b) for the intensity
2

1ψ for 140 

0 1,b = 1 1,b = 2 1,b = 1.β =  141 
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 142 
( a )                                       (b ) 143 

Fig.9. Rogue wave propagations (a) and contour plots (b) for the intensity 
2

1ψ  144 

for 0 1,b = 1 1,b = 2 1,b = 1.β = −  145 

 146 
                    (a )                                   (b ) 147 

Fig.10. Rogue wave propagations (a) and contour plots (b) for the 148 

intensity
2

1ψ for 0 1,b = − 1 3,b = 2 2,b = 2.β =  149 

 150 
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 151 

( a )                                      (b ) 152 

Fig.11. Rogue wave propagations (a) and contour plots (b) for the 153 

intensity
2

1ψ for 0 1,b = − 1 3,b = 2 2,b = 2.β = −  154 

Conclusion 155 

In this paper, we obtain some special rogue waves with a controllable center by a direct 156 

method and study the effects of different parameters on rogue waves. We find that the 157 

nonlinearity parameter is responsible for the width of rogue waves. In the future ,we will 158 

study the effects of rogue wave solutions 1ψ  on NLS equations by similarity transformation. 159 

 160 

 161 
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