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Original Research Article
Two Approachesfor SolvingNon-Linear Bi-level

Programmingproblem

ABSTRACT

In the recent years, the bi-level programming pgob(BLPP) is interested by many researchers aisckitown as an tool
to solve the real problems in several areas sudcasomic, traffic, finance, management, and soAtso, it has been
proven that the general BLPP is an NP-hard problenthis paper, we attempt to develop two effectipproaches, one
based on approximate approach and the other bastw dybrid algorithm by combining the penaltydtion and the line
search algorithm for solving thenon-linear BLPP.these approaches, by using the Karush-Kuhn-Tuctrditions the
BLPP is converted to a non-smooth single problemd, then it is smoothed by Fischer-Burmeister fundiFinally, the
smoothed problem is solved using both of the pregaspproaches. The presented approaches achies#icnt and

feasible solution in an appropriate time which hasn evaluated by comparing to references angteistems.

Keywords:Non-linear bi-level programming problem, Approximdtlethod, Karush-Kuhn-Tucker conditions, Line skarc

method.

1. Introduction

It has been proven that the bi-level programminmgpfam (BLPP) is an NP-Hard problem [1, 2].Sevetgbathms have
been proposed to solve BLPP [3, 4, 11, 12, 13281 31]. These algorithms are divided into thedeihg classes: global
techniques, enumeration methods, transformatiomaast meta heuristic approaches, fuzzy methodsigbdual interior

methods. In the following, these techniques aretshimtroduced.

1.1. Global techniques

All optimization methods can be divided into twastifictive classes: local and global algorithms. dlagnes depend on
initial point and characteristics such as contiyaihd differentiability of the objective functiofhese algorithms search
only a local solution, a point at which the objeetfunction is smaller than at all other feasibbéngs in vicinity. They do
not always find the best minima, that is, the glamdution. On the other hand, global methods aariewve global optimal
solution. These methods are independent of irpiéht as well as continuity and differentiability thhe objective function
[9, 10, 11, 12, 33].

1.2. Enumeration methods

Branch and bound is an optimization algorithm the¢s the basic enumeration. But in these methodsmymoy clever

techniques for calculating upper bounds and lowemids on the objective function by reducing the berrof search steps.
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In these methods, the main idea is that the vertémts of achievable domain for BLPP are basicifdasolutions of the

problem and the optimal solution is among them .[14]

1.3. Transformation methods

An important class of methods for constrained otition seeks the solution by replacing the oribommstrained problem
with a sequence of unconstrained sub-problemspoolalem with simple constraints. These methodsrdesested by some
researchers for solving BLPP, so that they tramsftre follower problem by methods such as penaitctions, barrier
functions, Lagrangian relaxation method or KKT citinds. In fact, these techniques convert the BLiR® a single

problem and then it is solved by other method€[22, 23, 32, 34, 35].

1.4. Meta heuristic approaches

Meta heuristic approaches are proposed by mangnasers to solve complex combinatorial optimizatidthereas these
methodsare too fast and known as suitable techsifjuesolving optimization problems, however, tloeay only propose a
solution near to optimal. These approaches arergiynappropriate to search global optimal solusidm very large space
whenever convex or non-convex feasible domainl@nad. In these approaches, BLPP is transformea single level
problem by using transformation methods and thetarmeuristic methods are utilized to find out tiptimal solution [15,
16, 17, 18, 19, 25, 36, 37, 38, 39].

1.5. Fuzzy methods

Sometimes crisp values to the variables are naboapiate. Therefore,the fuzzy approach is asuitadéto describe them.
In this category,membership functions can be leafidiower or both of objective functions.Also e be define with

constraints and variables. There are so many msearusing this method [5, 6, 7, 8, 24, 40].

1.6. Interior pointmethods

The interior point methods formulate many largeedin programs as nonlinear problems and solve thém warious

modifications of nonlinear algorithms. These metheeuire all iterates to satisfy the inequalitpstoaints in the problem
strictly. The primal-dual method is a class of thesethods which is the most efficient practicalrapph. The interior point
methods can be strong competitors to the simplethadeon large problems [13].

The remainder of the paper is structured as follawsSection 2, basic concepts of the linear BLP® iatroduced. We
provide a smooth method to BLPP in Section 3. Tits¢ presented algorithm is proposed in Sectiowé.will present the
second proposed algorithm in Section 5 and computt results are presented for both approach&eaiion 6.Finally,

the paper is finished in Section 7 by presentirgatncluding remarks.

2.The Non-Linear BLPP and Smoothing M ethod
The BLPP is used frequently by problems with déedimed planning structure. It is defined as [20]:
min F(x,y)
X
s.tminf(x,y) (1)

s.tg(x,y) <0,



62

63

64

65
66
67
68
69
70
71
72
73
74
75
76
77

78

79

x,y = 0.
Where

F: RXm N Rl’f:RnXm N Rl,

g:R™™ - R9,x € R™,y € R™.

Also F and f are objective functions of the leaaied follower respectively.
The feasible region of the non-linear BLP problem i
S={xlglx,y) <0,x,y = 0} 2

On using KKT conditions the problem (1) can be @ted into the following problem:

min F (x, y, u)
Xyu

s.tVyL(x,y,u) =0,

pg(x,y) =0, 3
g(x,y) <0,
u=0.

Where L is the Lagrange function aidx, y, u) = f(x,y) + ug(x,y).
Because problem (3) has a complementary constitiistnot convex and it is not differentiable. forately
Facchinei et al, 1999 proposed smooth method feingpproblem with complementary constraints anduse
this method to smooth problem (3).

In general the BLPP is a non-convex optimizapooblem therefore there is no general algorithredie it. This problem
can be non-convex even when all functions and cains$ are bounded and continuous.
A summary of important properties for convex praoblas follows, which: S — R and S is a nonempty convex seRrh

(1) The convex function f is continuous on the inteobsS.

(2) Every local optimal solution dfover a convex séf < S is the unique global optimal solution.

(3) If Vf(X) =0, thenx is unique global optimal solution of f over S.
Since in problem (3), most of the equality consiisaare not linear then it concerns that the alppgblem is a non-convex
programming problem, which indicates there arellopgimal solutions that are not global solutiomberefore solving the

problem (3) will be complicated.
Definition 2.1:

Fischer — Burmeister is the following function,
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¢:RZ->R,Pp(a,b)=a+b—+vaz+b2or¢p:R®* >R, ¢(a,b,€ =a+b—+va2+b2+€, wherea=>0, b >0, then
ab =0 ¢(ab,€) =0.

Using Fischer—Burmeister functipifa, b,€) = a+ b —va? + b2 + € in problem (3) we obtain the followingproblem:

min F(x,y, 1)

s.tVyL(x,y,u) =0,

(4)
i = gi(x,y) —Ju? +gf(y)+e=0,i=12,..,m,

xy,u; =20,i=1,..,m

Which gi(x,y) = a'x+ b'y —r, anda’, b’ are i-th row of A, B respectively, and= y; > 0,b = —g;(x,y) = 0.

Let:

W —gixy) —Vi2+gikxy) + €
G(ny.u)1 My — 82(x,y) — V13 + g3(xy) + €

, Hxy, 1) =V, L(x, y, ). ()

U — 8m (% y) —pk + 84 (xy) + €

Problem (4) can be written as follows,

min F (x,y, 1)
s.t Hix,y,u) =0, (©)
G(x,y,u) =0,
x,y,u=0.

Where t = (x,y, )
3. Hybrid algorithm (HA)

Penalty functions transform a constrained pmoblmto a single unconstrained problem or into ausege of
unconstrained problems. The constraints are appleimie the objective function via a penalty paragneh a way that
penalizes any violation of the constraints. In gahe suitable function must incur a positive ggnéor infeasible points
and no penalty for feasible points. Also, the pgndiinction method is a common approach to solve Hirlevel
programming problems. In this kind of approach, ltwer level problem is appended to the upper leb@tctive function
with a penalty. We use a penalty function to cohgesblem (6) to an unconstraint problem.

Consider problem (6); we append all constraiotthe upper level objective function with a pendtly each constraint.

Then, we obtain the following penalized problem.

min F(x, y, ) + mHX, y, 1) + X (G ()? (1)
Whichg; (t) is ith row of matrixG (t) andy; is taken as the penalty coefficient.

Now we solve problem (7) using our line search métfihe line search method is proposed as follows:
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Given a vectox, a suitable directiod is first determined, and th¢fis minimized fromx in the directiord. Our method

searches along the directic(d,,d,, ..., d,,_1) Whered;,j = 1,2,...,n — 1 is a vector of zeros except at ttie position

which is 1 and,, = («%«% «iz)

Clearly, all directions have a norm equal to @ #rey are linearly independent search directibmfact, the proposed line
search method uses the following directions as#aech directions:

d, = (1,0, ..,0),d, = (0,1, ...,0), ..,d_, = (0, ...,1,0),d,, = («%«% «/iﬁ) 8)

Therefore, along the search directipy = 1,2,...,n — 1, the variabler; is changed while all other variables are kept

fixed. We summarize below the proposed line searethod for minimizing a function of several variedl Then, we show

that, if the function is differentiable then theposed method converges to a stationary point.

Step 1: Initial step
Choose a scala > 0to be used for terminating the algorithm, anddlgtd,, ..., d,,_, be the coordinate directions adg

be a vector o@—lﬁ . Choose an initial point, letx; = y,.k = j = 1, and go to the next step.

Step 2:Main step
Let u; be an optimal solution to the problem to miningize+ ud;) , and lety;,; = y; + p;d;

If j <n replacgbyj + 1, and repeat stepl. Otherwisej # n, go to the next step.

Step 3:Termination

Let xpy1 = Yua1 If |lxes1 — x|l < € then stop, otherwise, let; = x;,;andj = 1, replacek by k + 1, and repeat step 2.

We now propose a theorem which establishes theecgence of algorithms for solving a problem af form: minimize
f(x) subject tac € R™. We show that an algorithm that generates n lipgadependent search directions, and obtains a
new point by sequentially minimizing f along thelieections, converges to a stationary point. Thetam also establishes
the convergence of algorithms using linearly indejgnt and orthogonal search directions.

same optimal solution according to the followingahem.

Theorem 3.1:

Consider the following problem:

min £ (x)

s.tg;(x) <0, i=1,2,...,m, 9
hi(x) =0, j=1,2,...,

wheref, g4, ..., gm, R4, ..., h; are continuous functions oR™ and X is a nonempty set iR". Suppose that the problem

has a feasible solution, ands a continuous function as follows:
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@) = ) 0lgi0]+ ) 0[] (10)
i=1

i=1

where
() =0if y <0, @) >0 if y>O0. (11)
o) =0ify=0, @(y)>0if y+#0. (12)
Then,

inf{f(x):g(x) <0, h(x) =0,x € X}

(13)
=inf{f(x) + pa(x): x € X}

wherau is a large positive constafit — oo).

4. Taylor method (TA)
Because functions G, H in (6) is always continueusrywhere and it is possible to use, Taylor Thedie them in (6) and

F should be continuous too.

Theorem 4.1 (Taylor Theorem)[30]:Suppose thaf hasn + 1 continuous derivatives on an open interval coimagie.

Then for eack in the interval,

()
() = [Z (= N+ Rpa ()
k=0
where the error terR,,,, (x), for somec betweerz andx, satisfies
f(n+1)(c)
— _ n+1
Rn+1(X) (n + 1)] (X a)

This form for the erroR,,,.,(x)is called the Lagrange formula for the reminder.

The infinite Taylor series converge to f,

(OF [Z @ - a)k]
k=0

If and only ilim,,_,, R,4+1(x) = 0.
Proof:

The proof of this theorem was given by [28].

In mathematics, an approximation of a k-times défdiablefunction near a point is given by Taylaieorem. Taylor’s
theorem is one of the fundamental tools in pureherattics and it is the starting point of advancegh®totic analysis,
also it is usually used in applied fields of matlatios. If a real-valued functionf is differentialdéthe point “a” then it has

a linear approximation at the point “a”. This me#met there exists a function g such that

fx) =f(@) +f'@Q)(x—a) + gx)(x—a), Ll_r)r; g(x) =0.

6
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Here

P (x) = f(a) + f'(@)(x — a)

Which P, (x)is the linear approximation ¢f at the point “a” .

By applying Taylor theorem at “a” feasible poinich ast® for function G, H, F and take only two linear paftthem, the

following linear functions is constructed:

Gi(t%) + VGi(t*)(t—t¥) =0, i=12,..m.
Hi () + VH;(£9)(t—t%) =0, i=12,..m (14)

Fi(t%) + VF (&) (t—t¥) =0, i=12,..m
Because the obtained problem by using Taylor thmasdinear programming, it can be solved usingpdéx methods.

The steps of the proposed algorithm are as follows:
Step 1: Initialization
The feasible point t! is created randomly, erréy is given and suppose k=1

€, is a small and appropriate given error and fimghthe algorithm depends & such that it is finished whenever

difference between produced solutions by the algarin two consecutive iterations is less tlgan
Step 2: finding solution.

According to the step 1, k=1 and feasible solufiomas been defined. Using these assumptions anidrTgorem for

G(t), H(t)and F (t)attX, we obtain following problem:
min  F;(t*) + VF;(t)(t — t¥)

s.tHj(t%) + VH (%) (t—t¥) =0, i=12,..m
(15)
Gi(t%) + VGi(t¥)(t—t¥) =0, i=12,..m.
Xy, =01i=1,..,m.
Solve the problem (15) using simplex method (by MAB 7.1). By solving this problem, an optimal satut such as

tk+1 s obtained.

Step 3: Keeping the present best solution.
Because (15) is an approximation for (6) by Taytworem, therefore optimal solution for (15) is awproximation of
optimal solution for (6). Thusk*! can be a good approximation of problem (6) optismiition. Therefore lett* = tk+?

and go to next step.

Step 4: Termination

If d(F(t**1),F(t¥)) < €; then the algorithm is finished et*dis the best solution by the proposed algorithtie@wise,
let k=k+1 and go to the step 2. Which d is metrid,a

d (F(E<4), F(t9)) = (T2m(F (657) - F(e9)2-.

7
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Following theorems show that proposed algoritheoisvergent.

Theorem 4.2: Every Cauchy sequence in real line and complex iglannvergent.

Proof:

Proof of this theorem is given in [34].

Theorem 4.3: Sequenc{F;} which was proposed in above algorithm is converdgerthe optimal solution, so that the

algorithm is convergent.

Pr oof:
Let (F) = (F(tY) = (F(t)), F(t8), .., F(thyom))= (B, B, oo, ED).
According to step 4
n+2m
1
d(Fesr, F) = d (F(£4), F(£9)) = ( Z F(e) = FENDz < & (21)
i=1

therefore(¥ 2™ (F(ti"“) - F(t{‘))z) < &?. There is large number such as N which k+1>k>N jgrd,2,...,2m+n we
have:
(FD — F9)2 < g2, therefore|FY — 9] < ¢,
Now let m = k + 1,r = k then we have
Vm>r>N|F}(m) - P}(r)l < é&.
This shows that for each fixgj, (1 <j < 2m + n), the sequenc (Fj(l),Fj(z),...) is Cauchy of real numbers, then it

converges by theorem 4.6.
Say, Fj(m) - F; arm — oo. Using these 2m+n limits, we defiF = (Fy, Fy, ..., Fam4n).From (21) and m=k+1, r=k,

d(E,, E) < &
Now if r —» o, byF. — F we haved(E,, F) < &;.
This shows that F is the limit (F,,) and the sequence is convergent.
Theorem 4.4: If sequence{f(ty)} is converge tf(t) andf be linear function the{t,} is converge to t.
Proof:
Proof of this theorem is given in [34].
5. Computational results
Example 1[30] (solving by hybrid algorithm (HA)):

Consider the following linear bi-level programmipgblem:
min x> +(y—-10)?
X
st min (x+2y-30)°
=

st x-y*=0,
20-x-y* =0
0<x<15.
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Using KKT conditions the following problem is ohted:

min x> +(y-10)?
st 4(x+2y-30) =0,
2y(A4 +A;,) =0,

Al(yz -X) =0,

A, (y* +x-20) =0,
A,(x-15 =0

y? -x<0,

y? +x-20<0,
x—-15<0,

A Ay, Ay 20,

Using theFischer — Burmeister function, the abawblem as follows:

min x* +(y-10)?
st 4(x+2y-30) =0,
(A +A,) =2y =/(A +1,)% + (2y)> +£ =0,
A=y =)= A+ (y* =X +£ =0,
Ay = (Y2 +X=20) =22+ (x+y? —20)2 +£ =0,
Ay = (x=15) =/ +(x-15)?% +£ =0,

Using (7) we obtain an unconstraint problem asfed:

min x* +(y —10)* + 4, (x + 2y —=30)* + 1, (A, + A, _Zy_\/(/]l + )%+ 2y)* +e)* +
(A = (Y2 = X) = A2+ (Y2 =X)% + )2 + 41, (A, — (Y2 +Xx=20) =/ A2 + (x+ y? —20)% +£)?
+ 5Ny = (x=15) = A2 + (x=15) +£)?

We solve this problem using the proposed line $ealgorithm and we present the optimal solutiothia Table 2.

Example 2[30] (solving by hybrid algorithm (HA)):
Consider the following linear bi-level programmipgpblem.
min = X7 =2 +X, =2%, +y; +Y;
X
st min y12 —2%Yy, * y§ —2X%,Y,
st 25-(y,-1*=0,
25-(y, -1)? 2 0. 9
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After applying KKT conditions and smoothing methadd then proposed penalty function in(7)above lpralwill be
transformed to the following problem:

Min = X7 = 2% +X; = 2%, + Y7 +Y; + 14 (2y, = 2% +2y, = 2X,)

+ 1 (A = (Y, —D? + 25- [ X +((y, —)? + 252 +¢ )?
Uy (A, + 25 (Y, ~D2 =R +((y, D> + 25 +¢ )?

The optimal solution is obtained using our linerskanethod according to the Table 3.

More problems with different sizes have been solwedur approach and computation results have pegposed in Table
4. References of the examples in Table 4 arelsvia

Example 3 [30], Example 4 [32], Example 5 [31], BExde 6 [33] which both of them are minimization plems .

According to the Table 4, the best solutions byalgorithm are better than the best solution byréferences. The
algorithm is feasible and efficient according te frables.

Example 1 [4] (solving by Taylor algorithm (TA)):
Consider the following non-linear bi-level prograingproblem:
min x> +(y-10)?
X
stmin (x+ 2y —30)°
y=

st x-y*=0,
20-x-y* =0
0<x<15.

Using KKT conditions and the Fischer — Burmeisterdtion, the following problem is obtained:
min x* +(y -10)?
st 4(x+2y-30) =0,
(A +24,) =2y =/(A, +4,)% +(2y)? +£ =0,
A= (Y =)= A +(y? -+ =0
Ay = (Y2 +x=20) =/ A2 + (x+y? =202 +£ =0,
Ay = (x=185) = |22 +(x-15?2 +£ =0,

We solve this problem using the proposed line $ealgorithm and we present the optimal solutiofaile 1. By solving
this problem the best solutions are found accortiingable 1. It declares that the best solutionshieyproposed algorithm
are better than the best solution by the refereimcappropriate time.

Behavior of the variables in Example 1 has beemvshdigure 1 that variables x and y will be stabféer 5000 and 4850
iterations respectively.

Example 2[4] (solving by Taylor seriesapproach (TA)):

Consider the following linear bi-level programmipgblem.

10
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min =X —2x + X2 = 2%, + y{ + y?
st min y7 =2xy, +Y; —2%,Y,
y

st 25-(y,—-1)*=0,
25-(y,-1)?=0.

After applying KKT conditions and smoothing methadd then proposed penalty function above probldhbe
transformed to the following problem:

min =X’ —=2x + X 2%, +y; +Y;

st +4 (ZY1 = 2%, *+2y, _2X2)
(A = (Y, —D?+ 25—\ R +((y, -+ 25 +¢ )?
+ ly( Ay + 25 (Y, =02 = R +((Y, -1)? + 257 +¢ )?

The optimal solution is obtained using our methocbading to Table 2.

Behavior of the variables in Example 2 has beemvshdigure 2 that variableswill be stable aftel0B@erations
respectively.

More problems with different sizes have been solwedur approach and computation results have pesggosed in Table
3. According to this Table, the best solutions by @gorithm are better than the best solutionheyreferences. The
algorithm is feasible and efficient according te frables.

We make program with MATLAB 7.1 and use a persam@ahputer (CPU: Intel (R) Celeron(R) 1000 M @ 1.8 5H
RAM:4 GB) to execute the program.References okttemples in Table 3 as follows:
Example 3 [3], Example 4 [7], Example 5 [26], Exdenf [27] .

7. Conclusion and future work

In this paper, we used the KKT conditions to cobwbe problem into a single level problem. ThemggieFischer-
Burmeister function, the problem was made simpledt aonverted to a smooth programming problem. Theoshed

problem was been solved,utilizing the first progbségorithm based on Taylor theorem. Also, it wab/ed using the
second proposed hybrid algorithm by combining thealty function and the line search algorithm.Cormgawith the

results of previous methods, both algorithms haatteb numerical results and present better solsitiormuch less times.
The bestsolutions produced by proposed algoritmméeasible unlike the previous best solutions tineoresearchers.

In the future works, the following should be reséad:

(1) Examples in larger sizes can be supplied to ikstthe efficiency of the proposed algorithms.

(2) Showing the efficiency of the proposed algorithmsdolving other kinds of BLP.

11
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Best solution by our method

Best solution accordgeference [30]

Optimal solution

£=0001
x,y) z x,y) z x,y) z
(2.601,1.611) 7714 (2.600,1.613) 77.10 (2.6@1,2) 7711

Table 1 comparison optimal solutionsin HA- Example 1

Best solution by our method

£=0.001

Best solution accordingeference [4]

Optimal solution

(X', Y1, Ys) 2

(X', Y1, Ys)

L YL) 2

(0.51,0.51,0.49,0.50

-1.590

(0.5,0.5,0.5,0.5)

(0.51,0.51,0.51,0.52) -1.59§

Table 2 comparison optimal solution in HA Example 2

Best solution Best solution by our | Iterations | Time Optimal solution

according to reference method & = 0.001

[3,7, 26, 27]
Example 3 (1.883,0.891,0.003 (1.887,0.889,0.001) 2508 3.57s 17/ 8

7480

Example 4 (0,0) (0,0) 3500 2.30s (0,0)
Example 5 (1,0) (1,0) 6700 3.20 3 (1,0)
Example 6 (0,0.75,0,0.5,0) (0.001,0.73,0,0.54|0) 0085 4.10s (0,0.75,0,0.5,0)

Table 3 comparison optimal solutions with deferent Examples 3-6by HA

12




Best solution by our method Best solution accordingeference [30] Optimal solution
£=0.001
(x*y9) z" (x%y9) z" (x*y) z"
(2.6,1.61) 7712 (2.600,1.613) -77.10 (2.600,1)612 -77.11
286 Table 4 comparison optimal solutions in TA - Example 1
287
Best solution by our method Best solution accordineference [32]| Optimal solution
£=0.001
(X' Y1, Ys) Z (X', Y1, Y2) 7 (X', Y1, Y2) V4
(0.52,0.51,0.53,0.51 -1.583 (0.5,0.5,0.5,0.5) -1.5 | (0.51,0.51,0.51,0.51) -1.59¢
288 Table 5 comparison optimal solution in TA Example2
289
Best solution according Best solution by our Iterations| Time Optimal solution
to reference [3, 7, 28, method £ = 0.001
27]
Example 3 (1.883,0.891,0.003) (1.88,0.87,0) 7100 058. 17/ 8
7. 9.0
Example 4 (0,0) (0,0) 2800 1.46s (0,0)
Example 5 (1,0) (1,0) 5000 2514 (1,0)
Example 6 (0,0.75,0,0.5,0) (0,0.76,0,0.51,0) 7300 .153 (0,0.75,0,0.5,0)
290 Table 6 comparison optimal solutions with deferent Examples 3-6 by TA
291
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292

293

294

295

296

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

Example 1 Example 2
Gap of Optimal | Iterations| Time Gap of Optimal| Iterations| Time
Solution Solution
TA 0 4000 2.16s 0.006 2000 1.37s
HA 0.1 7000 3.05s 0.04 7000 254s

Table 7- Comparison of TA and HA
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Figure 1 — The transient behavior of the variables using TA in Example 1.
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Figure 2 — The transient behavior of the variables using HA in Example 1.
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389 Figure 3 — The transient behavior of the variables using TA in Example 2.
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Figure 4 — The transient behavior of the variables using HA in Example 2.
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