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ABSTRACT 5 

In the recent years, the bi-level programming problem (BLPP) is interested by many researchers and it is known as an tool 6 

to solve the real problems in several areas such as economic, traffic, finance, management, and so on. Also, it has been 7 

proven that the general BLPP is an NP-hard problem. In this paper, we attempt to develop two effective approaches, one 8 

based on approximate approach and the other based on the hybrid algorithm by combining the penalty function and the line 9 

search algorithm for solving thenon-linear BLPP. In these approaches, by using the Karush-Kuhn-Tucker conditions the 10 

BLPP is converted to a non-smooth single problem, and then it is smoothed by Fischer-Burmeister functions.Finally, the 11 

smoothed problem is solved using both of the proposed approaches. The presented approaches achieve an efficient and 12 

feasible solution in an appropriate time which has been evaluated by comparing to references and test problems. 13 

Keywords:Non-linear bi-level programming problem, Approximate Method, Karush-Kuhn-Tucker conditions, Line search 14 

method. 15 

1. Introduction 16 

It has been proven that the bi-level programming problem (BLPP) is an NP-Hard problem [1, 2].Several algorithms have 17 

been proposed to solve BLPP [3, 4, 11, 12, 13, 21, 25, 31]. These algorithms are divided into the following classes: global 18 

techniques, enumeration methods, transformation methods, meta heuristic approaches, fuzzy methods, primal-dual interior 19 

methods. In the following, these techniques are shortly introduced. 20 

1.1. Global techniques 21 

All optimization methods can be divided into two distinctive classes: local and global algorithms. Local ones depend on 22 

initial point and characteristics such as continuity and differentiability of the objective function. These algorithms search 23 

only a local solution, a point at which the objective function is smaller than at all other feasible points in vicinity. They do 24 

not always find the best minima, that is, the global solution. On the other hand, global methods can achieve global optimal 25 

solution. These methods are independent of initial point as well as continuity and differentiability of the objective function 26 

[9, 10, 11, 12, 33]. 27 

 28 

1.2. Enumeration methods 29 

Branch and bound is an optimization algorithm that uses the basic enumeration. But in these methods we employ clever 30 

techniques for calculating upper bounds and lower bounds on the objective function by reducing the number of search steps. 31 
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In these methods, the main idea is that the vertex points of achievable domain for BLPP are basic feasible solutions of the 32 

problem and the optimal solution is among them [14]. 33 

1.3. Transformation methods 34 

An important class of methods for constrained optimization seeks the solution by replacing the original constrained problem 35 

with a sequence of unconstrained sub-problems or a problem with simple constraints. These methods are interested by some 36 

researchers for solving BLPP, so that they transform the follower problem by methods such as penalty functions, barrier 37 

functions, Lagrangian relaxation method or KKT conditions. In fact, these techniques convert the BLPP into a single 38 

problem and then it is solved by other methods [3, 4, 22, 23, 32, 34, 35]. 39 

1.4. Meta heuristic approaches 40 

Meta heuristic approaches are proposed by many researchers to solve complex combinatorial optimization. Whereas these 41 

methodsare too fast and known as suitable techniques for solving optimization problems, however, they can only propose a 42 

solution near to optimal. These approaches are generally appropriate to search global optimal solutions in very large space 43 

whenever convex or non-convex feasible domain is allowed. In these approaches, BLPP is transformed to a single level 44 

problem by using transformation methods and then meta heuristic methods are utilized to find out the optimal solution [15, 45 

16, 17, 18, 19, 25, 36, 37, 38, 39].  46 

1.5. Fuzzy methods 47 

Sometimes crisp values to the variables are not appropriate. Therefore,the fuzzy approach is asuitable tool to describe them. 48 

In this category,membership functions can be leader, follower or both of objective functions.Also it can be define with 49 

constraints and variables. There are so many researchers using this method [5, 6, 7, 8, 24, 40]. 50 

1.6. Interior pointmethods 51 

The interior point methods formulate many large linear programs as nonlinear problems and solve them with various 52 

modifications of nonlinear algorithms. These methods require all iterates to satisfy the inequality constraints in the problem 53 

strictly. The primal-dual method is a class of these methods which is the most efficient practical approach. The interior point 54 

methods can be strong competitors to the simplex method on large problems [13].  55 

The remainder of the paper is structured as follows: in Section 2, basic concepts of the linear BLPP are introduced. We 56 

provide a smooth method to BLPP in Section 3. The first presented algorithm is proposed in Section 4. We will present the 57 

second proposed algorithm in Section 5 and computational results are presented for both approaches in Section 6.Finally, 58 

the paper is finished in Section 7 by presenting the concluding remarks. 59 

2.The Non-Linear BLPP and Smoothing Method 60 

 The BLPP is used frequently by problems with decentralized planning structure. It is defined as [20]:  61 

min� ���, 	
 

 �. � min� ���, 	
 

 �. � ���, 	
 ≤ 0, 
(1) 
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 �, 	 ≥ 0. 
Where  

 �: ��×� .→ ��, �: ��×� .→ ��, 
�: ��×� .→ �� , � ∈ ��, 	 ∈ ��. 
 

 

Also F and f are objective functions of the leader and follower respectively.  62 

The feasible region of the non-linear BLP problem is 63 

� =  ��, 	
|���, 	
 ≤ 0, �, 	 ≥ 0"    (2)  

On using KKT conditions the problem (1) can be converted into the following problem:  64 

min�,�# ���, 	, $
 

    �. � ∇�&��, 	, $
 = 0, 
                 $���, 	
 = 0,  
                   ���, 	
 ≤ 0, 
                       $ ≥ 0. 

 (3) 

Where L is the Lagrange function and  &��, 	, $
 = ���, 	
 + $���, 	
. 65 

Because problem (3) has a complementary constraint, it is not convex and it is not differentiable. Fortunately 66 

Facchinei et al, 1999 proposed smooth method for solving problem with complementary constraints and we use 67 

this method to smooth problem (3). 68 

  In general the BLPP is a non-convex optimization problem therefore there is no general algorithm to solve it. This problem 69 

can be non-convex even when all functions and constraints are bounded and continuous.  70 

A summary of important properties for convex problem as follows, which f: S .→ R+ and S is a nonempty convex set in R+.                                           71 

(1) The convex function f is continuous on the interior of S. 72 

(2) Every local optimal solution of f over a convex set , ⊆ �  is the unique global optimal solution. 73 

(3)  If     ∇f�x/
 = 0, then x/  is unique global optimal solution of f over S.  74 

Since in problem (3), most of the equality constraints are not linear then it concerns that the above problem is a non-convex 75 

programming problem, which indicates there are local optimal solutions that are not global solutions. Therefore solving the 76 

problem (3) will be complicated. 77 

Definition 2.1: 78 

Fischer – Burmeister is the following function, 79 
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ϕ: R1 → R , ϕ�a, b
 = a + b − √a1 + b1 or ϕ: R6 → R, ϕ�a, b, ℇ
 = a + b − √a1 + b1 + ℇ  ,  where 8 ≥ 0 , 9 ≥ 0 , then 80 

89 = 0 ↔ ϕ�a, b, ℇ
 = 0. 81 

Using Fischer–Burmeister functionϕ�a, b, ℇ
 = a + b − √a1 + b1 + ℇ   in problem (3) we obtain the followingproblem: 82 

min. ���, 	, $
 

    �. � ∇�&��, 	, $
 = 0, 
$; − �;��, 	
 − <$;1 + �;1��, 	
 + = = 0, > = 1,2, … , B, 
           �, 	, $; ≥ 0, > = 1, … , B. 

(4)  

Which   gD�x, y
 =  8;x + 9;y − r , and 8; , 9; are i-th row of A, B respectively, and8 = μ; ≥ 0, 9 = −�;��, 	
 ≥ 0. 83 

Let:  84 

G(x,y,µ)=

HI
II
J μ� − g��x, y
 − Kμ�1 + g�1�x, y
 + ℇ

μ1 − g1�x, y
 − Kμ11 + g11�x, y
 + ℇ⋮μM − gM�x, y
 − KμM1 + gM1 �x, y
 + ℇNO
OO
P
 , H�x, y, $
 = ∇	&��, 	, $
.                 (5)                     85 

Problem (4) can be written as follows, 86 

min. ���, 	, $
 

        �. � H�x, y, $
 = 0, 
              R��, 	, $
 = 0,  
               �, 	, $ ≥ 0. 

(6) 

 87 

Where  � = �x, y, μ
 88 

3. Hybrid algorithm (HA)  89 

   Penalty functions transform a constrained problem into a single unconstrained problem or into a sequence of 90 

unconstrained problems. The constraints are appended into the objective function via a penalty parameter in a way that 91 

penalizes any violation of the constraints. In general, a suitable function must incur a positive penalty for infeasible points 92 

and no penalty for feasible points. Also, the penalty function method is a common approach to solve the bi-level 93 

programming problems. In this kind of approach, the lower level problem is appended to the upper level objective function 94 

with a penalty. We use a penalty function to convert problem (6) to an unconstraint problem. 95 

  Consider problem (6); we append all constraints to the upper level objective function with a penalty for each constraint. 96 

Then, we obtain the following penalized problem. 97 

min ���, 	, $
 + μ�H�x, y, $
 + ∑ μ;�R;��

1;                                                                                                                 (7)                     98 

WhichRT��
 is >th row of matrix R��
 and μ; is taken as the penalty coefficient. 99 

Now we solve problem (7) using our line search method. The line search method is proposed as follows: 100 
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Given a vector �, a suitable direction U is first determined, and then � is minimized from � in the direction U. Our method 101 

searches along the directions �U�, U1, … , U�V�
 where UT , W = 1,2, … , X − 1 is a vector of zeros except at the Wth position 102 

which is 1 andU� = Y �
√� , �

√� , , … , �
√�Z. 103 

  Clearly, all directions have a norm equal to 1 and they are linearly independent search directions. In fact, the proposed line 104 

search method uses the following directions as the search directions: 105 

U� = �1,0, … ,0
, U1 = �0,1, … ,0
, … , U�V� = �0, … ,1,0
, U� = Y �
√� , �

√� , , … , �
√�Z                                                                 (8) 106 

Therefore, along the search directionUT , W = 1,2, … , X − 1 , the variable �T  is changed while all other variables are kept 107 

fixed. We summarize below the proposed line search method for minimizing a function of several variables. Then, we show 108 

that, if the function is differentiable then the proposed method converges to a stationary point. 109 

Step 1: Initial step 110 

Choose a scalar ℇ > 0to be used for terminating the algorithm, and let U�, U1, … , U�V� be the coordinate directions and U� 111 

be a vector of 
�

√� . Choose an initial point �� let �� = 	�. \ = W = 1, and go to the next step. 112 

Step 2:Main step 113 

Let μT be an optimal solution to the problem to minimize�	T + μUT
 , and let 	T]� = 	T + μTUT 114 

If  W < X  replace Wby W + 1, and repeat step1. Otherwise, if W = X, go to the next step. 115 

Step 3:Termination 116 

Let  �_]� = 	�]� if  ‖�_]� − �_‖ < =  then stop, otherwise, let  	� = �_]�and W = 1, replace \ by \ + 1, and repeat step 2.  117 

 118 

  We now propose a theorem which establishes the convergence of algorithms for solving a problem of the form: minimize 119 

���
 subject to � ∈ ��. We show that an algorithm that generates n linearly independent search directions, and obtains a 120 

new point by sequentially minimizing f along these directions, converges to a stationary point. The theorem also establishes 121 

the convergence of algorithms using linearly independent and orthogonal search directions.  122 

same optimal solution according to the following theorem. 123 

Theorem 3.1: 124 

Consider the following problem: 125 

min� ���
 

 �. � �;��
 ≤ 0,  i=1,2,…,m, 

ℎT��
 = 0,  j=1,2,…,l, 

(9) 

where�, ��, … , ��, ℎ�, … , ℎb  are continuous functions on  ��  and  ,  is a nonempty set in ��.  Suppose that the problem  126 

has a feasible solution, and c is a continuous function as follows: 127 
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c�x
 = d ∅[�;��
]
�

;h�
+ d ∅[ℎ;��
]

b

;h�
 (10) 

where 128 

∅�	
 = 0  if  y ≤ 0, ∅�	
 > 0  >�  	 > 0. (11) 

∅�	
 = 0  if  y = 0, ∅�	
 > 0  >�  	 ≠ 0. (12) 

 Then,  129 

inf ���
: ���
 ≤ 0,   ℎ��
 = 0, � ∈ ,"
= inf ���
 + μc��
: � ∈ ," (13) 

whereμ is a large positive constant �μ → ∞
. 130 

4. Taylor method (TA) 131 

Because functions G, H in (6) is always continuous everywhere and it is possible to use, Taylor Theorem for them in (6) and 132 

F should be continuous too. 133 

Theorem 4.1 (TaylorTheorem)[30]:Suppose that � has X + 1 continuous derivatives on an open interval containing 8. 134 

Then for each� in the interval, 135 

f�x
 = kd f l�a
k!
+

lho
�x − a
lp + R+]��x
 

 136 

where the error term R+]��x
, for some q between 8 and �, satisfies   137 

R+]��x
 = f �+]�
�c
�n + 1
! �x − a
+]� 

This form for the error ��]���
is called the Lagrange formula for the reminder.  138 

The infinite Taylor series converge to f, 139 

 f�x
 = kd f l�a
k!
s

lho
�x − a
lp 

If and only iflim�→s ��]���
 = 0. 140 

Proof: 141 

The proof of this theorem was given by [28].  142 

In mathematics, an approximation of a k-times differentiablefunction near a point is given by Taylor’s theorem. Taylor’s 143 

theorem is one of the fundamental tools in pure mathematics and it is the starting point of advanced asymptotic analysis, 144 

also it is usually used in applied fields of mathematics. If a real-valued functionf is differentiable at the point “a” then it has 145 

a linear approximation at the point “a”. This means that there exists a function g such that 146 

  f�x
 = f�a
 + f u�a
�x − a
 + g�x
�x − a
,   limv→w g�x
 = 0. 
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Here 147 

P��x
 = f�a
 + f u�a
�x − a
 

Which P��x
is the linear approximation of � at the point “a” . 148 

By applying Taylor theorem at “a”  feasible point such as �_ for function G, H, F and take only two linear part of them, the 149 

following linear functions is constructed:  150 

GDztl| + ∇GDztl|zt − tl| = 0,    i = 1,2, … m. 
HDztl| + ∇HDztl|zt − tl| = 0,    i = 1,2, … m   (14) 151 

      FDztl| + ∇FDztl|zt − tl| = 0,    i = 1,2, … m 

Because the obtained problem by using Taylor theorem is linear programming, it can be solved using simplex methods. 152 

The steps of the proposed algorithm are as follows:  153 

Step 1: Initialization 154 

The feasible point    t�  is created randomly, error ℇ� is given and suppose k=1. 155 

ℇ�  is a small and appropriate given error and finishing the algorithm depends to ℇ�  such that it is finished whenever 156 

difference between produced solutions by the algorithm in two consecutive iterations is less than ℇ�. 157 

Step 2: finding solution. 158 

According to the step 1, k=1 and feasible solutiont�  has been defined. Using these assumptions and Taylor theorem for 159 

G�t
, H�t
8XU ���
at tl, we obtain following problem: 160 

min       FDztl| + ∇FDztl|zt − tl| 

    s. t HDztl| + ∇HDztl|zt − tl| = 0,    i = 1,2, … m 

GDztl| + ∇GDztl|zt − tl| = 0,    i = 1,2, … m. 
                           x, y, μD ≥ 0, i = 1, … , m. 

(15) 

Solve the problem (15) using simplex method (by MATLAB 7.1). By solving this problem, an optimal solution such as  161 

tl]�  is obtained.  162 

Step 3: Keeping the present best solution. 163 

Because (15) is an approximation for (6) by Taylor theorem, therefore optimal solution for (15) is an approximation of 164 

optimal solution for (6). Thus  tl]� can be a good approximation of problem (6) optimal solution. Therefore let   t∗ = tl]�    165 

and go to next step. 166 

Step 4: Termination 167 

If  d�Fztl]�|, Fztl|
 < ℇ�  then the algorithm is finished andt∗  is the best solution by the proposed algorithm. Otherwise, 168 

let k=k+1 and go to the step 2. Which d is metric and, 169 

d YFztl]�|, Fztl|Z = �∑ ��z�;_]�| − ���;_

1�]1�;h� 
��. 170 
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Following theorems show that proposed algorithm is convergent. 171 

Theorem 4.2:  Every Cauchy sequence in real line and complex plan is convergent.  172 

Proof: 173 

Proof of this theorem is given in [34]. 174 

Theorem 4.3:  Sequence  �_" which was proposed in above algorithm is convergent to the optimal solution, so that the 175 

algorithm is convergent.  176 

Proof: 177 

Let ��b
 = ����b

 = �����b 
, ���1b 
, … , ����]1�b 

= ����b
, �1�b
, … , ��]1��b
 
. 178 

According to step 4 179 

U��_]�, �_
 = d YFztl]�|, Fztl|Z = � d ��z�;_]�| − ���;_

1
�]1�

;h�

�� < =�                                                                     �21
 

therefore �∑ Y�z�;_]�| − �z�;_|Z1�]1�;h� 
 < =�1 . There is large number such as N which k+1>k>N and j=1,2,…,2m+n we 180 

have:   181 

��T�_]�
 −  �T�_

1 < =�1 , therefore  ��T�_]�
 −  �T�_
� < =� 182 

��� ��� B = \ + 1, � = \ �ℎ�X �� ℎ8�� 
∀�������T��
 −  �T��
� < =�. 

This shows that for each fixed j, �1 ≤ j ≤ 2m + n
,  the sequence �F���
, F��1
, … 
  is Cauchy of real numbers, then it 183 

converges by theorem 4.6. 184 

Say,  �T��
 → �T as B → ∞. Using these 2m+n limits, we define � = ���, �1, … , �1�]�
.From (21) and m=k+1, r=k,  185 

U���, ��
 < =� 

Now if  r → ∞ , by�� → F we have U���, �
 ≤ =�. 186 

This shows that F is the limit of ���
 and the sequence is convergent. 187 

Theorem 4.4:  If sequence  f�tl
" is converge to f�t
 and f be linear function then  tl" is converge to t. 188 

Proof: 189 

 Proof of this theorem is given in [34]. 190 

5. Computational results  191 

Example 1[30] (solving by hybrid algorithm (HA)): 192 

Consider the following linear bi-level programming problem:  193 

 194 

 195 

 196 
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Using KKT conditions the following problem is obtained: 198 

 199 

 200 

 201 

 202 

 203 

 204 

Using theFischer – Burmeister function, the above problem as follows: 205 

 206 

 207 

 208 

 209 

Using (7) we obtain an unconstraint problem as follows: 210 

 211 

 212 

We solve this problem using the proposed line search algorithm and we present the optimal solution in the Table 2.  213 

Example 2[30] (solving by hybrid algorithm (HA)): 214 

Consider the following linear bi-level programming problem.  215 
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After applying KKT conditions and smoothing method, and then proposed penalty function in(7)above problem will be 218 

transformed to the following problem: 219 

 220 

 221 

The optimal solution is obtained using our line search method according to the Table 3. 222 

More problems with different sizes have been solved by our approach and computation results have been proposed in Table 223 

4.  References of the examples in Table 4 are as follows: 224 

Example 3 [30], Example 4 [32], Example 5 [31], Example 6 [33] which both of them are minimization problems . 225 

According to the Table 4, the best solutions by our algorithm are better than the best solution by the references. The 226 

algorithm is feasible and efficient according to the Tables.  227 

Example 1 [4] (solving by Taylor algorithm (TA)): 228 

Consider the following non-linear bi-level programming problem:  229 

 230 

 231 

 232 

Using KKT conditions and the Fischer – Burmeister function, the following problem is obtained: 233 

 234 

 235 

 236 

 237 

We solve this problem using the proposed line search algorithm and we present the optimal solution in Table 1. By solving 238 

this problem the best solutions are found according to Table 1. It declares that the best solutions by the proposed algorithm 239 

are better than the best solution by the references in appropriate time. 240 

Behavior of the variables in Example 1 has been show in figure 1 that variables x and y will be stable after 5000 and 4850 241 
iterations respectively. 242 

Example 2[4] (solving by Taylor series approach (TA)): 243 

Consider the following linear bi-level programming problem.  244 
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 246 

 247 

 248 

After applying KKT conditions and smoothing method, and then proposed penalty function above problem will be 249 

transformed to the following problem: 250 

 251 

 252 

The optimal solution is obtained using our method according to Table 2. 253 

Behavior of the variables in Example 2 has been show in figure 2 that variableswill be stable after 3000iterations 254 
respectively. 255 

More problems with different sizes have been solved by our approach and computation results have been proposed in Table 256 

3. According to this Table, the best solutions by our algorithm are better than the best solution by the references. The 257 

algorithm is feasible and efficient according to the Tables.  258 

We make program with MATLAB 7.1 and use a personal computer (CPU: Intel (R) Celeron(R) 1000 M @ 1.8 GHz, 259 

RAM:4 GB) to execute the program.References of the examples in Table 3 as follows: 260 

Example 3 [3], Example 4 [7], Example 5 [26], Example 6 [27] . 261 

7. Conclusion and future work 262 

In this paper, we used the KKT conditions to convert the problem into a single level problem. Then,usingtheFischer-263 

Burmeister function, the problem was made simpler and converted to a smooth programming problem. The smoothed 264 

problem was been solved,utilizing the first proposed algorithm based on Taylor theorem. Also, it was solved using the 265 

second proposed hybrid algorithm by combining the penalty function and the line search algorithm.Comparing with the 266 

results of previous methods, both algorithms have better numerical results and present better solutions in much less times. 267 

The bestsolutions produced by proposed algorithms are feasible unlike the previous best solutions by other researchers.  268 

In the future works, the following should be researched: 269 

(1) Examples in larger sizes can be supplied to illustrate the efficiency of the proposed algorithms. 270 

(2) Showing the efficiency of the proposed algorithms for solving other kinds of BLP. 271 

 272 
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Table 1 comparison optimal solutions in HA- Example 1 275 
 276 

 277 

 278 

 279 

 280 

Table 2 comparison optimal solution in HA Example 2 281 

 282 

 Best solution 
according to reference 
[3, 7, 26, 27] 

Best solution by our 
method 

Iterations Time Optimal solution 

Example 3 (1.883,0.891,0.003) (1.887,0.889,0.001) 8250 3.57 s  

Example 4 (0,0) (0,0) 3500 2.30 s (0,0) 

Example 5 (1,0) (1,0) 6700 3.20 s (1,0) 

Example 6 (0,0.75,0,0.5,0) (0.001,0.73,0,0.54,0) 8500 4.10 s (0,0.75,0,0.5,0) 

Table 3 comparison optimal solutions with deferent Examples 3-6by HA 283 

 284 

 285 

Best solution by our method Best solution according to reference [30] Optimal solution 

      

(2.601,1.611) -77.14 (2.600,1.613) -77.10 (2.600,1.612) -77.11 

Best solution by our method Best solution according to reference [4] Optimal solution 

      

(0.51,0.51,0.49,0.50) -1.590 (0.5,0.5,0.5,0.5) -1.5 (0.51,0.51,0.51,0.51) -1.598 
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*
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Table 4 comparison optimal solutions in TA - Example 1 286 

 287 

Table 5 comparison optimal solution in TA Example2 288 

 289 

 Best solution according 
to reference [3, 7, 26, 
27] 

Best solution by our 
method 

Iterations 

 

Time Optimal solution 

Example 3 (1.883,0.891,0.003) (1.88,0.87,0) 7100 3.05 s  

Example 4 (0,0) (0,0) 2800 1.46 s (0,0) 

Example 5 (1,0) (1,0) 5000 2.51 s (1,0) 

Example 6 (0,0.75,0,0.5,0) (0,0.76,0,0.51,0) 7300 3.15 s (0,0.75,0,0.5,0) 

Table 6 comparison optimal solutions with deferent Examples 3-6 by TA 290 

 291 

Best solution by our method Best solution according to reference [30] Optimal solution 

��∗, 	∗
 �∗ ��∗, 	∗
 �∗ ��∗, 	∗
 �∗ 

(2.6,1.61) -77.12 (2.600,1.613) -77.10 (2.600,1.612) -77.11 

Best solution by our method Best solution according to reference [32] Optimal solution 

      

(0.52,0.51,0.53,0.51) -1.583 (0.5,0.5,0.5,0.5) -1.5 (0.51,0.51,0.51,0.51) -1.598 
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*
1
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2
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* yyx*z

001.0=ε
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 Example 1 Example 2 

 Gap of Optimal 

Solution 

Iterations Time Gap of Optimal 

Solution 

Iterations Time 

TA              0                                   4000 2.16 s             0.006                            2000 1.37 s 

HA            0.1                                  7000 3.05 s              0.04                             7000 2.54 s 

Table 7- Comparison of TA and HA 292 

 293 

 294 

 295 
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 384 

Figure 1 – The transient behavior of the variables using TA in Example 1. 
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 385 

Figure 2 – The transient behavior of the variables using HA in Example 1. 
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389 
Figure 3 – The transient behavior of the variables using TA in Example 2. 
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 390 
Figure 4 – The transient behavior of the variables using HA in Example 2. 

 


