

Type of the manuscript “Original Research Article”

Infrared Spectroscopic Study of $\text{Cs}_2\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ ($\text{X} = \text{S, Se}$) and of NH_4^+ Ions Included in $\text{M}_2\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ ($\text{M} = \text{Rb, Cs; X} = \text{S, Se}$), and Crystal Structures of $(\text{M, NH}_4)_2\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ ($\text{M} = \text{Rb, Cs; X} = \text{S, Se}$) Mixed Crystals

Veronika Karadjova ¹, Manfred Wildner ² and Donka Stoilova ^{3*}

¹*Department of Inorganic Chemistry, University of Chemical Technology and Metallurgy,
8 Kliment Ohridski, 1756 Sofia, Bulgaria.*

²Universität Wien, GeoZentrum, Institut für Mineralogie und Kristallographie, Althanstr. 14, A-1090 Wien, Austria.

³Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences,
1113 Sofia, Bulgaria.

stoilova@svr.igic.bas.bg, *stoilova@svr.igic.bas.bg*

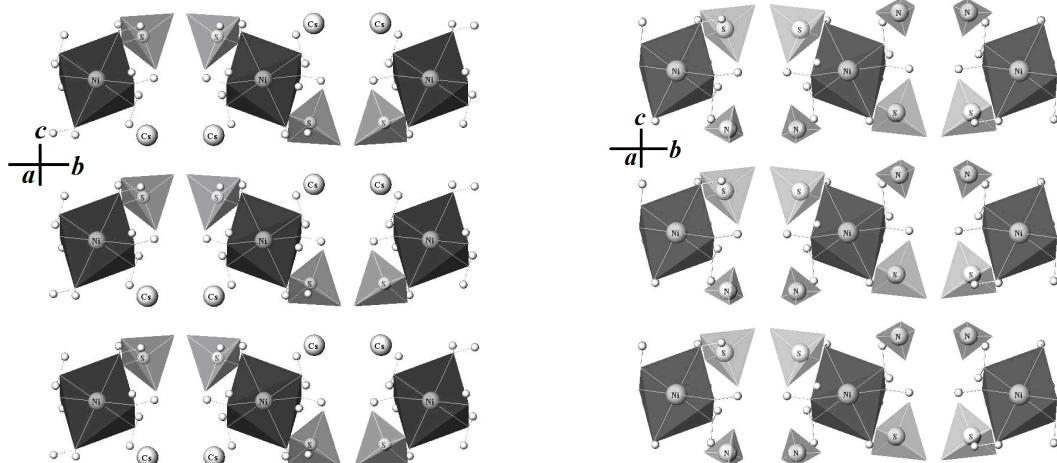
Corresponding author: Email: stoilova@svr.igic.bas.bg

ABSTRACT

The solubility in the three-component $\text{Cs}_2\text{SO}_4\text{--NiSO}_4\text{--H}_2\text{O}$ system was studied at 25 °C. It has been established that a double salt, $\text{Cs}_2\text{Ni}(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$, crystallizes within a wide concentration range. Infrared spectra of neat Tutton compounds $\text{Cs}_2\text{Ni}(\text{XO}_4)_2\cdot 6\text{H}_2\text{O}$ (X = S, Se) as well as those of ammonium doped rubidium and cesium sulfate and selenate matrices are presented and discussed with respect to the normal modes of the tetrahedral ions and water librations. The ammonium ions included in the sulfates exhibit three bands corresponding to the asymmetric bending modes ν_4 in agreement with the low site symmetry C_1 of the host cesium and rubidium cations. However, the inclusion of ammonium ions in the rubidium and cesium selenates leads to the appearance of four bands in the region of ν_4 . At that stage of our knowledge we assume that some kind of disorder of the ammonium ions included in the selenates occurs due to the strong proton acceptor capability of the SeO_4^{2-} (stronger than that of SO_4^{2-}), thus facilitating the formation of polyfurcate hydrogen bonds by the ammonium ions in the selenate matrices. The strength of the hydrogen bonds formed in the mixed crystals $\text{M}_{1.85}(\text{NH}_4)_{0.15}\text{Ni}(\text{XO}_4)_2\cdot 6\text{H}_2\text{O}$ (M = Rb, Cs; X = S, Se) as deduced from the frequencies of the water librations is discussed. The spectroscopic experiments reveal that the water molecules in the mixed crystals form weaker hydrogen bonds than those in the neat rubidium and cesium Tutton salts due to decreasing in the proton acceptor strength of the SO_4^{2-} and SeO_4^{2-} ions as a result of the formation of hydrogen bonds between the host anions and the NH_4^+ guest cations (*anti*-cooperative or proton acceptor competitive effect). Crystal structure investigations of several $(\text{M},\text{NH}_4)_2\text{Ni}(\text{XO}_4)_2\cdot 6\text{H}_2\text{O}$ (M = Rb, Cs; X = S, Se) mixed crystals reveal significant changes in the environment of the monovalent cations as well as in the hydrogen bonding systems of the water molecules upon incorporation of ammonium ions. Disorder of NH_4 groups and the formation of polyfurcate N-H...O hydrogen bonds have not been observed, but neither can be excluded by the X-ray diffraction

* Tel.: +xx xx 265xxxx; fax: +xx aa 462xxxx.

E-mail address: xyz@abc.com.


experiments, especially not for rather low ammonium contents.

Keywords: Tutton compounds, $\text{Cs}_2\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ ($\text{X} = \text{S, Se}$), solubility diagram, infrared spectra, matrix-isolated NH_4^+ guest ions, water librations, crystal structures.

1. INTRODUCTION

$\text{Cs}_2\text{Ni}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$ and $\text{Cs}_2\text{Ni}(\text{SeO}_4)_2 \cdot 6\text{H}_2\text{O}$ belong to a large number of isomorphous compounds with a general formula $\text{M}'_2\text{M}''(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ ($\text{M}' = \text{K, NH}_4^+, \text{Rb, Cs}; \text{M}'' = \text{Mg, Fe, Co, Ni, Cu, Zn}; \text{X} = \text{S, Se}$) known as Tutton salts. The crystal structures of $\text{Cs}_2\text{M}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ ($\text{M} = \text{Mg, Mn, Fe, Co, Ni, Zn}; \text{X} = \text{S, Se}$) determined from single crystal X-ray diffraction data are described in [1,2]. As an example the crystal structures of $\text{Cs}_2\text{Ni}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$ and $(\text{NH}_4)_2\text{Ni}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$ are shown in Fig. 1. The crystal structures of these compounds (monoclinic space group $P2_1/a$ (C_{2h}^5)) consist of isolated $[\text{Ni}(\text{H}_2\text{O})_6]$ octahedra, XO_4 tetrahedra and CsO_n polyhedra ($n = 8-10$). Three crystallographically different water molecules are coordinated to the Ni^{2+} ions. The polyhedra are linked by hydrogen bonds and Cs^+ cations. The water molecules are asymmetrically hydrogen bonded – the $\text{O}_w \cdots \text{O}$ bond distances vary in the interval of 2.68–2.82 Å. All atoms are located at general positions C_1 with exception of the divalent metal ions, which lie at centre of inversion C_i .

The present paper continues our infrared spectroscopic investigations of Tutton compounds [3–10]. In previous papers the vibrational behavior of SO_4^{2-} ions incorporated in the crystals of $\text{M}'_2\text{M}''(\text{SeO}_4)_2 \cdot 6\text{H}_2\text{O}$ ($\text{M}' = \text{K, NH}_4^+, \text{Rb}; \text{M}'' = \text{Mg, Co, Ni, Cu, Zn}$) is reported. The influence of different crystal chemical factors and the metal ion nature on the extent of energetic distortion of matrix-isolated sulfate ions was analyzed [3–9]. Special attention has been paid on infrared spectra of NH_4^+ ions included in the crystals of $\text{K}_2\text{M}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ ($\text{M} = \text{Mg, Co, Ni, Cu, Zn}; \text{X} = \text{S, Se}$) [3–7].

Fig. 1. Crystal structures of $\text{Cs}_2\text{Ni}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$ and $(\text{NH}_4)_2\text{Ni}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$ (plane bc) according to [2]; small balls – hydrogen atoms of water molecules; the oxygen atoms forming SO_4 tetrahedra, NiO_6 octahedra, CsO_n polyhedra ($n = 8-10$) and hydrogen atoms forming NH_4^+ tetrahedra are not shown

In this paper we report our experimental data on the crystallization processes in the ternary $\text{Cs}_2\text{SO}_4\text{–NiSO}_4\text{–H}_2\text{O}$ system at 25 °C. Fourier transform infrared spectra of the cesium nickel

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx.

E-mail address: xyz@abc.com.

61 double salts, $\text{Cs}_2\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ (X = S, Se), are presented and discussed in the regions of
62 the normal vibrations of both the sulfate (selenate) ions and water molecules and the water
63 molecules. A focus has been put on the vibrational behavior of NH_4^+ ions incorporated in the
64 crystals of $\text{M}_2\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ (M = Rb, Cs; X = S, Se). The influence of the NH_4^+ guest ions
65 on the strength of the hydrogen bonds formed in the mixed crystals
66 $\text{M}_{1.85}(\text{NH}_4)_{0.15}\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ (M = Rb, Cs; X = S, Se) as deduced from the wavenumbers of
67 the water librations is commented. In addition, X-ray structure investigations of the
68 ammonium doped compounds were performed on several selected single crystals, in order
69 to provide complementary information about the long range order in these Tutton salt mixed
70 crystals.

71

72 2. EXPERIMENTALS

73

74 Rb_2SeO_4 , Rb_2SO_4 , Cs_2SeO_4 , Cs_2SO_4 , $(\text{NH}_4)_2\text{SeO}_4$, and $\text{NiSeO}_4 \cdot 6\text{H}_2\text{O}$ were prepared by
75 neutralization of the respective carbonates and nickel hydroxide carbonates with dilute
76 selenic or sulfuric acid solutions at 60–70 °C. Then the solutions were filtered, concentrated
77 at 40–50 °C, and cooled to room temperature. The crystals were filtered, washed with
78 alcohol and dried in air. $\text{Rb}_2\text{Ni}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$ was prepared by crystallization from ternary
79 solutions according to the solubility diagram of the $\text{Rb}_2\text{SO}_4\text{--NiSO}_4\text{--H}_2\text{O}$ system [9];
80 $\text{Rb}_2\text{Ni}(\text{SeO}_4)_2 \cdot 6\text{H}_2\text{O}$ – according to the solubility diagram of the $\text{Rb}_2\text{SeO}_4\text{--NiSeO}_4\text{--H}_2\text{O}$
81 system [10]; $\text{Cs}_2\text{Ni}(\text{SeO}_4)_2 \cdot 6\text{H}_2\text{O}$ – according to the solubility diagram of the
82 $\text{Cs}_2\text{SeO}_4\text{--NiSeO}_4\text{--H}_2\text{O}$ system [11]; $\text{Cs}_2\text{Ni}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$ – according to the solubility diagram
83 of the $\text{Cs}_2\text{SO}_4\text{--NiSO}_4\text{--H}_2\text{O}$ system (this paper). The samples of $\text{M}_{2-x}(\text{NH}_4)_x\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ (M
84 = Rb, Cs; X = S, Se; x = 0.02, 0.05, 0.10 and 0.15) were prepared by crystallization from the
85 above ternary selenate (sulfate) solutions in the presence of different amounts of ammonium
86 ions. All reagents used were of reagent grade quality (Merck).

87

88 The solubility in the three-component system $\text{Cs}_2\text{SO}_4\text{--NiSO}_4\text{--H}_2\text{O}$ was studied by the
89 method of isothermal decrease of supersaturation described in [12]. Solutions containing
90 different amounts of the salt compounds corresponding to each point of the solubility
91 isotherm were heated at about 60–70 °C and cooled to room temperature. Then the
92 saturated solutions containing solid phases were vigorously stirred. The equilibrium between
93 the liquid and solid phases was reached in about 20 hours. The analysis of the liquid and
94 wet solid phases was performed, as follows: the nickel ion contents were determined
95 complexonometrically at pH 5.5–6 using xylanol orange as indicator; the sulfate ions were
96 determined gravimetrically as BaSO_4 ; the concentrations of the cesium sulfate were
97 calculated by difference. The compositions of the solid phases were identified by means of
98 X-ray diffraction and infrared spectroscopy methods as well.

99

100 The infrared spectra were recorded on a Bruker model IFS 25 Fourier transform
101 interferometer (resolution $< 2 \text{ cm}^{-1}$) at ambient temperature using KBr discs as matrices. Ion
102 exchange or other reactions with KBr have not been observed. The X-ray powder diffraction
103 patterns were collected within the range from 5° to 50° 2θ with a step 0.02° 2θ and counting
104 time 35 s/step on Bruker D8 Advance diffractometer with Cu K α radiation and LynxEye
105 detector.

106

107 Suitable individual crystals for single crystal structure investigations of the prepared
108 ammonium doped Tutton compounds, $\text{M}_{2-x}(\text{NH}_4)_x\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ (M = Rb, Cs; X = S, Se; x =
109 0.02, 0.05, 0.10 and 0.15; see above), were hand-picked according to optical quality from
110 those synthesis products with higher bulk ammonium contents (i.e. x = 0.10 and 0.15). X-ray
111 diffraction data of these eight selected single crystals were measured at room temperature
112 using graphite monochromatized MoK α radiation on a Nonius Kappa-CCD diffractometer
113 equipped with an X-ray capillary optics collimator. For each crystal several sets of φ - and ω -

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx.

E-mail address: xyz@abc.com.

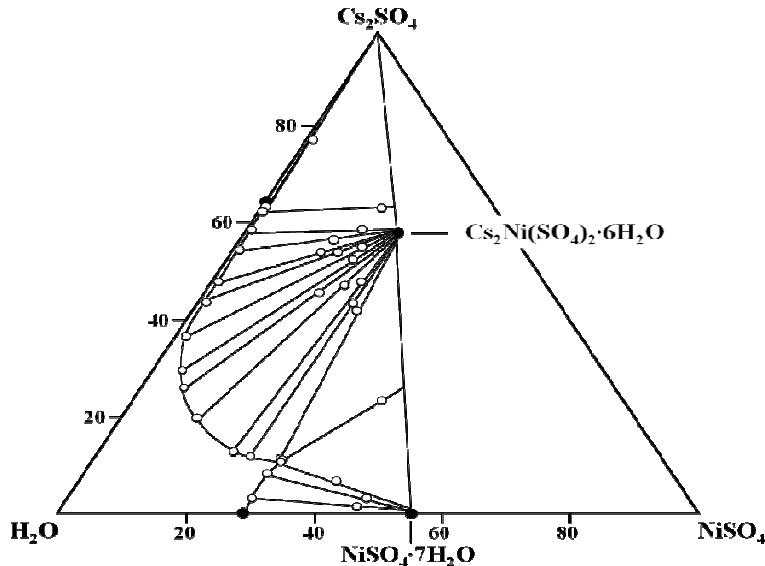
114 scans with 2° rotation per CCD-frame were performed to collect the complete Ewald sphere
115 up to $2\theta = 80^\circ$ at a crystal to detector distance of 30 mm. The extraction and correction of
116 the intensity data, merging of redundant data to hkl 's, a pseudo-absorption correction by
117 frame scaling, and the refinement of the lattice parameters were done with the program
118 DENZO-SMN [13].

119
120 Structure refinements on F^2 with scattering curves for neutral atoms were performed with
121 SHELXL-97 [14], each refinement including hydrogen atoms of the water molecules,
122 anisotropic displacement parameters of the non-hydrogen atoms, as well as a site
123 occupancy parameter for the nitrogen atom of the ammonium group replacing Rb or Cs
124 (assuming a total site occupancy of 1). Atom labels and equivalent site positions were
125 selected as in [15]. The results show that the refined NH_4 content in the investigated single
126 crystals clearly exceeds that of the bulk composition, especially in case of the two Rb
127 compounds with the respective higher bulk ammonium content ($x = 0.15$). This seems to be
128 an “artifact” of the selection of optically clear and flawless single crystals from the bulk
129 products. In detail, the refined ammonium contents y (y to distinguish them from the bulk
130 contents x) for the $\text{M}_x\text{N}_x\text{X}$ -labelled compounds are $y = 0.26$ ($\text{RbN}_{0.10}\text{S}$), 0.40 ($\text{RbN}_{0.15}\text{S}$), 0.22
131 ($\text{CsN}_{0.10}\text{S}$), 0.28 ($\text{CsN}_{0.15}\text{S}$), 0.14 ($\text{RbN}_{0.10}\text{Se}$), 0.99 ($\text{RbN}_{0.15}\text{Se}$), 0.17 ($\text{CsN}_{0.10}\text{Se}$), and 0.26
132 ($\text{CsN}_{0.15}\text{Se}$). As a beneficial effect of the high ammonium content $y = 0.99$ of the $\text{RbN}_{0.15}\text{Se}$
133 crystal, we were able to find positions of the hydrogen atoms of the NH_4 group in difference
134 Fourier maps, and to refine them applying soft restraints and a common isotropic
135 displacement parameter. NH_4 hydrogen positions and labels HN1-4 correspond to H(11)-
136 H(14) of Montgomery [16]. Subsequently, we surprisingly even succeeded to spot respective
137 difference Fourier peaks for the crystal with the second highest refined ammonium content (y
138 = 0.40 for $\text{RbN}_{0.15}\text{S}$), and refined them in the same way. In all other cases, difference Fourier
139 peaks surrounding Rb or Cs sites were not considered as potential partially occupied
140 hydrogen positions due to the extreme discrepancy in X-ray scattering power. Table 2
141 summarizes crystal data and details of the data collections and structure refinements for the
142 compounds with the respective higher bulk ammonium content ($x = 0.15$). Corresponding
143 final atomic coordinates and equivalent (H: isotropic) displacement parameters are listed in
144 Table 3. Anisotropic displacement parameters of the non-hydrogen atoms and structural
145 data of the other compounds ($x = 0.10$) can be obtained from the second author upon
146 request.

147

148 2. RESULTS AND DISCUSSION

149


150 3.1 Solubility diagram of the three-component system $\text{Cs}_2\text{SO}_4\text{--NiSO}_4\text{--H}_2\text{O}$ at 25 °C

151

152 The solubility diagram of the three-component system $\text{Cs}_2\text{SO}_4\text{--NiSO}_4\text{--H}_2\text{O}$ is shown in Fig.
153 2. The experimental solubility data are listed in Table 1. Three crystallization fields are
154 observed in the solubility diagram – a very narrow crystallization field of Cs_2SO_4 , a
155 comparatively large crystallization field of $\text{NiSO}_4\cdot 7\text{H}_2\text{O}$ and a remarkably wide crystallization
156 field of a double salt with composition $\text{Cs}_2\text{Ni}(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$. The composition of the double
157 compound is proved by chemical analysis and X-ray powder diffraction measurements. The
158 experimental results show that small amounts of nickel sulfate added into the cesium sulfate
159 solution lead to the formation of the double salt. The large width of the double salts
160 crystallization field indicates that strong complex formation processes occur in the ternary
161 solutions. $\text{Cs}_2\text{Ni}(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$ crystallizes from solutions containing 62.84 mass% cesium
162 sulfate and 0.87 mass% nickel sulfate up to solutions containing 10.85 mass% cesium
163 sulfate and 29.62 mass% nickel sulfate (eutonic points). The X-ray powder diffraction
164 patterns as well as the calculated lattice parameters of the samples obtained from the
165 crystallization field of the double salts coincide well with those reported in [2].

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx.

E-mail address: xyz@abc.com.

168 **Fig. 2. Solubility diagram of the system $\text{Cs}_2\text{SO}_4\text{--NiSO}_4\text{--H}_2\text{O}$ at 25 °C**

169
170
171
172 **Table 1. Solubility in the $\text{Cs}_2\text{SO}_4\text{--NiSO}_4\text{--H}_2\text{O}$ system at 25 °C**

Liquid phase, mass%		Wet solid phase, mass%		Composition of the solid phases
Cs_2SO_4	NiSO_4	Cs_2SO_4	NiSO_4	
64.88	-	-	-	Cs_2SO_4
63.86	0.96	77.39	1.46	" "
62.84	0.87	63.15	19.38	$\text{Cs}_2\text{SO}_4 + \text{Cs}_2\text{Ni}(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$
58.72	1.03	58.79	18.31	$\text{Cs}_2\text{Ni}(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$
54.18	1.12	56.64	15.11	" "
43.82	1.14	54.19	17.16	" "
41.67	0.94	55.03	20.05	" "
26.84	6.91	45.62	17.85	" "
14.28	20.11	48.06	23.85	" "
12.13	24.31	43.59	24.91	" "
11.94	28.74	42.02	26.04	" "
10.85	29.62	23.57	39.24	$\text{NiSO}_4\cdot 7\text{H}_2\text{O} + \text{Cs}_2\text{Ni}(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$
10.47	29.73	6.85	30.52	$\text{NiSO}_4\cdot 7\text{H}_2\text{O}$
8.56	28.87	3.88	46.43	" "
3.35	29.88	1.83	46.37	" "
-	29.04	-	-	" "

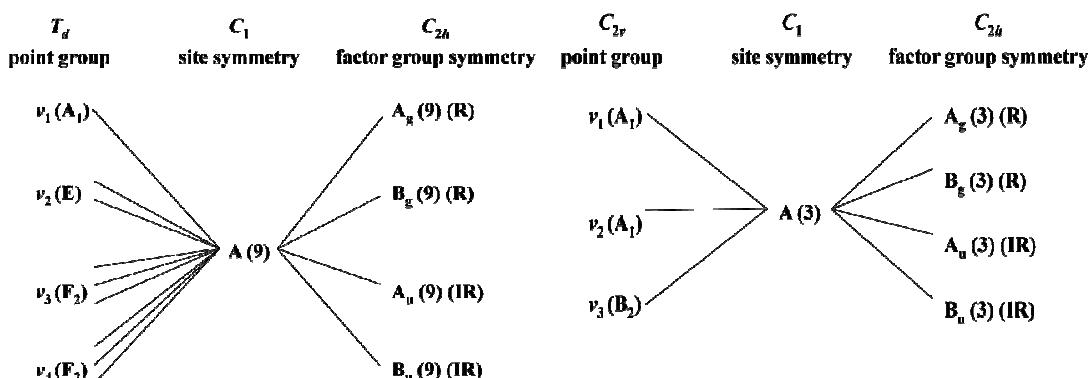
173
174
175 **3.2 Infrared spectra of neat cesium Tutton compounds, $\text{Cs}_2\text{Ni}(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$ and**
176 **$\text{Cs}_2\text{Ni}(\text{SeO}_4)_2\cdot 6\text{H}_2\text{O}$**

177
178 The free tetrahedral ions (XO_4^{n-}) under perfect T_d symmetry exhibit four internal vibrations:
179 $\nu_1(\text{A}_1)$, the symmetric X–O stretching modes, $\nu_2(\text{E})$, the symmetric XO_4 bending modes,
180 $\nu_3(\text{F}_2)$ and $\nu_4(\text{F}_2)$, the asymmetric stretching and bending modes, respectively. The normal

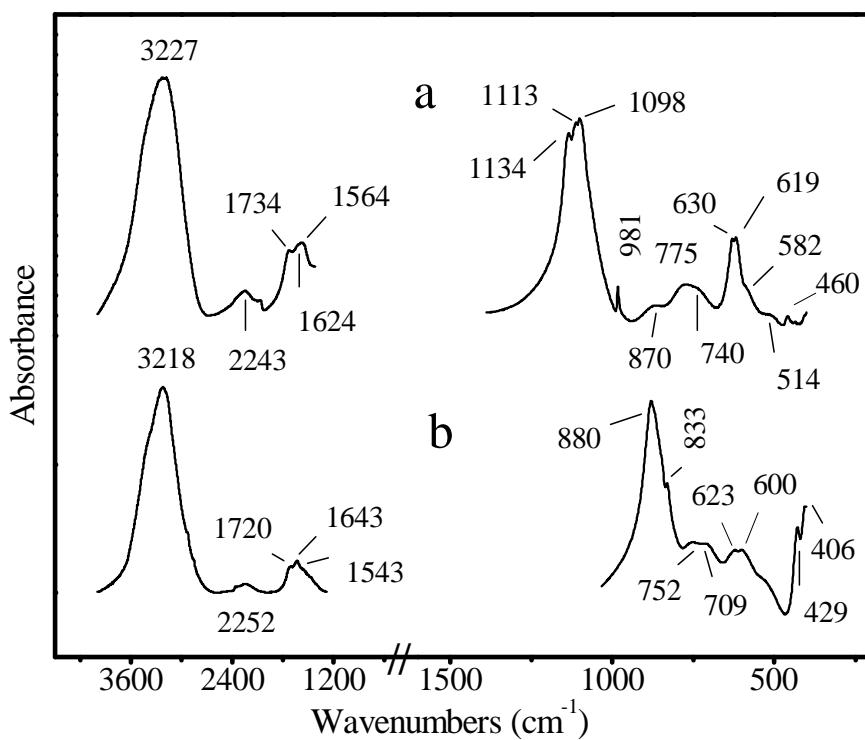
* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx.
E-mail address: xyz@abc.com.

181 vibrations of the free tetrahedral ions in aqueous solutions are reported to appear, as
182 follows: for the selenate ions – $\nu_1 = 833 \text{ cm}^{-1}$, $\nu_2 = 335 \text{ cm}^{-1}$, $\nu_3 = 875 \text{ cm}^{-1}$, $\nu_4 = 432 \text{ cm}^{-1}$; for
183 the sulfate ions – $\nu_1 = 983 \text{ cm}^{-1}$, $\nu_2 = 450 \text{ cm}^{-1}$, $\nu_3 = 1105 \text{ cm}^{-1}$, $\nu_4 = 611 \text{ cm}^{-1}$; for the
184 ammonium ions – $\nu_1 = 3040 \text{ cm}^{-1}$, $\nu_2 = 1680 \text{ cm}^{-1}$, $\nu_3 = 3145 \text{ cm}^{-1}$, $\nu_4 = 1400 \text{ cm}^{-1}$ [17]. On
185 going into solid state, the normal modes of the XO_4^{2-} ($\text{X} = \text{S}, \text{Se}$) ions are expected to shift to
186 higher or lower frequencies.

187
188 The monoclinic unit cell of the cesium nickel compounds ($Z = 2$; factor group symmetry C_{2h})
189 contains 62 atoms with 186 zone-centre degrees of freedom. The 186 vibrational modes of
190 the unit cell decompose according to the following representation:


191
192 $\Gamma = 45\text{Ag} + 45\text{Bg} + 48\text{Au} + 48\text{Bu}$, where $1\text{Au} + 2\text{Bu}$ are translations (acoustic modes).

193
194 Since the crystal structures are centrosymmetric, the Raman modes display *g*-symmetry,
195 and their infrared (IR) counterparts display *u*-symmetry (mutual exclusion principle). The
196 XO_4^{2-} ions (four XO_4^{2-} ions in the unit cell located on C_1 sites) and the water molecules
197 (twelve molecules in the unit cell located on C_1 sites) contribute 72 internal modes to the 183
198 optical zone-centre modes – each tetrahedral ion is characterized with nine normal
199 vibrations and each water molecule with three normal vibrations, i.e. 36 internal modes for
200 the tetrahedral ions and 36 internal modes for the water molecules. The static field (related
201 to the low symmetry C_1 of the sites on which the XO_4^{2-} ions are situated) will cause a
202 removal of the degeneracy of both the doubly degenerate ν_2 modes and the triply
203 degenerate ν_3 and ν_4 modes (the non-degenerate ν_1 mode is activated). The nine internal
204 modes of the tetrahedral ions are of *A* symmetry as predicted from the site group analysis:
205 one mode for the symmetric stretching vibrations (ν_1), two modes for the symmetric bending
206 vibrations (ν_2), and three modes for both asymmetric stretching and bending vibrations (ν_3
207 and ν_4). Additionally, under the factor group symmetry C_{2h} each species of *A* symmetry split
208 into four components – $\text{A}_g + \text{B}_g + \text{A}_u + \text{B}_u$ (related to interactions of identical oscillators,
209 correlation field effect, see Fig. 3). The remaining 111 optical modes (external modes) are
210 distributed between the translational and librational lattice modes. Thus, the unit cell
211 theoretical treatment for the translational lattice modes (Cs^+ , XO_4^{2-} , $\text{H}_2\text{O}(1)$, $\text{H}_2\text{O}(2)$, and
212 $\text{H}_2\text{O}(3)$ – all in C_1 site symmetry, Ni^{2+} – in C_i site symmetry) and librational lattice modes
213 (XO_4^{2-} , $\text{H}_2\text{O}(1)$, $\text{H}_2\text{O}(2)$, and $\text{H}_2\text{O}(3)$) yields: 63 translations ($15\text{A}_g + 15\text{B}_g + 17\text{A}_u + 16\text{B}_u$) and
214 48 librations ($12\text{A}_g + 12\text{B}_g + 12\text{A}_u + 12\text{B}_u$).


215
216 The literature data concerning infrared spectroscopic investigations of the cesium nickel
217 Tutton salts are scanty [18,19]. Our experimental results are presented in Fig. 4 (spectral
218 interval $4000\text{--}400 \text{ cm}^{-1}$). The six infrared bands expected for ν_3 of the SO_4^{2-} ions according
219 to the factor group analysis coalesce into three bands – 1134, 1113 and 1098 cm^{-1} . The
220 weak band at 981 cm^{-1} results from the symmetric stretching modes ν_1 . If we assigned the
221 three components of ν_3 as ν_{3a} , ν_{3b} and ν_{3c} (ν_{3a} appears at the highest frequency and ν_{3c} – at
222 the lowest frequency), the differences $\Delta\nu_{ab}$, $\Delta\nu_{bc}$ and $\Delta\nu_{ac}$ have values of 21, 15, and 36 cm^{-1} ,
223 respectively. These differences are too large to be accepted as a result of the factor group
224 splitting and consequently the three infrared bands at 1134, 1113 and 1098 cm^{-1} are
225 assigned to the three site group components of ν_3 . The asymmetric bending motions ν_4 of the
226 sulfate ions appear as a doublet – bands at 630 and 619 cm^{-1} . The spectroscopic
227 measurements show that the difference between the frequencies of the asymmetric bending
228 vibrations have a value of 11 cm^{-1} (i.e. smaller than that for the asymmetric stretching
229 vibrations ν_3), thus indicating that the sulfate tetrahedra are smaller energetically distorted
230 with respect to the O–S–O bond angles as compared to the S–O bond lengths. A strong
231 band centered at 880 cm^{-1} in the spectrum of the cesium nickel selenate results from the
232 asymmetric stretching motions ν_3 of the selenate ions (correspondingly ν_1 is observed at 833

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx.
E-mail address: xyz@abc.com.

233 cm^{-1}) (see Fig. 4). The appearance of one band only corresponding to ν_3 instead of three
 234 bands expected according to the site group analysis indicate that the *effective* spectroscopic
 235 symmetry of the selenate ions is close to T_d (at least at ambient temperature). The bands at
 236 429 and 406 cm^{-1} arise from the symmetric bending modes ν_4 . The other components of ν_4
 237 as well the symmetric bending modes ν_2 appear at frequencies lower than 400 cm^{-1} .
 238
 239

254 **Fig. 3. Correlation diagrams between: T_d point symmetry, C_1 site symmetry and C_{2h}
 255 factor group symmetry (XO_4^{2-} ions; X = S, Se) (left side); C_{2v} point symmetry, C_1 site
 256 symmetry and C_{2h} factor group symmetry (water molecules) (right side)**
 257
 258

259
 260
 261 **Fig. 4. Infrared spectra of neat Tutton salts $\text{Cs}_2\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ (X = S, Se) in the region
 262 of 4000–400 cm^{-1} (a, cesium sulfate; b, cesium selenate)**

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx.

E-mail address: xyz@abc.com.

263 According to Petruševski and Šoptrajanov [20] the intensity of the bands corresponding to ν_1
264 reflects the degree of distortion of the sulfate ions in a series of salts – the higher the
265 intensity of these bands is the stronger the distortion of the polyatomic ions is. Thus, the very
266 small intensity of the band at 981 cm^{-1} (Fig. 4a) is an indication that the sulfate tetrahedra in
267 the nickel sulfate are slightly distorted with respect to the S–O bond lengths in good
268 agreement with the structural data – $\Delta r(\text{XO}_4)$ has a value of 0.019 \AA ($\Delta r(\text{XO}_4)$ is the
269 difference between the longest and the shortest S–O bond lengths in the sulfate tetrahedron
270 [2]). Fig. 4b shows that the band corresponding to the ν_1 in the spectrum of the respective
271 selenate is of a higher intensity than expected if the geometric distortion of the selenate
272 tetrahedra are concerned ($\Delta r(\text{SeO}_4)$ has a value of 0.016 \AA [1]). This fact is due to some
273 coupling of the symmetric and asymmetric motions of the selenate ions which occur in a very
274 close spectral interval.

275

276 Our infrared spectroscopic measurements differ slightly from those reported by Brown and
277 Ross [18] with respect to the number of the bands corresponding to ν_3 of the sulfate and
278 selenate ions (more components of ν_3 are reported in that paper – some of them assigned
279 as shoulders; however, the spectra are not shown). One of the reason for the difference
280 between our spectra and those reported by Brown and Ross could be the temperature at
281 which the spectra are recorded (it is mentioned in [18] that some spectra are run at liquid
282 nitrogen temperature (LNT); however, there is no indication which ones are obtained at liquid
283 nitrogen temperature). The second reason could be the conditions under which the spectra
284 are obtained. The spectra of the selenates commented in [18] are recorded in Nujol mulls. It
285 is well known that in this case the halfwidths of the bands are larger (the appearance of the
286 shoulders is not unexpected) as compared to those of the bands in the spectra obtained
287 when the pellets of KBr are used.

288

289 The three crystallographically different water molecules (each water molecule in C_1 site
290 symmetry) exhibit three sets of normal vibrations of the water molecules – ν_3 , ν_2 and ν_1 . So,
291 the stretching modes (ν_3 and ν_1) are expected to display six infrared bands in the high
292 frequency region in absence of correlation field effects. However, comparatively broad and
293 intensive bands centered at 3227 and 3218 cm^{-1} for the sulfate and selenate, respectively,
294 are observed in the spectra (see Fig. 4) owing to the strong interactions of the identical
295 oscillators O–H. It is readily seen from Fig. 4 that slightly weaker hydrogen bonds occur in
296 the cesium nickel sulfate (ν_{OH} appears at higher frequencies) than those formed in the
297 respective selenate due to the weaker proton acceptor ability of the sulfate ions [21-27]. As
298 far as the weak broad bands at 2243 cm^{-1} (sulfate) and 2252 cm^{-1} (selenate) are concerned,
299 they result probably from second-order transitions (combinations of bending modes of the
300 water molecules and some librations of the same species).

301

302 The infrared spectra display three bands in the region of ν_2 (some of the bands appear as
303 shoulders), as follows: $\text{Cs}_2\text{Ni}(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$ – 1734 , 1624 and 1564 cm^{-1} and
304 $\text{Cs}_2\text{Ni}(\text{SeO}_4)_2\cdot 6\text{H}_2\text{O}$ – 1720 , 1643 and 1543 cm^{-1} (see Fig. 4a and b, respectively).
305 Šoptrajanov and Petruševski [28] reported that complex spectral pictures are observed in the
306 infrared spectra of Tutton compounds, $\text{M}'_2\text{M}''(\text{XO}_4)_2\cdot 6\text{H}_2\text{O}$ ($\text{M}' = \text{K}, \text{Rb}$; $\text{M}'' = \text{Mg}, \text{Fe}, \text{Co}, \text{Ni}$,
307 Cu ; $\text{X} = \text{S}, \text{Se}$), in the region of the water bending modes. They established that complex
308 spectra appear always irrespective of the type of the univalent and divalent cations and of
309 the type of the anions (sulfate and selenate). According to the authors the differences in the
310 band frequencies extend over the region of hundreds of wavenumbers and the origin of such
311 complex spectra could not be explained with the structural differences between the three
312 crystallographically different water molecules. They claim that vibrational interactions
313 between the bending modes ν_2 and overtones or combinations arising from water librations

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx.
E-mail address: xyz@abc.com.

314 (especially those which appear in the 900–700 cm⁻¹ region, rocking modes) are responsible
315 for the complex spectral pictures.

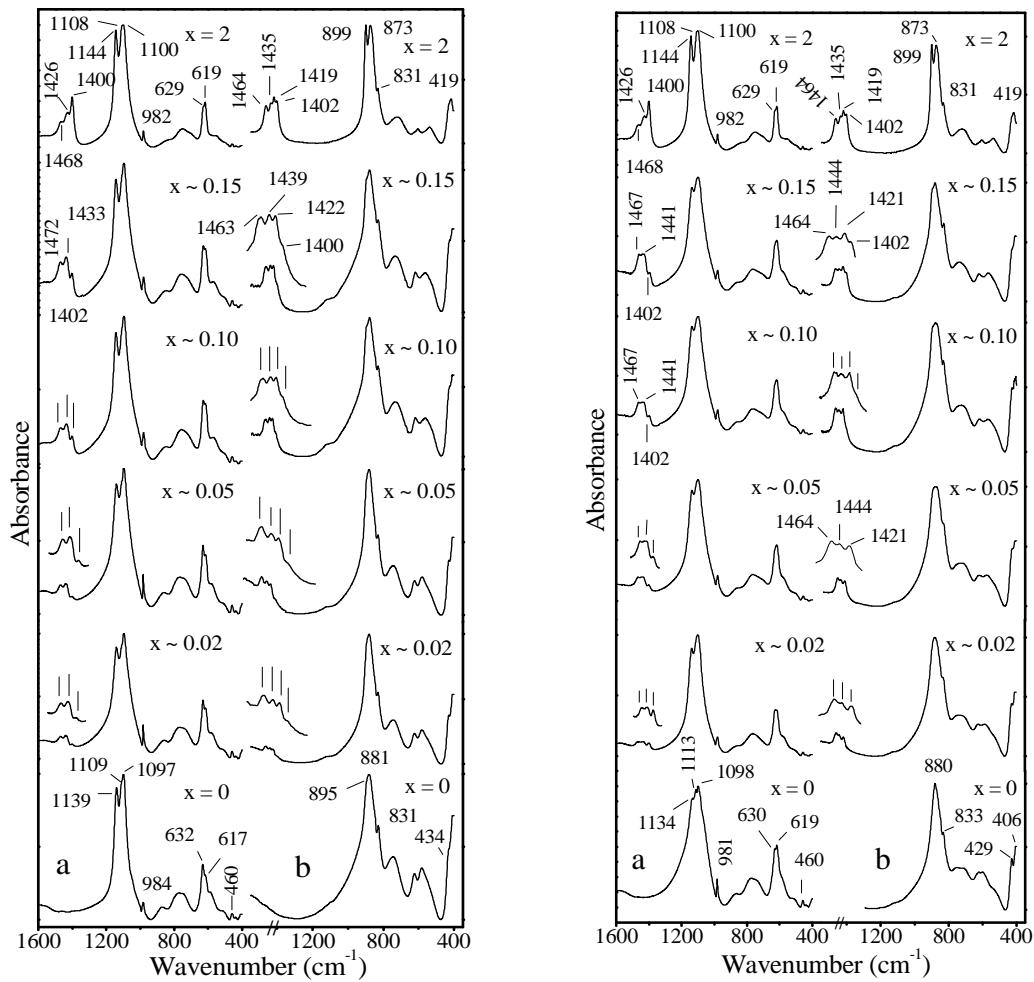
316
317 The water librations (rocking, twisting and wagging) appear in the region below 1000 cm⁻¹
318 and a strong overlapping of the water librations with vibrations of other entities in the
319 structure is expected. Two types of water librations for the Tutton sulfates (potassium and
320 ammonium) are discussed in the literature – rocking and wagging, the former observed at
321 higher frequencies [19]. Each type is characterized with two broad bands. The water
322 molecules bonded to the M⁺ ions via shorter M⁺–OH₂ bonds display water librations at higher
323 frequencies as compared to those forming longer M⁺–OH₂ bonds (equatorial water
324 molecules). The former M⁺–OH₂ bonds are much more polarized due to the stronger
325 synergistic effect of the M⁺ ions (stronger metal-water interactions). The mean wavenumbers
326 for the rocking librations are reported to have values of 855 and 740 cm⁻¹, and 770 and 680
327 cm⁻¹ for the potassium and ammonium sulfates, respectively. The respective wagging modes
328 are reported to have mean values of 570 and 441 cm⁻¹ for the potassium compounds, and
329 544 and 425 cm⁻¹ for the ammonium ones [19].

330
331 The assignments of the bands originated from the water librations are performed according
332 to Refs. [29-31]. Two well distinguished groups of infrared bands are seen in the spectrum of
333 the selenate (the first at 752 and 709 cm⁻¹, and the second at 623 and 600 cm⁻¹) which are
334 attributed to rocking and wagging modes of the two types of the water molecules,
335 respectively (these librations are free from motions of other entities in the structure, see Fig.
336 4b). The bands at 870, 775 and 740 cm⁻¹ result from rocking modes of the water molecules
337 in the sulfate (Fig. 4a). However, the wagging modes (shoulders at about 582 and 520 cm⁻¹)
338 in the sulfate structure are probably strongly influenced by the bending vibrations of the
339 sulfate ions, especially those which occur at higher frequencies and the wavenumbers of the
340 respective bands could not be recognized well.

341
342 **3.3 Infrared spectra of NH₄⁺ ions included in M₂Ni(XO₄)₂·6H₂O (M = Rb, Cs; X = S, Se)**

343
344 Infrared spectra of mixed crystals M_{2-x}(NH₄)_xNi(XO₄)₂·6H₂O (M = Rb, Cs; X = S, Se) are
345 presented in Figs. 5 (infrared spectra of the ammonium salts are taken from [7]; those of the
346 rubidium ones from [9,10]). The experimental results show differences in the vibrational
347 behavior of the ammonium ions included in both matrices. The ammonium ions included in
348 the sulfate matrix exhibit three bands corresponding to the asymmetric bending modes ν₄ of
349 the ammonium ions in agreement with the low site symmetry C₁ of the host rubidium and
350 cesium ions (1472, 1433 and 1402 cm⁻¹ in the Rb₂Ni(SO₄)₂·6H₂O matrix and 1467, 1441 and
351 1402 cm⁻¹ in the Cs₂Ni(SO₄)₂·6H₂O matrix). However, the inclusion of ammonium ions in the
352 selenate matrices leads to the appearance of four bands in the region of ν₄ (bands at 1463,
353 1439, 1422 and 1400 cm⁻¹ in the rubidium nickel selenate, and bands at 1464, 1444, 1421
354 and 1402 cm⁻¹ in the cesium nickel selenate (x ~ 0.10 and x ~ 0.15), respectively).
355 Ammonium ions included in the crystals of potassium Tutton selenates exhibit the same
356 behavior [3-7].

357
358 It is reported that some kind of disorder of the ammonium ions occurs in the crystal
359 structures of the ammonium salts when these ions exhibit a coordination number larger than
360 5 as a result of the formation of di- or polyfurcate hydrogen bonds [32,33]. For example, the
361 appearance of four bands corresponding to the bending modes of NH₃D⁺ ions included in
362 struvite-type compounds instead of three bands expected is commented in terms of disorder
363 of the ammonium ions [34-36]. Cahil *et al.* [37] claim that even in the cases when three
364 bands only are observed a disorder of the ammonium ions is not excluded. So, at that stage
365 of our knowledge we assume that some kind of disorder of the ammonium ions included in
366 the selenate lattices occurs. However, the origin of these bands is open to discussion. In our

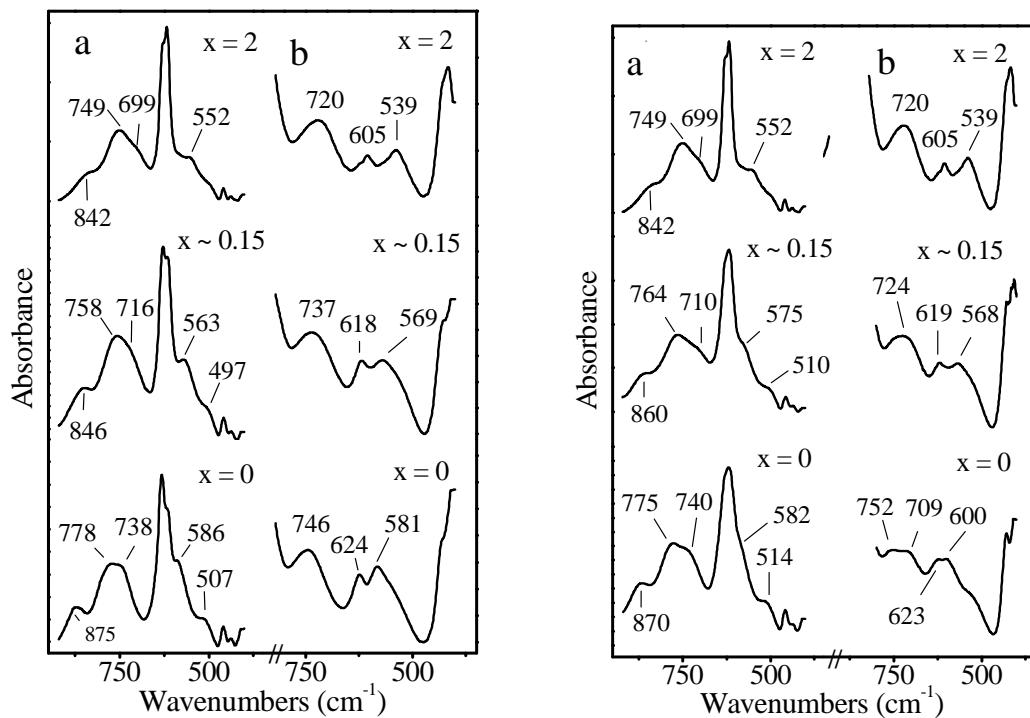

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx.

E-mail address: xyz@abc.com.

367 opinion the observed difference in the vibrational behavior of the NH_4^+ guest ions included in
 368 the selenate and sulfate structures is due to the different proton acceptor strength of the
 369 SO_4^{2-} and SeO_4^{2-} ions (as was commented above in the text the selenate ions exhibit
 370 stronger proton acceptor abilities than the sulfate ones). This fact will facilitate the formation
 371 of polyfurcate hydrogen bonds in the selenate matrices, thus leading to an increase in the
 372 coordination number of the ammonium ions, i.e. to a disorder of the guest ions.
 373

374 Furthermore, the spectroscopic experiments show that the four bands corresponding to ν_4 of
 375 the ammonium ions included in the rubidium selenate matrix appear at lower concentrations
 376 (about 2 mol%) as compared to those of the same ions included in the cesium selenate
 377 matrix (the lowest wavenumbered band at 1402 cm^{-1} appears at concentrations of
 378 ammonium ions of about 10 mol%) (see Fig. 5).
 379

380



381
 382
 383 **Fig. 5. Infrared spectra of: neat Tutton salts $\text{Rb}_2\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$, $(\text{NH}_4)_2\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ (X
 384 = S, Se) and of mixed crystals $\text{Rb}_{2-x}(\text{NH}_4)_x\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ (left side); neat Tutton salts
 385 $\text{Cs}_2\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$, $(\text{NH}_4)_2\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ (X = S, Se) and of mixed crystals
 386 $\text{Cs}_{2-x}(\text{NH}_4)_x\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ (right side) (x is approximately 0.02, 0.05, 0.10, 0.15) in the
 387 region of ν_3 and ν_1 of the XO_4^{2-} ions, ν_4 of NH_4^+ ions and water librations (a, sulfates; b,
 388 selenates)**

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx.

E-mail address: xyz@abc.com.

389 Fig. 6 shows spectra of the neat rubidium and cesium compounds and those of the mixed
 390 crystals $\text{Rb}_{1.85}(\text{NH}_4)_{0.15}\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ and $\text{Cs}_{1.85}(\text{NH}_4)_{0.15}\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ ($\text{X} = \text{S, Se}$) in the
 391 region of the water librations. It is readily seen that the bands arising from the water
 392 librations in the mixed crystals broaden and shift to lower frequencies, thus indicating that
 393 weaker hydrogen bonds are formed in the mixed crystals as compared to those formed in
 394 the neat rubidium and cesium compounds (it is well known that the water librations appear at
 395 lower frequencies in the case of weaker hydrogen bonds [23,27]). The formation of weaker
 396 hydrogen bonds by the water molecules in the mixed crystals is due to the decrease in the
 397 proton acceptor capacity of the SO_4^{2-} and SeO_4^{2-} anions, since these ions are involved in
 398 hydrogen bonds with the NH_4^+ guest ions additionally to water molecules (anti-cooperative or
 399 proton acceptor competitive effect) [27 and Refs. therein].
 400
 401
 402

403
 404
 405 **Fig. 6. Infrared spectra of: neat Tutton compounds $\text{Rb}_2\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$,**
 406 $(\text{NH}_4)_2\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ ($\text{X} = \text{S, Se}$), and of mixed crystals of $\text{Rb}_{1.85}\text{Ni}(\text{NH}_4)_{0.15}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$
 407 (left side); $\text{Cs}_2\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$, $(\text{NH}_4)_2\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ ($\text{X} = \text{S, Se}$), and of mixed crystals
 408 $\text{Cs}_{1.85}\text{Ni}(\text{NH}_4)_{0.15}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ (right side) in the region of water librations (a, sulfates; b,
 409 selenates)

410
 411
 412 **3.4 Crystal structures of $(\text{M},\text{NH}_4)_2\text{Ni}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ mixed crystals ($\text{M} = \text{Rb, Cs}; \text{X} = \text{S, Se}$)**
 413

414 The experimental results obtained from crystal structure investigations are listed in
 415 Tables 2-5. As was commented above in the text Table 2 summarizes crystal data and
 416 details of the data collections and structure refinements for the compounds with the
 417 respective higher bulk ammonium content ($x = 0.15$). Corresponding final atomic coordinates
 418 and equivalent (H: isotropic) displacement parameters are listed in Table 3.

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx.
 E-mail address: xyz@abc.com.

419 **Table 2. Crystal data and details of X-ray data collections and structure refinements for**
420 **selected single crystals (see text) of ammonium-doped Tutton compounds**
421 **$M_{2-y}(NH_4)_yNi(XO_4)_2 \cdot 6H_2O$ ($M = Rb, Cs; X = S, Se$)**

MX	RbS	CsS	RbSe	CsSe
refined y (NH_4)	0.395(4)	0.275(4)	0.991(5)	0.259(3)
crystal system, space group, Z		monoclinic, $P2_1/a$ (No. 14), Z = 2		
a (Å)	9.146(2)	9.262(2)	9.315(2)	9.432(2)
b (Å)	12.428(2)	12.733(2)	12.621(2)	12.899(2)
c (Å)	6.232(1)	6.351(1)	6.359(1)	6.464(1)
β (°)	106.23(1)	107.12(1)	105.85(1)	106.34(1)
V (Å ³)	680.1(2)	715.7(2)	719.2(2)	754.7(2)
μ (mm ⁻¹)	7.5	6.0	9.9	10.3
D_{calc} (g cm ⁻³)	2.457	2.750	2.571	3.029
$2\theta_{\text{max}}$		80		
exposure time (s) / frame	2×20	2×18	2×20	2×40
CCD frames measured	513	487	496	498
frame scale factors _{min / max}	0.69 / 1.10	0.85 / 1.24	0.46 / 1.25	0.19 / 1.13
total number of intensity data	45940	44857	47682	53816
intensity data for unit cell	14665	17046	15901	27093
number of reflections	34093	30596	34200	32121
number of hkl 's	15981	15509	16546	16694
unique hkl 's	4198	4405	4449	4632
$F_o > 4\sigma(F_o)$	3162	3390	3335	3779
R_i (%)	4.56	3.61	5.23	3.20
variables	128	115	128	115
wR2 [for all F_o^2] (%)	5.97	5.62	7.22	5.35
R1 [for $F_o > 4\sigma(F_o)$] (%)	3.04	2.57	3.23	2.41
R1 [for all F_o] (%)	5.28	4.45	5.58	3.64
goodness of fit	0.98	1.07	1.03	1.05
weighting ¹ parameter a / b	0.022 / 0.20	0.018 / 0.30	0.030 / 0.25	0.018 / 0.40
extinction coefficient	0.021(1)	0.007(1)	0.008(1)	0.005(1)
$\Delta\rho_{\text{max/min}}$ (eÅ ⁻³)	0.48 / -0.39	1.13 / -0.82	0.75 / -0.84	0.78 / -0.73

423 ¹ weighting scheme : $w = 1/[s^2(F_o^2) + (aP)^2 + bP]$; $P = \{\text{max of } (0 \text{ or } F_o^2) + 2F_c^2\} / 3$

424

425

426 **Table 3. Atomic coordinates and equivalent (H: isotropic) displacement parameters (Å²)**
427 **for selected single crystals (see text) of ammonium-doped Tutton compounds**
428 **$M_{2-y}(NH_4)_yNi(XO_4)_2 \cdot 6H_2O$ ($M = Rb, Cs; X = S, Se$). Site occupancy factors (sof) of the NH_4**
429 **groups (sof $\equiv y/2$) are given as well**

430

site	MX	x	y	z	$U_{\text{eq}} / U_{\text{iso}}$	sof (NH_4)
M, N	RbS	0.13213(2)	0.34957(1)	0.34813(3)	0.0294(1)	0.198(2)
	CsS	0.13025(1)	0.35348(1)	0.35596(2)	0.0279(1)	0.138(2)
	RbSe	0.13927(4)	0.34338(3)	0.34698(6)	0.0314(1)	0.496(3)
	CsSe	0.13606(1)	0.34924(1)	0.35328(2)	0.0298(1)	0.130(1)
S	RbS	0.40502(3)	0.13877(2)	0.73293(5)	0.0188(1)	
	CsS	0.39841(4)	0.14492(3)	0.74143(6)	0.0192(1)	
Se	RbSe	0.41028(2)	0.13548(1)	0.73692(3)	0.0194(1)	
	CsSe	0.40197(2)	0.14285(1)	0.74343(2)	0.0196(1)	

* Tel.: +xx xx 265xxxx; fax: +xx aa 462xxxx.

E-mail address: xyz@abc.com.

Table 3 cont.

Ni	RbS	0	0	0	0.0166(1)
	CsS	0	0	0	0.0171(1)
	RbSe	0	0	0	0.0165(1)
	CsSe	0	0	0	0.0170(1)
O1	RbS	0.4151(1)	0.2311(1)	0.5894(2)	0.0310(2)
	CsS	0.4186(2)	0.2361(1)	0.6097(2)	0.0330(3)
	RbSe	0.4206(2)	0.2353(1)	0.5772(2)	0.0326(3)
	CsSe	0.4238(2)	0.2420(1)	0.5976(2)	0.0354(3)
O2	RbS	0.5453(1)	0.0754(1)	0.7795(2)	0.0373(3)
	CsS	0.5351(1)	0.0800(1)	0.8005(2)	0.0349(3)
	RbSe	0.5628(2)	0.0664(1)	0.7842(3)	0.0447(4)
	CsSe	0.5504(1)	0.0712(1)	0.8022(3)	0.0390(3)
O3	RbS	0.2763(1)	0.0704(1)	0.6117(2)	0.0259(2)
	CsS	0.2712(1)	0.0810(1)	0.6065(2)	0.0274(2)
	RbSe	0.2708(1)	0.0604(1)	0.6070(2)	0.0266(3)
	CsSe	0.2635(1)	0.0733(1)	0.5992(2)	0.0288(2)
O4	RbS	0.3784(1)	0.1778(1)	0.9434(2)	0.0290(2)
	CsS	0.3627(2)	0.1822(1)	0.9416(2)	0.0298(2)
	RbSe	0.3820(2)	0.1801(1)	0.9650(2)	0.0297(3)
	CsSe	0.3642(2)	0.1848(1)	0.9623(2)	0.0299(2)
Ow1	RbS	0.1639(1)	0.1104(1)	0.1600(2)	0.0248(2)
	CsS	0.1605(1)	0.1088(1)	0.1592(2)	0.0260(2)
	RbSe	0.1635(2)	0.1059(1)	0.1625(2)	0.0246(2)
	CsSe	0.1579(1)	0.1062(1)	0.1591(2)	0.0259(2)
Ow2	RbS	-0.1655(1)	0.1093(1)	0.0275(2)	0.0245(2)
	CsS	-0.1660(1)	0.1069(1)	0.0161(2)	0.0257(2)
	RbSe	-0.1598(2)	0.1081(1)	0.0320(2)	0.0247(2)
	CsSe	-0.1623(1)	0.1051(1)	0.0194(2)	0.0259(2)
Ow3	RbS	0.0012(1)	-0.0652(1)	0.2992(2)	0.0232(2)
	CsS	-0.0014(1)	-0.0635(1)	0.2942(2)	0.0232(2)
	RbSe	-0.0014(2)	-0.0639(1)	0.2928(2)	0.0236(2)
	CsSe	-0.0028(1)	-0.0616(1)	0.2886(2)	0.0239(2)
H11	RbS	0.204(3)	0.091(2)	0.283(4)	0.048(6)
	CsS	0.204(3)	0.099(2)	0.284(4)	0.036(6)
	RbSe	0.202(3)	0.084(2)	0.278(5)	0.032(7)
	CsSe	0.188(3)	0.093(2)	0.263(5)	0.038(7)
H12	RbS	0.230(3)	0.126(2)	0.090(4)	0.040(5)
	CsS	0.221(3)	0.118(2)	0.104(5)	0.040(7)
	RbSe	0.235(4)	0.123(2)	0.124(6)	0.053(9)
	CsSe	0.228(4)	0.122(2)	0.111(5)	0.049(8)
H21	RbS	-0.245(3)	0.098(2)	-0.047(4)	0.037(6)
	CsS	-0.252(3)	0.098(2)	-0.058(4)	0.041(7)
	RbSe	-0.243(4)	0.097(2)	-0.049(5)	0.044(8)
	CsSe	-0.251(3)	0.094(2)	-0.063(5)	0.045(7)
H22	RbS	-0.146(3)	0.165(2)	-0.002(4)	0.040(6)
	CsS	-0.146(3)	0.163(2)	-0.019(4)	0.025(5)
	RbSe	-0.144(4)	0.168(3)	-0.009(5)	0.050(9)
	CsSe	-0.153(3)	0.166(2)	-0.013(5)	0.044(8)

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx.

E-mail address: xyz@abc.com.

Table 3 cont.

H31	RbS	-0.074(3)	-0.063(2)	0.333(4)	0.048(6)	
	CsS	-0.074(4)	-0.061(2)	0.336(5)	0.047(8)	
	RbSe	-0.074(4)	-0.055(2)	0.319(5)	0.041(8)	
	CsSe	-0.076(3)	-0.058(2)	0.321(5)	0.041(7)	
H32	RbS	0.021(3)	-0.131(2)	0.328(4)	0.051(6)	
	CsS	0.022(4)	-0.128(3)	0.330(6)	0.071(9)	
	RbSe	0.021(4)	-0.121(3)	0.333(6)	0.058(9)	
	CsSe	0.015(3)	-0.128(2)	0.319(4)	0.034(6)	
HN1	RbS	0.092(12)	0.341(9)	0.214(8)	0.068(21)*	0.198(2)
	RbSe	0.090(6)	0.341(5)	0.222(7)	0.052(9)*	0.496(3)
HN2	RbS	0.211(8)	0.314(8)	0.389(18)	0.068(21)*	0.198(2)
	RbSe	0.213(5)	0.311(4)	0.400(9)	0.052(9)*	0.496(3)
HN3	RbS	0.084(12)	0.319(9)	0.437(16)	0.068(21)*	0.198(2)
	RbSe	0.090(6)	0.318(5)	0.429(9)	0.052(9)*	0.496(3)
HN4	RbS	0.160(13)	0.407(5)	0.417(17)	0.068(21)*	0.198(2)
	RbSe	0.156(7)	0.404(3)	0.380(10)	0.052(9)*	0.496(3)

431 * H atoms of the NH₄ groups refined with a respective common isotropic displacement
 432 parameter

433

434

435 Table 4 lists selected polyhedral bond lengths and angles for structurally investigated single
 436 crystals of the ammonium doped Tutton compounds with respective higher bulk ammonium
 437 content ($x = 0.15$), and Table 5 gives relevant data of the respective hydrogen bonding
 438 systems. The polyhedral data of the XO₄ (X = S, Se) and NiO₆ units comply very well with
 439 general crystal chemical expectations as well as with respective values of the six
 440 corresponding endmember structures from literature [1,2,16,38-40] – within these ten
 441 compounds, the mean polyhedral bond lengths scatter by a mere 0.006 Å (Ni–O), 0.005 Å
 442 (S–O), and 0.002 Å (Se–O). In contrast, as a matter of course, significant differences are
 443 observed for the environments of the monovalent cations Rb, Cs, and NH₄⁺. Figure 7a-c
 444 illustrates the variation of the M–O distances along the M_{2-y}(NH₄)_yNi(XO₄)₂·6H₂O (M = Rb, Cs;
 445 X = S, Se) solid solution series (Fig. 7b,c) and the resulting changes in lattice parameters (Fig.
 446 7a). Note that y denotes the refined ammonium contents of the investigated single crystals,
 447 to be distinguished from the bulk ammonium contents x.

448

449 On exchange of Rb by NH₄ groups, the lattice parameters show only minor changes, finally
 450 resulting in marginally larger cell volumes in the ammonium endmember compounds (Fig. 7a).
 451 However, the Rb/N–O distances clearly reflect the influence of N–H...O hydrogen bonding with
 452 increasing ammonium content (Fig. 7b, c): considering the eight nearest oxygen neighbors, the
 453 four more distant ones increase their M–O lengths (by averaged 0.052 Å and 0.060 Å in the
 454 sulfate and selenate endmembers, respectively), whereas the four closer oxygen atoms are
 455 further attracted (by averaged 0.021 Å and 0.024 Å in the sulfate and selenate endmembers,
 456 respectively). These closer oxygens (O3, O4, 2xO1; see Table 4) form a distorted tetrahedron
 457 and are therefore ideal candidates as acceptors of N–H...O hydrogen bonds of the tetrahedral
 458 NH₄ group. This assumption is corroborated by the two cases of our mixed crystals where
 459 hydrogen atoms of the NH₄ group could be refined (Table 5), revealing well-defined hydrogen
 460 bond geometries with N...O distances between 2.86 and 2.99 Å and N–H...O angles $\geq 145^\circ$.
 461 From this point of view, orientational disorder of the ammonium ions and the formation of
 462 polyfurcate hydrogen bonds are not directly indicated. However, a contribution of the next
 463 nearest oxygen neighbor Ow2 as acceptor can not be ruled out completely; in case of the

464 ammonium-rich rubidium selenate ($y = 0.99$), the significant negative deviation from a linear
 465 M–O trend (Fig. 7c) might hint at such a contribution.

466

467

468 **Table 4.** Bond lengths (Å) and angles (°) for selected single crystals (see text) of
 469 ammonium-doped Tutton compounds $M_{2-y}(NH_4)_yNi(XO_4)_2 \cdot 6H_2O$ ($M = Rb, Cs; X = S, Se$).
 470 Estimated standard deviations are 1 in the last digit (else otherwise stated)

471

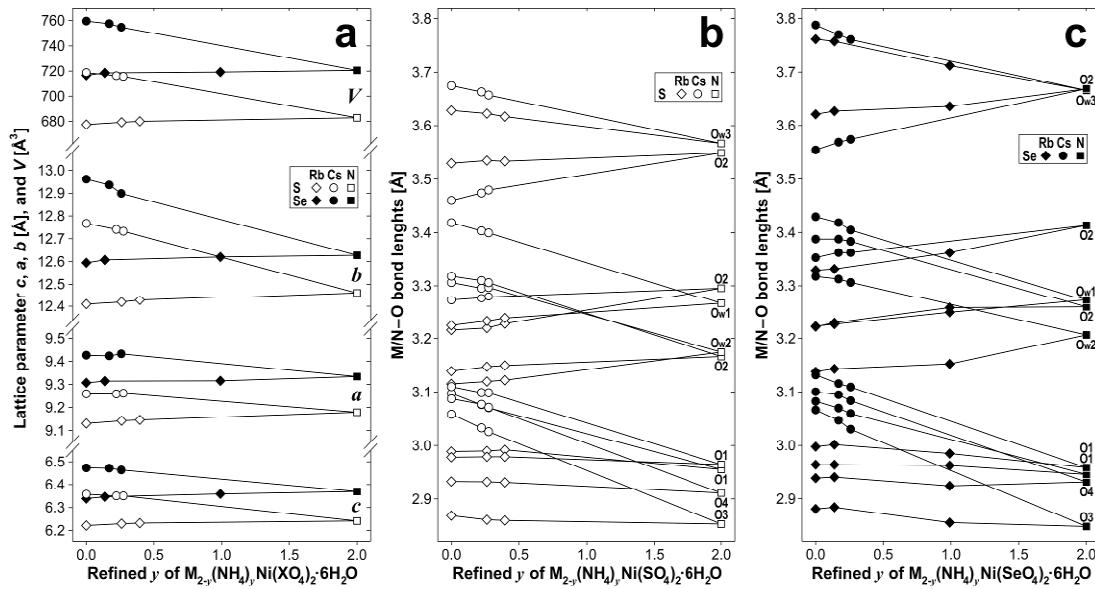
MX	RbS	CsS	RbSe	CsSe
refined $y (NH_4)$	0.395(4)	0.275(4)	0.991(5)	0.259(3)
X–O2	1.464	1.466	1.623	1.631
X–O1	1.474	1.475	1.638	1.636
X–O3	1.477	1.480	1.638	1.642
X–O4	1.481	1.483	1.643	1.644
$\langle X-O \rangle$	1.474	1.476	1.636	1.638
O2–X–O1	109.8	110.2	109.4	109.8
O2–X–O3	108.7	108.6	108.4	108.5
O2–X–O4	110.7	110.8	111.3	111.4
O1–X–O3	108.3	108.5	107.8	108.0
O1–X–O4	109.6	109.4	109.5	109.4
O3–X–O4	109.7	109.4	110.3	109.8
Ni–Ow3 2×	2.030	2.039	2.032	2.035
Ni–Ow1 2×	2.071	2.065	2.077	2.071
Ni–Ow2 2×	2.076	2.078	2.070	2.075
$\langle Ni-O \rangle$	2.056	2.061	2.059	2.060
Ow3–Ni–Ow1 2×	90.3	90.9	89.2	89.8
Ow3–Ni–Ow1' 2×	89.7	89.1	90.8	90.2
Ow3–Ni–Ow2 2×	90.1	89.4	89.2	90.0
Ow3–Ni–Ow2' 2×	89.9	90.6	90.8	90.0
Ow1–Ni–Ow2 2×	88.5	88.5	88.6	88.7
Ow1–Ni–Ow2' 2×	91.5	91.5	91.4	91.3
M,N–O3	2.860	3.026	2.856(2)	3.030(2)
M,N–O4	2.931	3.071(2)	2.924(2)	3.084(2)
M,N–O1	2.979	3.099(2)	2.985(2)	3.109(2)
M,N–O1	2.992	3.071(2)	2.962(2)	3.060(2)
M,N–Ow2	3.122	3.297	3.152	3.306
M,N–O2	3.150	3.306(2)	3.258(2)	3.383(2)
M,N–O2	3.228	3.279(2)	3.362(2)	3.362(2)
M,N–Ow1	3.238	3.399	3.249(2)	3.405
M,N–O2	3.533	3.480(2)	3.636(2)	3.574(2)
M,N–Ow3	3.617	3.657	3.712(2)	3.761
$\langle M,N-O \rangle^{[4]}$	2.940	3.066	2.932	3.071
$\langle M,N-O \rangle^{[8]}$	3.062	3.193	3.094	3.217
$\langle M,N-O \rangle^{[9]}$	3.115	3.225	3.154	3.257
$\langle M,N-O \rangle^{[10]}$	3.165	3.268	3.210	3.307

472

473

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx.

E-mail address: xyz@abc.com.


474 On exchange of Cs by NH₄ groups, the lattice parameters clearly decrease as a consequence
 475 of the smaller space requirements of the ammonium groups (Fig. 7a). Likewise, the Cs/N–O
 476 distances show quite severe changes: of the eight nearest oxygen neighbors, seven decrease
 477 their distance at a quite strong and similar rate (by averaged 0.157 Å along the full solid
 478 solution series), only the Cs/N–O₂ distance moderately increases (Fig. 7b ,c). The four closer
 479 oxygen atoms are again in a pseudo-tetrahedral arrangement, and the gap to the four longer
 480 Cs/N–O distances is always larger compared to the respective rubidium-containing
 481 compounds. This argues against orientational disorder of the ammonium ions or the formation
 482 of polyfurcate N–H...O hydrogen bonds in the cesium salt matrices. But on the other hand,
 483 at the comparatively low ammonium contents present in the structurally investigated cesium
 484 mixed crystals ($y = 0.17\text{--}0.28$), strong local distortions of the oxygen environments, possibly
 485 combined with positional disorder of the ammonium ions, are likely to occur, which are not
 486 readily detectable by long-range diffraction methods.
 487

488 **Table 5. Hydrogen bond lengths (Å) and angles (°) for selected single crystals (see text)**
 489 **of ammonium-doped Tutton compounds M_{2-y}(NH₄)_yNi(XO₄)₂·6H₂O (M = Rb, Cs; X = S, Se)**
 490

MX	RbS	CsS	RbSe	CsSe
refined y (NH ₄)	0.395(4)	0.275(4)	0.991(5)	0.259(3)
Ow1–H11	0.79(2)	0.78(3)	0.77(3)	0.68(3)
Ow1–H12	0.86(2)	0.75(3)	0.80(3)	0.83(3)
Ow1...O3	2.758(2)	2.744(2)	2.789(2)	2.769(2)
Ow1...O4	2.802(2)	2.796(2)	2.828(2)	2.798(2)
Ow1–H11...O3	167(2)	168(3)	164(3)	170(3)
Ow1–H12...O4	173(2)	165(3)	167(4)	167(3)
Ow2–H21	0.76(2)	0.80(3)	0.81(3)	0.87(3)
Ow2–H22	0.75(2)	0.79(2)	0.83(3)	0.82(3)
Ow2...O2	2.698(2)	2.724(2)	2.686(2)	2.714(2)
Ow2...O4	2.748(2)	2.754(2)	2.750(2)	2.757(2)
Ow2–H21...O2	176(2)	172(3)	175(3)	171(3)
Ow2–H22...O4	170(2)	163(2)	166(3)	169(3)
Ow3–H31	0.77(2)	0.79(3)	0.75(3)	0.77(3)
Ow3–H32	0.85(2)	0.87(3)	0.78(4)	0.89(3)
Ow3...O3	2.746(1)	2.760(2)	2.753(2)	2.756(2)
Ow3...O1	2.680(1)	2.682(2)	2.708(2)	2.684(2)
Ow3–H31...O3	173(2)	168(3)	169(3)	170(3)
Ow3–H32...O1	174(2)	176(4)	178(4)	172(3)
N–HN1	0.82(4)		0.80(4)	
N–HN2	0.83(4)		0.79(4)	
N–HN3	0.88(4)		0.85(4)	
N–HN4	0.83(4)		0.80(4)	
N...O4	2.931(1)		2.924(2)	
N...O1	2.992(1)		2.962(2)	
N...O1	2.979(1)		2.985(2)	
N...O3	2.860(1)		2.856(2)	
N–HN1...O4	148(11)		153(6)	
N–HN2...O1	164(10)		174(6)	
N–HN3...O1	164(11)		167(6)	
N–HN4...O3	145(10)		163(6)	

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx.
 E-mail address: xyz@abc.com.

491 The hydrogen bonding system involving the three different water molecules is also affected to
 492 some extent by the replacement of Rb or Cs by NH_4^+ groups. In the alkali endmembers
 493 [1,2,39,40], the moderately strong $\text{Ow}\cdots\text{O}$ hydrogen bonds range between ~ 2.67 to ~ 2.80 Å.
 494 With the only significant exception of $\text{Ow}2\cdots\text{O}2$ in the cesium compounds, the other hydrogen
 495 bonds to O1, O3 and O4 tend to become longer and thus weaker (or remain roughly constant)
 496 with increasing ammonium content. This behavior can be readily explained due to the
 497 additional participation of O1, O3 and O4 as acceptors in $\text{N}-\text{H}\cdots\text{O}$ hydrogen bonds of the
 498 ammonium ions in the mixed crystals and in the NH_4 endmember compounds.
 499
 500

501
 502
 503 **Fig. 7. Changes in lattice parameters (a) and variation of the M/N–O distances along**
 504 **the $\text{M}_{2-y}(\text{NH}_4)_y\text{Ni}(\text{XO}_4)_2\cdot 6\text{H}_2\text{O}$ (M = Rb, Cs; X = S, Se) solid solution series (b, sulfates; c,**
 505 **selenates). Data for the endmember compositions are taken from Refs. [1,2,16,38–40]**

2. CONCLUSIONS

- 506
 507
 508 (i) A double salt, $\text{Cs}_2\text{Ni}(\text{SO}_4)_2\cdot 6\text{H}_2\text{O}$, crystallizes from the ternary $\text{Cs}_2\text{SO}_4-\text{NiSO}_4-\text{H}_2\text{O}$
 509 system within a wide concentration range.
 510
 511 (ii) The ammonium ions isomorphously included in the cesium and rubidium sulfates exhibit
 512 three bands corresponding to the asymmetric bending modes ν_4 in agreement with the low
 513 site symmetry C_1 of the host cesium and rubidium ions. However, the inclusion of
 514 ammonium ions in the selenate matrices leads to the appearance of four bands in the region
 515 of ν_4 due to some kind of disorder of the ammonium ions. This phenomenon is probably due
 516 to the stronger proton acceptor ability of the selenate ions.
 517
 518 (iii) The hydrogen bonds formed in the $\text{M}_{1.85}(\text{NH}_4)_{0.15}\text{Ni}(\text{XO}_4)_2\cdot 6\text{H}_2\text{O}$ (M = Rb, Cs; X = S, Se)
 519 mixed crystals as deduced from the wavenumbers of the water librations are weaker as
 520 compared to those formed in the neat rubidium and cesium compounds. The formation of
 521 hydrogen bonds between the ammonium guest cations and the host anions leads to the
 522 decrease in the proton acceptor capacity of the SO_4^{2-} and SeO_4^{2-} anions (*anti*-cooperative or
 523 proton acceptor competitive effect).
 524
 525

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx.

E-mail address: xyz@abc.com.

526 (iv) Single crystal structure investigations of $(M, NH_4)_2Ni(XO_4)_2 \cdot 6H_2O$ ($M = Rb, Cs; X = S, Se$)
527 mixed crystals show significant changes in the environment of the monovalent cations upon
528 incorporation of ammonium ions. Likewise, the weakening of hydrogen bonds of the water
529 molecules, revealed by infrared spectroscopy, is confirmed by increasing $Ow \cdots O$ hydrogen
530 bond lengths. Disorder of NH_4 groups or the formation of polyfurcate $N-H \cdots O$ hydrogen
531 bonds have not been observed in the diffraction experiments, but can not be excluded,
532 especially not for low ammonium contents.

533

534 **ACKNOWLEDGEMENTS**

535

536 The financial support of the National Science Fund of Republic of Bulgaria (project
537 BG051PO001/3.3-05-0001) is gratefully acknowledged.

538

539 **COMPETING INTERESTS**

540

541 Authors have declared that no competing interests exist.

542

543 **AUTHORS' CONTRIBUTIONS**

544

545 This work was carried out in collaboration between all authors. Author MW performed and
546 interpreted single crystal X-ray diffraction measurements and wrote the part for the structural
547 data. Author DS interpreted and wrote the part concerning the infrared spectroscopic
548 measurements. Author VK performed experiments: preparation of the samples, X-ray
549 diffraction and infrared spectroscopic measurements. VK participated in discussions of
550 experimental results as well. All authors read and approved the final manuscript.

551

552

553 **REFERENCES**

554

- 555 1. Euler H, Barbier B, Meents A, Kirfel A. Crystal structure of Tutton's salts, $Cs_2[M^{II}(H_2O)_6]$
556 $(SeO_4)_2$, $M^{II} = Mg, Mn, Co, Ni, Zn$. *Z Kristallogr NCS*. 2003;218(4):405-408.
557 Available: [DOI: 10.1524/zkncr.2003.218.4.405](https://doi.org/10.1524/zkncr.2003.218.4.405).
- 558 2. Euler H, Barbier B, Meents A, Kirfel A. Crystal structure of Tutton's salts, $Cs_2[M^{II}(H_2O)_6]$
559 $(SO_4)_2$, $M^{II} = Mg, Mn, Fe, Co, Ni, Zn$. *Z Kristallogr NCS*. 2003;218(4):409-413.
560 Available: [DOI: 10.1524/zkncr.2003.218.4.409](https://doi.org/10.1524/zkncr.2003.218.4.409).
- 561 3. Marinova D, Georgiev M, Stoilova D. Vibrational behavior of matrix-isolated ions in Tutton
562 compounds. I. Infrared Spectroscopic study of NH_4^+ and SO_4^{2-} ions included in magnesium
563 sulfates and selenates. *J Mol Struct*. 2009;929(1-3):67-72.
564 Available: [DOI: 10.1016/j.molstruc.2009.04.004](https://doi.org/10.1016/j.molstruc.2009.04.004).
- 565 4. Marinova D, Georgiev M, Stoilova D. Vibrational behavior of matrix-isolated ions in Tutton
566 compounds. II. Infrared spectroscopic study of NH_4^+ and SO_4^{2-} ions included in copper
567 sulfates and selenates. *J Mol Struct*. 2009;938(1-3):179-184.
568 Available: [DOI: 10.1016/j.molstruc.2009.09.023](https://doi.org/10.1016/j.molstruc.2009.09.023).
- 569 5. Marinova D, Georgiev M, Stoilova D. Vibrational behavior of matrix-isolated ions in Tutton
570 compounds. V. Infrared spectroscopic study of NH_4^+ and SO_4^{2-} ions included in zinc sulfates
571 and selenates. *Solid State Sci*. 2010;12(5):765-769.
572 Available: [DOI: 10.1016/j.solidstatesciences.2010.02.02](https://doi.org/10.1016/j.solidstatesciences.2010.02.02).
- 573 6. Georgiev M, Marinova D, Stoilova D. Vibrational behavior of matrix-isolated ions in Tutton
574 compounds. III. Infrared spectroscopic study of NH_4^+ and SO_4^{2-} ions included in cobalt
575 sulfates and selenates. *Vibr Spectrosc*. 2010;53:233-238.
576 Available: [DOI: 10.1016/j.vibspec.2010.03.014](https://doi.org/10.1016/j.vibspec.2010.03.014).

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx.

E-mail address: xyz@abc.com.

- 577 7. Marinova D, Georgiev M, Stoilova D. Vibrational behavior of matrix-isolated ions in Tutton compounds. IV. Infrared spectroscopic study of NH_4^+ and SO_4^{2-} ions included in nickel sulfates and selenates, *Cryst. Res. Technol.* 2010;45:637-642.
 578 Available: [DOI:10.1002/crat.200900668](https://doi.org/10.1002/crat.200900668).
- 581 8. Karadjova V, Stoilova D. Infrared spectroscopic study of $\text{Rb}_2\text{M}(\text{XO}_4)_2 \cdot 6\text{H}_2\text{O}$ ($\text{M} = \text{Mg, Co, Ni, Cu, Zn}$; $\text{X} = \text{S, Se}$) and of SO_4^{2-} guest ions included in rubidium Tutton selenates. *J Mol Struct.* 2013;1050:204-210.
 582 Available: [DOI: 10.1016/j.molstruc.2013.07.013](https://doi.org/10.1016/j.molstruc.2013.07.013).
- 585 9. Karadjova V, Stoilova D. Crystallization in the three-component systems $\text{Rb}_2\text{SO}_4\text{--MeSO}_4\text{--H}_2\text{O}$ ($\text{Me} = \text{Mg, Co, Ni, Cu, Zn}$) at 25 °C. *J Cryst Proc Technol.* 2013;3(3):136-147.
 586 Available: <http://dx.doi.org/10.4236/jcpt.2013.34022>.
- 588 10. Karadjova V. Crystallization in the three-component systems $\text{Rb}_2\text{SeO}_4\text{--MeSeO}_4\text{--H}_2\text{O}$ ($\text{Me} = \text{Mg, Ni, Cu}$) at 25 °C. *J Univ Chem Technol (Sofia).* 2013;48(3):316-325.
- 590 11. Oikova T, Barkov D, Popov A. Untersuchung der Phasengleichgewichte in den Systemen $\text{Cs}_2\text{SeO}_4\text{--CoSeO}_4\text{--H}_2\text{O}$ und $\text{Cs}_2\text{SeO}_4\text{--NiSeO}_4\text{--H}_2\text{O}$ bei 25.0°C. *Monatsh Chem.*
 591 2000;131(7):727-732.
 592 Available: [DOI: 10.1007/s007060070073](https://doi.org/10.1007/s007060070073).
- 594 12. Balarew Chr, Karaivanova V, Oikova T. Beitrag zur Untersuchung der isomorphen und
 595 isodimorphen Einschluesse in Kristallsalzen. III. Untersuchung der Systeme Zinksulfat-
 596 Kobaltsulfat-Wasser und Zinksulfat-Nickelsulfat-Wasser bei 25 °C. *Commun Departm Chem.*
 597 Bulg Acad Sci. 1970;3(4):673-644.
- 598 13. Nonius, Kappa CCD program package, Nonius B.V. Delft 1998.
- 599 14. Sheldrick GM. A short history of SHELX. *Acta Crystallogr.* 2008;A64(1):112-122.
 600 Available: [DOI: 10.1107/S0108767307043930](https://doi.org/10.1107/S0108767307043930).
- 601 15. Bosi F, Belardi G, Ballirano P. Structural features in Tutton's salts $\text{K}_2[\text{M}^{2+}(\text{H}_2\text{O})_6](\text{SO}_4)_2$,
 602 with $\text{M}^{2+} = \text{Mg, Fe, Co, Ni, Cu, and Zn}$. *Amer Mineralogist.* 2009;94(1):74-82.
- 603 16. Montgomery H. Diammonium nickel diselenate hexahydrate, *Acta Crystallogr.*
 604 1980;B36(2):440-442.
 605 Available: [DOI: 10.1107/S0567740880003445](https://doi.org/10.1107/S0567740880003445).
- 606 17. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds,
 607 John Wiley & Sons New York 1986.
- 608 18. Brown RG, Ross SD. Forbidden transitions in the infrared spectra of tetrahedral
 609 anions–VI. Tutton salts and other double sulfates and selenates *Spectrochim Acta.*
 610 1970;26A(4):945-953.
- 611 19. Campbell JA, Ryan DP, Simpson LM. Interionic forces in crystal – II. Infrared spectra of
 612 SO_4 groups and “octahedrally” coordinated water in some Alums, Tutton salts, and the
 613 double salts obtained by dehydrating them. *Spectrochim Acta.* 1970;26A(12):2351-2361.
- 614 20. Petruševski V, Šoptrajanov B. Description of molecular distortions II. Intensities of the
 615 symmetric stretching bands of tetrahedral molecules. *J Mol Struct.* 1988;175:349-354.
 616 Available: [DOI: 10.1016/S0022-2860\(98\)80101-4](https://doi.org/10.1016/S0022-2860(98)80101-4).
- 617 21. Petruševski VM, Šoptrajanov B. Infrared spectra of the dihydrates of calcium selenate
 618 and yttrium phosphate - comparison with the spectrum of gypsum. *J Mol Struct.*
 619 1984;115:343-346.
 620 Available: [DOI: 10.1016/0022-2860\(84\)80084-8](https://doi.org/10.1016/0022-2860(84)80084-8).
- 621 22. Šoptrajanov B, Petruševski VM. Infrared spectra of Li_2SeO_4 , $\text{Li}_2\text{SeO}_4 \cdot \text{H}_2\text{O}$ and $\text{Li}_2(\text{S,Se})\text{O}_4 \cdot \text{H}_2\text{O}$. *J Mol Struct.* 1986;142:67-70.
 622 Available: [DOI: 10.1016/0022-2860\(86\)85064-5](https://doi.org/10.1016/0022-2860(86)85064-5).
- 623 23. Lutz HD. Bonding and structure of water molecules in solid hydrates. Correlation of
 625 spectroscopic and structural data. *Struct Bond (Berlin).* 1988;69:97-123.
- 626 24. Stoilova D, Lutz HD. Infrared study of ν_{OD} modes in isotopically dilute (HDO) kieserite-
 627 type compounds $\text{MXO}_4 \cdot \text{H}_2\text{O}$ ($\text{M} = \text{Mn, Co, Ni, Zn, and X} = \text{S, Se}$) with matrix-isolated M^{2+}
 628 and $\text{X}'\text{O}_4^{2-}$ guest ions. *J Mol Struct.* 1998;450(1-3):101-106.

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx.

E-mail address: xyz@abc.com.

- 629 Available: [DOI: 10.1016/S0022-2860\(98\)90417-3](https://doi.org/10.1016/S0022-2860(98)90417-3).
- 630 25. Lutz HD, Engelen B. Hydrogen bonds in inorganic solids. *Trends Appl Spectrosc.* 2002;4:355-375.
- 631 26. Stoilova D, Wildner M, Koleva V. Infrared study of ν_{OD} modes in isotopically dilute (HDO molecules) $\text{Na}_2\text{Me}(\text{XO}_4)_2 \cdot 2\text{H}_2\text{O}$ with matrix-isolated $\text{X}'\text{O}_4^{2-}$ guest ions (Me = Mn, Co, Ni, Cu, Zn, Cd, and X = S, Se). *J Mol Struct.* 2002;643(1-3):37-41.
- 632 Available: [DOI: 10.1016/S0022-2860\(02\)00404-0](https://doi.org/10.1016/S0022-2860(02)00404-0).
- 633 27. Lutz HD. Structure and strength of hydrogen bonds in inorganic compounds. *J Mol Struct.* 2003;646(1-3):227-236.
- 634 Available: [DOI: 10.1016/S0022-2860\(02\)00716-0](https://doi.org/10.1016/S0022-2860(02)00716-0).
- 635 28. Šoptrajanov B, Petruševski VM. Vibrational spectra of hexaaqua complexes V. The water bending bands in the infrared spectra of Tutton salts. *J Mol Struct.* 1997;408/409:283-286.
- 636 Available: [DOI: 10.1016/S0022-2860\(96\)09660-3](https://doi.org/10.1016/S0022-2860(96)09660-3).
- 637 29. Ebert M, Vojtišek P. The hydrates of double selenates. *Chem papers* 1993;47(5):292-296.
- 638 30. Mička Zd, Prokopová L, Cisařová I, Havliček D. Crystal structure, thermoanalytical properties and infrared spectra of double magnesium selenates. *Collect Czech Chem Commun.* 1996;61(9):1295-1306.
- 639 Available: <http://dx.doi.org/10.1135/cccc19961295>.
- 640 31. Vojtišek P, Ebert M. Löslichkeitsuntersuchung in den Systemen $\text{Rb}_2\text{SeO}_4\text{-MgSeO}_4\text{-H}_2\text{O}$ und $\text{Cs}_2\text{SeO}_4\text{-MgSeO}_4\text{-H}_2\text{O}$ bei 25°C. *Z Chem.* 1987;27(7):266-267.
- 641 Available: [DOI: 10.1002/zfch.19870270715](https://doi.org/10.1002/zfch.19870270715).
- 642 32. Fleck M, Kolitsch U. Crystal structure of ammonium hexaaquacobalt(II) selenate, $(\text{NH}_4)_2[\text{Co}(\text{H}_2\text{O})_6](\text{SeO}_4)_2$, and hexaaquazinc selenate, $(\text{NH}_4)_2[\text{Zn}(\text{H}_2\text{O})_6](\text{SeO}_4)_2$, hydrogen bonds in two ammonium selenate Tutton's salts. *Z Kristallogr NCS.* 2002;217(JG):471-473.
- 643 Available: [DOI: 10.1524/zknc.2002.217.jg.471](https://doi.org/10.1524/zknc.2002.217.jg.471).
- 644 33. Khan AA, Baur WH. Salt hydrates. VIII. The crystal structures of sodium ammonium orthochromate dihydrate and magnesium diammonium bis(hydrogen orthophosphate) tetrahydrate and a discussion of the ammonium ion. *Acta Crystallogr.* 1972;B28(3):683-693.
- 645 DOI: [10.1107/S0567740872003024](https://doi.org/10.1107/S0567740872003024).
- 646 34. Cahil A, Najdovski M, Stefov V. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. IV. FTIR spectra of protiated and partially deuterated nickel ammonium phosphate hexahydrate and nickel potassium phosphate hexahydrate. *J. Mol. Struct.* 2007;834/836:408-413.
- 647 Available: [DOI: 10.1016/j.molstruc.2006.11.049](https://doi.org/10.1016/j.molstruc.2006.11.049).
- 648 35. Stefov V, Šoptrajanov B, Kuzmanovski I, Lutz HD, Engelen B. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. III. Spectra of protiated and partially deuterated magnesium ammonium phosphate hexahydrate. *J Mol Struct.* 2005;752(1-3):60-67.
- 649 Available: [DOI: 10.1016/j.molstruc.2005.05.040](https://doi.org/10.1016/j.molstruc.2005.05.040).
- 650 36. Stefov V, Šoptrajanov B, Najdovski M, Engelen B, Lutz HD. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. V. Spectra of protiated and partially deuterated magnesium ammonium arsenate hexahydrate (arsenstruvite). *J Mol Struct.* 2008;872(2-3):87-92.
- 651 Available: [DOI: 10.1016/j.molstruc.2007.02.017](https://doi.org/10.1016/j.molstruc.2007.02.017).
- 652 37. Cahil A, Šoptrajanov B, Najdovski M, Lutz HD, Engelen B, Stefov V. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. Part VI: FT-IR spectra of isomorphously isolated species. NH_4^+ ions isolated in $\text{MKPO}_4 \cdot 6\text{H}_2\text{O}$ (M = Mg, Ni) and PO_4^{3-} ions isolated in $\text{MgNH}_4\text{AsO}_4 \cdot 6\text{H}_2\text{O}$. *J Mol Struct.* 2008;876(1-3):255-259.
- 653 Available: [DOI: 10.1016/j.molstruc.2007.06.023](https://doi.org/10.1016/j.molstruc.2007.06.023).

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx.

E-mail address: xyz@abc.com.

- 681 38. Maslen EN, Ridout SC, Watson KJ, Moore FH. The structures of Tutton's salts. II. Dia-
682 mmonium hexaaquanickel(II) sulfate. *Acta Crystallogr.* 1988;C44(3):412-415.
683 Available: [DOI: 10.1107/S0108270187009995](https://doi.org/10.1107/S0108270187009995).
- 684 39. Fleck M, Kolitsch U. Crystal structure of the Tutton's salts rubidium hexaaquanickel(II)
685 selenate, $Rb_2[Ni(H_2O)_6](SeO_4)_2$, and rubidium hexaaquacopper(II) selenate,
686 $Rb_2[Cu(H_2O)_6](SeO_4)_2$. *Z Kristallogr NCS*. 2002;217(JG):15-16.
687 Available: [DOI:10.1524/zkncs.2002.217.jg.15](https://doi.org/10.1524/zkncs.2002.217.jg.15),
- 688 40. Euler H, Barbier B, Klumpp S, Kirfel A. Crystal structure of Tutton's salts, $Rb_2[M^{II}(H_2O)_6]$
689 $(SO_4)_2$, $M^{II} = Mg, Mn, Fe, Co, Ni, Zn$. *Z Kristallogr NCS*. 2000;215(4):473-476.