
1 

 

Original Research Article 1 

Two Approaches for Solving Non-Linear Bi-level Programming 2 
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 4 

ABSTRACT 5 

In the recent years, the bi-level programming problem (BLPP) is interested by many researchers and it is known as an 6 

appropriate tool to solve the real problems in several areas such as economic, traffic, finance, management, and so on. Also, 7 

it has been proven that the general BLPP is an NP-hard problem. The literature shows a few attempts for using influence 8 

methods. In this paper, we attempt to develop two effective approaches, one based on Taylor theorem and the other based 9 

on the hybrid algorithm by combining the penalty function and the line search algorithm for solving thenon-linear BLPP. In 10 

these approaches, by using the Karush-Kuhn-Tucker conditions the BLPP is converted to a non-smooth single problem, and 11 

then it is smoothed by Fischer-Burmeister functions.Finally, the smoothed problem is solved using both of the proposed 12 

approaches. The presented approaches achieve an efficient and feasible solution in an appropriate time which has been 13 

evaluated by comparing to references and test problems. 14 

Keywords: Linear bi-level programming problem, Taylor theorem, Karush-Kuhn-Tucker conditions, Line search method. 15 

1. Introduction 16 

It has been proven that the bi-level programming problem (BLPP) is an NP-Hard problem [1, 2].Several algorithms have 17 

been proposed to solve BLPP [3, 4, 11, 12, 13, 21, 25]. These algorithms are divided into the following classes: global 18 

techniques, enumeration methods, transformation methods, meta heuristic approaches, fuzzy methods, primal-dual interior 19 

methods. In the following, these techniques are shortly introduced. 20 

1.1. Global techniques 21 

All optimization methods can be divided into two distinctive classes: local and global algorithms. Local ones depend on 22 

initial point and characteristics such as continuity and differentiability of the objective function. These algorithms search 23 

only a local solution, a point at which the objective function is smaller than at all other feasible points in vicinity. They do 24 

not always find the best minima, that is, the global solution. On the other hand, global methods can achieve global optimal 25 

solution. These methods are independent of initial point as well as continuity and differentiability of the objective function 26 

[9, 10, 11, 12]. 27 

 28 

1.2. Enumeration methods 29 

Branch and bound is an optimization algorithm that uses the basic enumeration. But in these methods we employ clever 30 

techniques for calculating upper bounds and lower bounds on the objective function by reducing the number of search steps. 31 
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In these methods, the main idea is that the vertex points of achievable domain for BLPP are basic feasible solutions of the 32 

problem and the optimal solution is among them [14]. 33 

1.3. Transformation methods 34 

An important class of methods for constrained optimization seeks the solution by replacing the original constrained problem 35 

with a sequence of unconstrained sub-problems or a problem with simple constraints. These methods are interested by some 36 

researchers for solving BLPP, so that they transform the follower problem by methods such as penalty functions, barrier 37 

functions, Lagrangian relaxation method or KKT conditions. In fact, these techniques convert the BLPP into a single 38 

problem and then it is solved by other methods [3, 4, 22, 23]. 39 

1.4. Meta heuristic approaches 40 

Meta heuristic approaches are proposed by many researchers to solve complex combinatorial optimization. Whereas these 41 

methodsare too fast and known as suitable techniques for solving optimization problems, however, they can only propose a 42 

solution near to optimal. These approaches are generally appropriate to search global optimal solutions in very large space 43 

whenever convex or non-convex feasible domain is allowed. In these approaches, BLPP is transformed to a single level 44 

problem by using transformation methods and then meta heuristic methods are utilized to find out the optimal solution [15, 45 

16, 17, 18, 19, 25].  46 

1.5. Fuzzy methods 47 

Sometimes assigning crisp values to the variables, constraints, and objective functions are not appropriate. Therefore, in 48 

these cases,the fuzzy approach is an eligible tool to overcome their ambiguousness. In this category,membership functions 49 

can be leader, follower or both of objective functions also it can be define with constraints and variables. There are so many 50 

researchers using this method [5, 6, 7, 8, 24]. 51 

1.6. Interior pointmethods 52 

The interior point methods formulate many large linear programs as nonlinear problems and solve them with various 53 

modifications of nonlinear algorithms. These methods require all iterates to satisfy the inequality constraints in the problem 54 

strictly. The primal-dual method is a class of these methods which is the most efficient practical approach. In interior point 55 

methods can be strong competitors to the simplex method on large problems [13].  56 

The remainder of the paper is structured as follows: in Section 2, basic concepts of the linear BLPP are introduced. We 57 

provide a smooth method to BLPP in Section 3. The first presented algorithm is proposed in Section 4. We will present the 58 

second proposed algorithm in Section 5 and computational results are presented for both approaches in Section 6.Finally, 59 

the paper is finished in Section 7 by presenting the concluding remarks. 60 

2.The Non-Linear BLPP and Smoothing Method 61 

 The BLPP is used frequently by problems with decentralized planning structure. It is defined as [20]:  62 

min� ���, 	
 

 �. � min� ���, 	
 
(1) 
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 �. � ���, 	
 ≤ 0, 
 �, 	 ≥ 0. 
Where  

 �: ��×� .→ ��, �: ��×� .→ ��, 
�: ��×� .→ �� , � ∈ ��, 	 ∈ ��. 
 

 

Also F and f are objective functions of the leader and follower respectively.  63 

The feasible region of the non-linear BLP problem is 64 

� =  ��, 	
|���, 	
 ≤ 0, �, 	 ≥ 0"    (2)  

Using KKT conditions problem (1) can be converted into the following problem:  65 

min�,�# ���, 	, $
 

    �. � ∇�&��, 	, $
 = 0, 
                 $���, 	
 = 0,  
                   ���, 	
 ≤ 0, 
                       $ ≥ 0. 

 (3) 

Where L is the Lagrange function and  &��, 	, $
 = ���, 	
 + $���, 	
. 66 

Because problem (3) has a complementary constraint, it is not convex and it is not differentiable. Fortunately 67 

Facchinei et al, 1999 proposed smooth method for solving problem with complementary constraints and we use 68 

this method to smooth problem (3). 69 

  In general the BLPP is a non-convex optimization problem therefore there is no general algorithm to solve it. This problem 70 

can be non-convex even when all functions and constraints are bounded and continuous.  71 

A summary of important properties for convex problem as follows, which f: S .→ R+ and S is a nonempty convex set in R+.                                           72 

(1) The convex function f is continuous on the interior of S. 73 

(2) Every local optimal solution of f over a convex set , ⊆ �  is the unique global optimal solution. 74 

(3)  If     ∇f�x/
 = 0, then x/  is unique global optimal solution of f over S.  75 

Since in problem (3), most of the equality constraints are not linear then it concerns that the above problem is a non-convex 76 

programming problem, which indicates there are local optimal solutions that are not global solutions. Therefore solving the 77 

problem (3) will be complicated. 78 

Definition 2.1: 79 

Fischer – Burmeister is the following function, 80 

UNDER PEER REVIEW



4 

 

ϕ: R1 → R , ϕ�a, b
 = a + b − √a1 + b1 or ϕ: R6 → R, ϕ�a, b, ℇ
 = a + b − √a1 + b1 + ℇ  ,  where 8 ≥ 0 , 9 ≥ 0 , then 81 

89 = 0 ↔ ϕ�a, b, ℇ
 = 0. 82 

Using Fischer – Burmeister functionϕ�a, b, ℇ
 = a + b − √a1 + b1 + ℇ   in problem (3) we obtain the followingproblem: 83 

min. ���, 	, $
 

    �. � ∇�&��, 	, $
 = 0, 
$; − �;��, 	
 − <$;1 + �;1��, 	
 + = = 0, > = 1,2, … , B, 
           �, 	, $; ≥ 0, > = 1, … , B. 

(4)  

Which   gD�x, y
 =  8;x + 9;y − r , and 8; , 9; are i-th row of A, B respectively, and8 = μ; ≥ 0, 9 = −�;��, 	
 ≥ 0. 84 

Let:  85 

G(x,y,µ)=

HI
II
J μ� − g��x, y
 − Kμ�1 + g�1�x, y
 + ℇ

μ1 − g1�x, y
 − Kμ11 + g11�x, y
 + ℇ⋮μM − gM�x, y
 − KμM1 + gM1 �x, y
 + ℇNO
OO
P
 , H�x, y, $
 = ∇	&��, 	, $
.                 (5)                     86 

Problem (4) can be written as follows, 87 

min. ���, 	, $
 

        �. � H�x, y, $
 = 0, 
              R��, 	, $
 = 0,  
               �, 	, $ ≥ 0. 

(6) 

 88 

Where  � = �x, y, μ
 89 

3. Hybrid algorithm (HA)  90 

   Penalty functions transform a constrained problem into a single unconstrained problem or into a sequence of 91 

unconstrained problems. The constraints are appended into the objective function via a penalty parameter in a way that 92 

penalizes any violation of the constraints. In general, a suitable function must incur a positive penalty for infeasible points 93 

and no penalty for feasible points. Also, the penalty function method is a common approach to solve the bi-level 94 

programming problems. In this kind of approach, the lower level problem is appended to the upper level objective function 95 

with a penalty. We use a penalty function to convert problem (6) to an unconstraint problem. 96 

  Consider problem (6); we append all constraints to the upper level objective function with a penalty for each constraint. 97 

Then, we obtain the following penalized problem. 98 

min ���, 	, $
 + μ�H�x, y, $
 + ∑ μ;�R;��

1;                                                                                                                 (7)                     99 

whichRT��
 is >th row of matrix R��
. 100 

Now we solve problem (7) using our line search method. The line search method is proposed as follows: 101 
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Given a vector �, a suitable direction U is first determined, and then � is minimized from � in the direction U. Our method 102 

searches along the directions �U�, U1, … , U�V�
 where UT , W = 1,2, … , X − 1 is a vector of zeros except at the Wth position 103 

which is 1 andU� = Y �
√� , �

√� , , … , �
√�Z. 104 

  Clearly, all directions have a norm equal to 1 and they are linearly independent search directions. In fact, the proposed line 105 

search method uses the following directions as the search directions: 106 

U� = �1,0, … ,0
, U1 = �0,1, … ,0
, … , U�V� = �0, … ,1,0
, U� = Y �
√� , �

√� , , … , �
√�Z                                                                 (8) 107 

Therefore, along the search directionUT , W = 1,2, … , X − 1 , the variable �T  is changed while all other variables are kept 108 

fixed. We summarize below the proposed line search method for minimizing a function of several variables. Then, we show 109 

that, if the function is differentiable then the proposed method converges to a stationary point. 110 

Step 1: Initial step 111 

Choose a scalar ℇ > 0to be used for terminating the algorithm, and let U�, U1, … , U�V� be the coordinate directions and U� 112 

be a vector of 
�

√� . Choose an initial point �� let �� = 	�. \ = W = 1, and go to the next step. 113 

Step 2:Main step 114 

Let μT be an optimal solution to the problem to minimize�	T + μUT
 , and let 	T]� = 	T + μTUT 115 

If  W < X  replace Wby W + 1, and repeat step1. Otherwise, if W = X, go to the next step. 116 

Step 3:Termination 117 

Let  �_]� = 	�]� if  ‖�_]� − �_‖ < =  then stop, otherwise, let  	� = �_]�and W = 1, replace \ by \ + 1, and repeat step 2.  118 

 119 

  We now propose a theorem which establishes the convergence of algorithms for solving a problem of the form: minimize 120 

���
 subject to � ∈ ��. We show that an algorithm that generates n linearly independent search directions, and obtains a 121 

new point by sequentially minimizing f along these directions, converges to a stationary point. The theorem also establishes 122 

the convergence of algorithms using linearly independent and orthogonal search directions.  123 

same optimal solution according to the following theorem. 124 

Theorem 3.1: 125 

Consider the following problem: 126 

min� ���
 

 �. � �;��
 ≤ 0,  i=1,2,…,m, 

ℎT��
 = 0,  j=1,2,…,l, 

(9) 

where�, ��, … , ��, ℎ�, … , ℎb  are continuous functions on  ��  and  ,  is a nonempty set in ��.  Suppose that the problem  127 

has a feasible solution, and c is a continuous function as follows: 128 
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c�x
 = d ∅[�;��
]
�

;h�
+ d ∅[ℎ;��
]

b

;h�
 (10) 

where 129 

∅�	
 = 0  if  y ≤ 0, ∅�	
 > 0  >�  	 > 0. (11) 

∅�	
 = 0  if  y = 0, ∅�	
 > 0  >�  	 ≠ 0. (12) 

 Then,  130 

inf ���
: ���
 ≤ 0,   ℎ��
 = 0, � ∈ ,"
= inf ���
 + μc��
: � ∈ ," 

(13) 

whereμ is a large positive constant �μ → ∞
. 131 

4. Taylor method (TA) 132 

Definition4.1:  A function �is a continuous function at � = 8 when 133 

(i) f(a) is defined, 134 

(ii) lim�→l���
 exists, 135 

(iii) lim�→l���
 = ��8
. 136 

Theorem 4.1:  All polynomials are continuous everywhere. Additionally, �� and , √�m
are continuous for all �, when X is 137 

odd and for � > 0, when X is even. 138 

Proof: 139 

Suppose that n��
 is a polynomial of degree X ≥ 0,  140 

n��
 = o��� + o�V���V� + ⋯ + o��� + oq. 
Then, 141 

lim�→l[n��
] = lim�→lroX�X + oX−1�X−1 + ⋯ + o1�1 + o0s = 

o� lim�→l �� + o�V� lim�→l ��V� + ⋯ + o� lim�→l �� + lim�→l oq = 

oX8X + oX−18X−1 + ⋯ + o181 + o0 = n�8
.  142 

This finished the proof. The rest of the theorem follows in a similar way. 143 

Theorem 4.2: Suppose that � and � are continuous at � = 8. Then � + � and � − �are continuous at � = 8. 144 

Proof: 145 

Since � and � are continuous at � = 8, then: 146 

lim�→l[���
 ± ���
] = lim�→l ���
 ± lim�→lg�x
 = f�a
 ±
�→l

��8
 = �� ± �
�8
. 
Thus,lim�→l[���
 ± ���
] =�� ± �
�8
. 147 
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This shows that � + �and � − � are continuous at � = 8. 148 

Theorem 4.3: Suppose that  lim�→l ���
 = &   and � is continuous at &. Then, 149 

limf��→l ���

 = fulimg�x
v = f��→l &
 

Proof: 150 

By our continuity assumptions, we know that 151 

 152 ∀xy∃{y�. � |� − &| < |� →  |���
 − ��&
| < =� 

∀x}∃{}�. � |� − 8| < |1 →  |���
 − &| < =1 

So for=, choose=� = =, which gives a |� > 0so that 153 

 154 |� − &| < |� →  |���
 − ��&
| < = 

 155 

Next set =1 = |1 > 0.This gives a |1 > 0 so that 156 

 157 |x − a| < δ1 →  |g�x
 − L| < ε1 

 158 

Finally, let ε1 = δ1.Therefore we can write: 159 

 160 |x − a| < | ↔ |x − a| < δ1 

 161 →  |g�x
 − g�a
| < ε1 

 162  ↔ |g�x
 − L| < δ� 
 163 → �fug�x
v − f�L
� < ε� 

 164 ↔ |f�g�x

 − f�g�a

| < = 
 165 

Corollary 1: Suppose that � is continuous at 8 and � is continuous at ��8
. Then, the composition��� is continuous at 8. 166 

Proof: 167 

From above theorem, we have: 168 

lim�→l����
��
 = limf��→l ���

 = fulimg�x
v = f��→l ��8

 = ����
�8
. since g is continuous at a. 
This finished the proof. 169 

Because functions G, H in (6) is always continuous everywhere and it is possible to use above Theorems and corollary, 170 

Taylor Theorem for them in (6) and F should be continuous too. 171 

Theorem 4.4 (TaylorTheorem)[30]:Suppose that � has X + 1 continuous derivatives on an open interval containing 8. 172 

Then for each� in the interval, 173 

f�x
 = �d f ��a
k!
+

�hq
�x − a
�� + R+]��x
 

 174 

where the error term R+]��x
, for some o between 8 and �, satisfies   175 
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R+]��x
 = f �+]�
�c
�n + 1
! �x − a
+]� 

This form for the error ��]���
is called the Lagrange formula for the reminder.  176 

The infinite Taylor series converge to f, 177 

 f�x
 = �d f ��a
k!
�

�hq
�x − a
�� 

If and only iflim�→� ��]���
 = 0. 178 

Proof: 179 

The proof of this theorem was given by [28].  180 

In mathematics, an approximation of a k-times differentiablefunction near a point is given by Taylor’s theorem. Taylor’s 181 

theorem is one of the fundamental tools in pure mathematics and it is the starting point of advanced asymptotic analysis, 182 

also it is usually used in applied fields of mathematics. If a real-valued functionf is differentiable at the point a then it has a 183 

linear approximation at the point a. This means that there exists a function g such that 184 

  f�x
 = f�a
 + f ��a
�x − a
 + g�x
�x − a
,   lim�→� g�x
 = 0. 
Here 185 

P��x
 = f�a
 + f ��a
�x − a
 

is the linear approximation of � at the point 8. 186 

By applying Taylor theorem at a feasible point such as �_ for function G, H, F and take only two linear part of them, the 187 

following linear functions is constructed:  188 

GDut�v + ∇GDut�vut − t�v = 0,    i = 1,2, … m. 
HDut�v + ∇HDut�vut − t�v = 0,    i = 1,2, … m   (14) 189 

      FDut�v + ∇FDut�vut − t�v = 0,    i = 1,2, … m 

Because the obtained problem by using Taylor theorem is linear programming, it can be solved using simplex methods. 190 

The steps of the proposed algorithm are as follows:  191 

Step 1: Initialization 192 

The feasible point    t�  is created randomly, error ℇ� is given and suppose k=1. 193 

ℇ�  is a small and appropriate given error and finishing the algorithm depends to ℇ�  such that it is finished whenever 194 

difference between produced solutions by the algorithm in two consecutive iterations is less than ℇ�. 195 

Step 2: finding solution. 196 

According to the step 1, k=1 and feasible solutiont�  has been defined. Using these assumptions and Taylor theorem for 197 

G�t
, H�t
8XU ���
at t�, we obtain following problem: 198 
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min       FDut�v + ∇FDut�vut − t�v 

    s. t HDut�v + ∇HDut�vut − t�v = 0,    i = 1,2, … m 

GDut�v + ∇GDut�vut − t�v = 0,    i = 1,2, … m. 
                           x, y, μD ≥ 0, i = 1, … , m. 

(15) 

Solve the problem (15) using simplex method (by MATLAB 7.1). By solving this problem, an optimal solution such as  199 

t�]�  is obtained.  200 

Step 3: Keeping the present best solution. 201 

Because (15) is an approximation for (6) by Taylor theorem, therefore optimal solution for (15) is an approximation of 202 

optimal solution for (6). Thus  t�]� can be a good approximation of problem (6) optimal solution. Therefore let   t∗ = t�]�    203 

and go to next step. 204 

Step 4: Termination 205 

If  �Fut�]�v − F�t�
� < ℇ�  then the algorithm is finished andt∗  is the best solution by the proposed algorithm. Otherwise, 206 

let k=k+1 and go to the step 2. 207 

5. Computational results  208 

Example 1[30] (solving by hybrid algorithm (HA)): 209 

Consider the following linear bi-level programming problem:  210 

 211 

 212 

 213 

 214 

Using KKT conditions the following problem is obtained: 215 

 216 

 217 

 218 

 219 

 220 
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Using  theFischer – Burmeister function, the above problem as follows: 222 

 223 

 224 

 225 

 226 

Using (7) we obtain an unconstraint problem as follows: 227 

 228 

 229 

We solve this problem using the proposed line search algorithm and we present the optimal solution in the Table 2.  230 

Example 2[30] (solving by hybrid algorithm (HA)): 231 

Consider the following linear bi-level programming problem.  232 

 233 

 234 

After applying KKT conditions and smoothing method, and then proposed penalty function above problem will be 235 

transformed to the following problem: 236 

 237 

 238 

The optimal solution is obtained using our line search method according to the Table 3. 239 

More problems with deferent sizes have been solved by our approach and computation results have been proposed in Table 240 

4.  References of the examples in Table 4 as follows: 241 

Example 3 [30], Example 4 [32], Example 5 [31], Example 6 [33] which both of them are minimization problems . 242 

,0)15()15(

,0)20()20(

,0)()(

,0)2()(2)(

,0)302(4.

)10(min

22

33

222

2

2

2

222

1

2

1

22

2121

22

=+−+−−−

=+−++−−+−

=+−+−−−

=+++−−+

=−+

−+

ελλ

ελλ

ελλ

ελλλλ

xx

yxxy

xyxy

yy

yxts

yx

222

335

2222

2

2

24

2222

1

2

13

222

21212

2

1

22

))15()15((

))20()20(())()((

))2()(2()302(4)10(min

ελλµ

ελλµελλµ

ελλλλµµ

+−+−−−+

+−++−−+−++−+−−−

++++−−++−++−+

xx

yxxyxyxy

yyyxyx

.0)1(25.

,0)1(25..

22min.

22min

2

2

2

1

22

2

211

2

1

2

2

2

12

2

21

2

1

≥−−

≥−−

−+−

++−+−−

y

yts

yxyyxyts

yyxxxx
x

222

2

2

2

2

223

222

1

2

1

2

112

22111

2

2

2

12

2

21

2

1

))25.)1(()1(25.(

))25.)1((25.)1((

)2222(22min

ελλµ

ελλµ

µ

++−+−−−++

++−+−+−−+

−+−+++−+−−

yy

yy

xyxyyyxxxx
x

UNDER PEER REVIEW



11 

 

According to the Table 4, the best solutions by our algorithm are better than the best solution by the references. The 243 

algorithm is feasible and efficient according to the Tables.  244 

Example 1 [4] (solving by Taylor algorithm (TA)): 245 

Consider the following non-linear bi-level programming problem:  246 

 247 

 248 

 249 

Using KKT conditions and the Fischer – Burmeister function, the following problem is obtained: 250 

 251 

 252 

 253 

 254 

We solve this problem using the proposed line search algorithm and we present the optimal solution in Table 1. By solving 255 

this problem the best solutions are found according to Table 1. It declares that the best solutions by the proposed algorithm 256 

are better than the best solution by the references in less time. 257 

Behavior of the variables in Example 1 has been show in figure 1 that variables x and y will be stable after 5000 and 4850 258 

iterations respectively. 259 

Example 2[4] (solving by Taylor algorithm (TA)): 260 

Consider the following linear bi-level programming problem.  261 

 262 

 263 

 264 

After applying KKT conditions and smoothing method, and then proposed penalty function above problem will be 265 

transformed to the following problem: 266 

 267 
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The optimal solution is obtained using our method according to Table 2. 269 

Behavior of the variables in Example 2 has been show in figure 2 that variableswill be stable after 6thousand iterations 270 

respectively. 271 

More problems with deferent sizes have been solved by our approach and computation results have been proposed in Table 272 

3. According to this Table, the best solutions by our algorithm are better than the best solution by the references. The 273 

algorithm is feasible and efficient according to the Tables.  274 

We make program with MATLAB 7.1 and use a personal computer (CPU: Intel (R) Celeron(R) 1000 M @ 1.8 GHz, 275 

RAM:4 GB) to execute the program.References of the examples in Table 3 as follows: 276 

Example 7 [31], Example 8 [4], Example 9 [32], Example 10 [33] . Example 3 is minimization and examples 4, 5, 6 are 277 

maximization problems.   278 

 279 

7. Conclusion and future work 280 

In this paper, we used the KKT conditions to convert the problem into a single level problem. Then,usingthe Fischer-281 

Burmeister function, the problem was made simpler and converted to a smooth programming problem. The smoothed 282 

problem was been solved,utilizing the first proposed algorithm based on Taylor theorem. Also, it was solved using the 283 

second proposed hybrid algorithm by combining the penalty function and the line search algorithm.Comparing with the 284 

results of previous methods, both algorithms have better numerical results and present better solutions in much less times. 285 

The bestsolutions produced by proposed algorithms are feasible unlike the previous best solutions by other researchers.  286 

In the future works, the following should be researched: 287 

(1) Examples in larger sizes can be supplied to illustrate the efficiency of the proposed algorithms. 288 

(2) Showing the efficiency of the proposed algorithms for solving other kinds of BLP. 289 

 290 

 291 

 292 

Table 1 comparison optimal solutions in HA- Example 1 293 

 294 

 295 

 296 

 297 

Best solution by our method Best solution according to reference [30] Optimal solution 

      

(2.601,1.611) -77.14 (2.600,1.613) -77.10 (2.600,1.612) -77.11 
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 298 

Table 2 comparison optimal solution in HA Example 2 299 

 300 

 Best solution by our 

method 

Best solution according to reference 

[30-33] 

Optimal solution 

Example 3 (1.887,0.889,0.001) (1.883,0.891,0.003)  

Example 4 (0,0) (0,0) (0,0) 

Example 5 (1,0) (1,0) (1,0) 

Example 6 (0.001,0.73,0,0.54,0) (0,0.75,0,0.5,0) (0,0.75,0,0.5,0) 

Table 3 comparison optimal solutions with deferent Examples 3-6by HA 301 

 302 

 303 

Table 4 comparison optimal solutions in TA - Example 1 304 

 305 

Best solution by our method Best solution according to reference [4] Optimal solution 

      

(0.51,0.51,0.49,0.50) -1.590 (0.5,0.5,0.5,0.5) -1.5 (0.51,0.51,0.51,0.51) -1.598 

Best solution by our method Best solution according to reference [30] Optimal solution 

��∗, 	∗
 �∗ ��∗, 	∗
 �∗ ��∗, 	∗
 �∗ 

(2.600,1.612) -77.11 (2.600,1.613) -77.10 (2.600,1.612) -77.11 

)0,
9

8,
9

17(
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Table 5 comparison optimal solution in TA Example2 306 

 307 

 Best solution by our 

method 

Best solution according to reference 

[4,31-33] 

Optimal solution 

Example 7 (1.889,0.888,0) (1.883,0.891,0.003)  

Example 8 (0,0) (0,0) (0,0) 

Example 9 (1,0) (1,0) (1,0) 

Example 10 (0,0.75,0,0.5,0) (0,0.75,0,0.5,0) (0,0.75,0,0.5,0) 

Table 6 comparison optimal solutions with deferent Examples 3-6 by TA 308 

 309 

 Example 1 Example 2 

 Gap of Optimal 

Solution 

Iteration Gap of Optimal 

Solution 

Iteration 

TA              0                                   4000             0.006                            2000 

HA            0.1                                  7000              0.04                             7000 

Table 7- Comparison of TA and HA 310 

 311 

 312 

 313 

Best solution by our method Best solution according to reference [32] Optimal solution 

      

(0.51,0.51,0.51,0.51) -1.598 (0.5,0.5,0.5,0.5) -1.5 (0.51,0.51,0.51,0.51) -1.598 
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 374 

 375 
 376 

Figure 1 – The transient behavior of the variables using TA in Example 1. 
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 377 

Figure 2 – The transient behavior of the variables using HA in Example 1. 

 

UNDER PEER REVIEW



19 

 

 378 

 379 

 380 

xample2 by HA. 381 

 382 

Figure 3 – The transient behavior of the variables using TA in Example 2. 
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 383 
Figure 4 – The transient behavior of the variables using HA in Example 2. 
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